Campus Access Only
All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.
Date of Award
2016
Document Type
Thesis - Pacific Access Restricted
Degree Name
Master of Science (M.S.)
Department
Pharmaceutical and Chemical Sciences
First Advisor
Xin Guo
First Committee Member
Xin Guo
Second Committee Member
Bhaskara Jasti
Third Committee Member
Silvio Rodriguez
Abstract
Proteins are large biomolecules that have great therapeutic potential in treating many human diseases. Proteins exert higher specificity and more complicated functions; they are well endured and less inclined to evoke immune responses when compared to small molecule drugs. However, exogenous proteins when administered intravenously are prone to immune reactions. Chemical and enzymatic denaturation, and poor penetration into cells are some other challenges for clinical use of intracellular proteins. Proteins that enter cells through endocytosis will be eventually degraded in lysosomes if they do not escape the endosomal pathway before reaching lysosomes. Therefore, the development of protein delivery systems, including liposomal and/or polymeric nanoparticles would substantially facilitate the clinical use of proteins. This approach can protect the proteins from denaturation and immune reactions. Previously, our group has developed cationic lipid-coated magnesium phosphate nanoparticle (CAT-LP MgP NP) formulations to enhance the intracellular delivery of the protein, catalase. The objective of the current research is to improve the physicochemical properties of CAT-LP MgP NP. The magnesium phosphate (MgP) nanoparticles were prepared by water-in-oil micro emulsion precipitation. The cargo protein catalase was complexed with cationic liposome prepared by lipid hydration and extrusion. Then magnesium phosphate (MgP) nanoparticles were mixed with the catalase-complexed cationic liposome to form the final complexed CAT-LP MgP NP formulation. By sonication, extrusion and modification of the lipid composition, we have successfully prepared complexed CAT-LP MgP NP formulations of reduced size. The pH-sensitivity of the improved delivery system was observed at pH 6.0. Furthermore, the improved delivery system reduced the Reactive Oxygen Species (ROS) level inside EA.hy.926 cells (human umbilical vein endothelial cells) to 35% of the control, whereas the previously reported catalase formulation of our group reduced the ROS levels to 50%, indicating that the complexed formulation delivers functional catalase more efficiently into the EA.hy.926 cells. Complexed CAT-LP MgP NP with reduced size has delivered cargo protein more efficiently than encapsulated CAT-LP MgP NP.
Pages
79
ISBN
9781369498547
Recommended Citation
Naidu, Prathyusha. (2016). Catalase-loaded liposomal magnesium phosphate nanoparticles for intracellular protein delivery. University of the Pacific, Thesis - Pacific Access Restricted. https://scholarlycommons.pacific.edu/uop_etds/266
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.
Find in ProQuestIf you are the author and would like to grant permission to make your work openly accessible, please email scholarlycommons@pacific.edu
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).