Campus Access Only
All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.
Date of Award
2008
Document Type
Thesis - Pacific Access Restricted
Degree Name
Master of Science (M.S.)
Department
Biological Sciences
First Advisor
Craig Vierra
First Committee Member
Geoff Lin-Cereghino
Second Committee Member
Lisa Wrischnik
Abstract
Araneoid spiders use specialized sets of abdominal silk glands to produce up to seven different types of silks, each with diverse functional properties. At the time of these studies, fibroin eDNA sequences that encode egg case silk had not been reported in the literature. This study used conventional nucleic acid-nucleic acid screening of a eDNA library to isolate a novel gene, named tubuliform spidroin 1 , from the black widow spider Latrodectus hesperus. TuSp 1 was demonstrated to be selectively expressed in the tubuliform gland (the gland suspected for egg case silk production), and examination of the amino acid sequence revealed highly homogeneous repeats (184 amino acid ensemble repeats), a characteristic feature of fibroin sequences. Analyses of the ensemble repeats within the amino acid sequence of TuSp 1 revealed the lack of long stretches of polyalanine and glycine-alanine sub-repeats, which are commonly found in minor ampullate and major ampullate silks. Polyserine blocks and short polyalanine stretches were highly represented in the TuSp 1 amino acid sequence. Our data support the assertion that TuSp 1 represents the main constituent within egg case silk. This supposition is supported by the observation that the amino acid composition of raw egg case silk was strikingly similar to the amino acid composition predicted from the translated TuSp1 eDNA. Two additional constituents identified in black widow egg case, egg case protein 1 (ECP-1) and egg case protein 2 (ECP-2), were also partially characterized in this study. Using immunohistochemical approaches, we demonstrate that ECPs predominantly localize to the exterior of the large diameter fibers of egg cases. Additionally, these studies revealed smaller amounts of ECPs localized to the interior portion of the fibers. Collectively, these results support TuSp1 as the predominant fibroin within egg sacs as well as reveal a structural role for the ECPs, providing clues regarding the supramolecular structure of egg case fibers.
Pages
53
Recommended Citation
McMullen, Erin. (2008). Characterization of the large diameter fibers in egg case silk : identification of a core fibroin, TuSp1, and localization of fibroin-like molecules, ECPs, from the black widow spider, latrodectus hesperus. University of the Pacific, Thesis - Pacific Access Restricted. https://scholarlycommons.pacific.edu/uop_etds/704
To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.
Find in PacificSearchIf you are the author and would like to grant permission to make your work openly accessible, please email
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).