Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

1999

Document Type

Thesis - Pacific Access Restricted

Degree Name

Master of Science (M.S.)

Department

Chemistry

First Advisor

C. Michael McCallum

First Committee Member

Larry O. Spreer

Second Committee Member

Celestia A. Pryor

Third Committee Member

James Hetrick

Abstract

A 3D lattice model of three-component microemulsion employed previously to describe the equilibrium phase behavior has been extended to investigate the nonequilibrium dynamics of such system. The model is based on "Dynamical Monte Carlo" simulations which apply a coarse-grained velocity field onto a conventional Monte Carlo lattice, so as to represent realistically interactions between particles, and which permits the observation of time-dependent behavior. The results for viscosity are obtained by applying the velocity gradient onto the system. The simulations are performed over a range of shear rates and temperatures. Compared to the oil-rich (water-rich) phase, the microemulsion phase shows a typical (non-Newtonian) behavior and considerably lower viscosity at a given temperature. Both phases exhibit the characteristic viscosity decrease with an increase in temperature. The velocity auto-correlation function of a microemulsion phase is found to follow a Kohlrausch-Wiliams-Watts (KWW) stretched-exponential law, rather than a simple exponential decay. The stretched exponent is related to the normal, inhibited and enhanced diffusion behaviors of the system.

Pages

85

To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.

Find in PacificSearch

Share

COinS

If you are the author and would like to grant permission to make your work openly accessible, please email

 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).