Digraphs with isomorphic underlying and domination graphs: 4-cycles and pairs of paths
Document Type
Article
Publication Title
Australasian Journal of Combinatorics
Department
Mathematics
ISSN
1034-4942
Volume
48
First Page
25
Last Page
41
Publication Date
1-1-2010
Abstract
A domination graph of a digraph D, dom(D), is created using the vertex set of D, V (D). There is an edge uv in dom(D) whenever (u, z) or (v, z) is in the arc set of D, A(D), for every other vertex z ∈ V (D). For only some digraphs D has the structure of dom(D) been characterized. Examples of this are tournaments and regular digraphs. The authors have characterizations for the structure of digraphs D for which UG(D) = dom(D) or UG(D) ≅ dom(D). For example, when UG(D) ≅ dom(D), the only components of the complement of UG(D) are complete graphs, paths and cycles. Here, we determine values of i and j for which UG(D) ≅ dom(D) and UGc (D) = C4 ∪ Pi ∪ Pj .
Recommended Citation
Factor, K. A.,
&
Langley, L. L.
(2010).
Digraphs with isomorphic underlying and domination graphs: 4-cycles and pairs of paths.
Australasian Journal of Combinatorics, 48, 25–41.
https://scholarlycommons.pacific.edu/cop-facarticles/640