Date of Award
2017
Document Type
Thesis - Pacific Access Restricted
Degree Name
Master of Science (M.S.)
Department
Engineering Science
First Advisor
Elizabeth Basha, Ph.D.
First Committee Member
Jinzhu Gao, Ph.D.
Second Committee Member
Vivek Pallipuram, Ph.D.
Third Committee Member
Ken Hughes, Ph.D.
Abstract
Scientists can better understand wetlands environments by collecting data they are interested in via sensor networks. However the deployment of these sensor nodes manually can be disruptive to these sensitive environments. We develop a set of algorithms for autonomously differentiating land from water via aerial imagery using an unmanned aerial vehicle (UAV). The UAV takes a picture of the area, clusters, classifies, defines regions, and then communicates the regions to other UAVs responsible for deploying the sensor nodes. These UAVs run an algorithm to determine the optimal locations for sensor nodes such that they completely cover the regions and allow for communication between the nodes in the sensor network.
Our classifier training algorithm identifies the best classifier using clusters and we compare its successful classification rate to a pixel-based approach and we see classification rates of 89.6%. This classifier feeds into our online algoorithm that the UAV successfully uses to classify the Calaveras River in California. In our simulations to determine the most effective algorithm for determining where the place the sensor nodes in a sensor network, we found Triangular Geometric Tessellation was the optimal algorithm, able to achieve 91.5% coverage in concave areas and 88.2% coverage in convex areas with relatively low computational complexity.
Pages
42
Recommended Citation
Medeiros, Thomas. (2017). Online Water Differentiation and Sensor Node Deployment Using Unmanned Aerial Vehicles. University of the Pacific, Thesis - Pacific Access Restricted. https://scholarlycommons.pacific.edu/uop_etds/4224
To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).