•  
  •  
 

ORCiD

0000-0003-3513-508X

Abstract

Euler’s key idea for equating the Quartic in the title to a square is to set k=P+surd(Q). From this he derives P=f·x^2 and Q=4f·y^2+4 and solves the Pell equation for y. He then discusses various extensions to rational numbers that leave k an integer. Euler provides incomplete tables for integers k with |k|square.

Last Page

62

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.