Kings and Heirs: A Characterization of the (2,2)-Domination Graphs of Tournaments

Document Type

Article

Publication Title

Discrete Applied Mathematics

Department

Mathematics

ISSN

0166-218X

Volume

204

DOI

10.1016/j.dam.2015.10.031

First Page

142

Last Page

149

Publication Date

5-11-2016

Abstract

In 1980, Maurer coined the phrase king when describing any vertex of a tournament that could reach every other vertex in two or fewer steps. A (2,2)-domination graph of a digraphD, dom2,2(D), has vertex set V(D), the vertices of D, and edge uv whenever u and v each reach all other vertices of D in two or fewer steps. In this special case of the (i,j)-domination graph, we see that Maurer’s theorem plays an important role in establishing which vertices form the kings that create some of the edges in dom2,2 (D). But of even more interest is that we are able to use the theorem to determine which other vertices, when paired with a king, form an edge in dom2,2 (D). These vertices are referred to as heirs. Using kings and heirs, we are able to completely characterize the (2,2)-domination graphs of tournaments.

Share

COinS