Campus Access Only
All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.
Date of Award
2015
Document Type
Thesis - Pacific Access Restricted
Degree Name
Master of Science (M.S.)
Department
Pharmaceutical and Chemical Sciences
First Advisor
Xiaoling Li
First Committee Member
Raju Gadiraju
Second Committee Member
Bhaskara Jasti
Abstract
Nearly 70% of the new chemical entities (NCE’s) discovered are poorly-water soluble drugs and the number of poorly-water soluble drugs are increasing rapidly in the drug discovery. Most of the NCE’s are lipophilic and have dissolution rate issues. Low dissolution rate of the drugs result in poor bioavailability. To overcome poor bioavailability, an adsorption technique is developed to enhance the apparent dissolution rate of poorly-water soluble drugs. In this study, two poor-water soluble model drugs, ibuprofen and carvedilol were used. Methanol, DMF, DMSO and PEG400 were used as solvents and microcrystalline cellulose was used as an adsorbent. Pure model drugs, physical mixtures and prepared composites were characterized by using FTIR, DSC, XRD and dissolution testing. Results showed that the composites prepared with solvents DMF, DMSO and PEG400 showed enhancement in dissolution rates of two model drugs. Characterization of the composites prepared by using non-volatile solvents showed successful conversion of crystalline model drugs into solution state. Whereas, composites prepared by using volatile solvent showed similar results like physical mixtures and pure drug. Ibuprofen composites containing DMF, DMSO and PEG400 showed 9.4, 7.4 and 1.8 folds of increase in apparent dissolution rate, respectively. Whereas carvedilol composites containing DMF and DMSO showed 11.52 and 3.4 folds of increase in apparent dissolution rate. Four months of stability study were conducted on prepared composites at both 40°C and room temperature. It was observed that prepared composites were stable after 4 months and exhibited similar dissolution rate. In conclusion, the use of non-volatile solvents disrupted the crystal structure but also retained the drug in solution state which in turn enhanced the apparent dissolution rate of model drugs used. From the observed results we conclude that this method has a potential to replace existing techniques to enhance the apparent dissolution rate of the drug and stability of the composites.
Pages
112
ISBN
9781339847115
Recommended Citation
Vutukuru, Naresh Kumar Reddy. (2015). Apparent dissolution rate enhancement of poorly-water soluble drugs by adsorption technique. University of the Pacific, Thesis - Pacific Access Restricted. https://scholarlycommons.pacific.edu/uop_etds/269
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.
Find in ProQuestIf you are the author and would like to grant permission to make your work openly accessible, please email
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).