Time-dependent mechanical response of HDPE geomembranes

Department

Civil Engineering

Document Type

Article

Publication Title

Journal of Geotechnical Engineering

ISSN

1090-0241

Volume

123

Issue

1

DOI

10.1061/(ASCE)1090-0241(1997)123:1(57)

First Page

57

Last Page

65

Publication Date

1-1-1997

Abstract

Characterization of the long-term mechanical response of geomembranes used in waste-containment facilities is crucial to designing base liner and cover systems that perform satisfactorily. To investigate the long-term mechanical response, strain-controlled multiaxial tension testing was performed over a fourfold variation of strain rate using a newly developed multiaxial tension-test apparatus capable of performing constant strain rate and constant stress creep tests. This device subjects a geomembrane specimen to multiaxial stress states and allows for the development of strain conditions that vary from plane strain at the clamped edges to balanced biaxial at the center. Results from testing high-density polyethylene (HDPE) specimens indicate that the secant modulus and strength decreases considerably at strain rates appropriate for long-term field applications. The strength of HDPE measured at a typical laboratory strain rate of 1% per minute can be more than twice the strength predicted at a strain rate of IE-6% per minute, which may be representative of field performance for a typical 30-year design life. A hyperbolic model and the Singh-Mitchell creep model (which was originally formulated for soils) are shown to capture the time-dependent mechanical response of HDPE well.

Share

COinS