Comparison of invasion of fibroblasts and macrophages by high- and low-virulence Leptospira strains: colonization of the host-cell nucleus and induction of necrosis by the virulent strain
ORCiD
David M. Ojcius: 0000-0003-1461-4495
Department
Biomedical Sciences
Document Type
Article
Publication Title
Archives of Microbiology
ISSN
0302-8933
Volume
188
Issue
6
DOI
10.1007/s00203-007-0280-3
First Page
591
Last Page
598
Publication Date
12-1-2007
Abstract
The infection cycle of low- and high-virulence strains of Leptospira interrogans was compared in fibroblasts and macrophages. L. interrogans serovar Lai strain Lai was used as a representative high-virulence strain, while L. interrogans serovars Pomona strain Luo was used as a low-virulence strain. L. biflexa serovar Patoc strain Patoc I, a nonparasitic strain of Leptospira, was used as a control. Both the high- and low-virulence strains could adhere to fibroblasts and macrophages using one or both ends of the spirochete, which was followed by phagocytosis of both strains. Both strains adhered more strongly to macrophages than fibroblasts. However, the high-virulence strain could invade the host-cell nucleus, while the low-virulence strain remained in phagosomes. The L. biflexa strain neither adhered to nor invaded either cell type. Both of the L. interrogans strains also induced cell death (mostly necrosis) of macrophages, whether or not the spirochetes were viable, suggesting that leptospiral virulence is unrelated to macrophage death. However, the high-virulence strain induced mainly necrosis in fibroblasts, while the low-virulence strain induced more apoptosis. Thus, the main feature distinguishing the two L. interrogans strains is the ability of the high-virulence strain to invade the host-cell nucleus and induce pro-inflammatory necrosis in fibroblasts.
Recommended Citation
Li, L.,
Ojcius, D. M.,
&
Yan, J.
(2007).
Comparison of invasion of fibroblasts and macrophages by high- and low-virulence Leptospira strains: colonization of the host-cell nucleus and induction of necrosis by the virulent strain.
Archives of Microbiology, 188(6), 591–598.
DOI: 10.1007/s00203-007-0280-3
https://scholarlycommons.pacific.edu/dugoni-facarticles/207