Campus Access Only
All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.
Date of Award
1979
Document Type
Thesis
Degree Name
Master of Science (M.S.)
Department
Graduate School
First Advisor
Michael J. Minch
First Committee Member
Paul H. Gross
Abstract
Contrary to a previous report, S-adenosyl-L-methionine (SAM) affords stable solutions in D2O and the 1H NMR spectrum can be determined. Comparison with the spectra of the model compounds adenosine, L-methionine and L-methionine-S-methyl sulfonium iodide allows complete assignment of the proton resonances. Coupling constants were determined by homonuclear decoupling and graphical analysis and were confined by computer simulation.
Details of the molecular conformation were determined by application of the Karplus equation and calculation of relative rotational isomer populations. Evidence indicates that the ribose ring is puckered preferentially in the C3'-exo conformation and that the C4'-C5' bond is constrained to a rotamer in which the sulfonium center is gauche to H4'. No conformational constraints were detected for the Cα-Cβ and Cβ-Cα bonds of the methionine side chain. The purine ring was shown to be oriented preferentially anti by intermolecular association studies with adenosine 5'-phosphate in the presence of MN(II).
Spectra of samples of (-)S-adenosyl-L-methionine of biological origin, differing in activity, counter ion and commercial source, have consistently revealed the presence of a small amount of the (+) sulfonium diastereomer. Arguments are presented to explain the failure of previous workers to detect (+)S-adenosyl-L-methionine in biological preparations.
Pages
60
Recommended Citation
Stolowitz, Mark Lewis. (1979). A fourier transform proton magnetic resonance study of the molecular conformation of S-adenosyl-L-methionine. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/451
Rights Statement
No Known Copyright. URI: http://rightsstatements.org/vocab/NKC/1.0/
The organization that has made the Item available reasonably believes that the Item is not restricted by copyright or related rights, but a conclusive determination could not be made. Please refer to the organization that has made the Item available for more information. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use.