Campus Access Only
All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.
Date of Award
2003
Document Type
Dissertation - Pacific Access Restricted
Degree Name
Doctor of Philosophy (Ph.D.)
Department
Chemistry
First Advisor
Patrick Jones
First Committee Member
Larry Spreer
Second Committee Member
Elizabeth Day
Third Committee Member
James Blankenship
Fourth Committee Member
Jianhua Ren
Fifth Committee Member
David Sparkman
Abstract
The macrocyclic square planar nickel complex, [Ni II CR] 2+ , has been shown to be a useful DNA or RNA structure probe due to its highly site- and conformation specific ability to induce cleavage on exposed guanine residues via the formation of a direct guanine N7-Ni III bond. Since the postulated intermediate [Ni III CR] 3+ is unstable, the detailed mechanism is unknown. In this study, the nature of the interaction of NiCR 2+ and its oxidized products with biomolecules was investigated. A study of the conversion of [Ni II CR] 2+ between a diamagnetic square planar structure and a paramagnetic tetragonal structure in aqueous solution has shown that the conversion is affected by the identity and the concentration of the counter anion. Of the anions studied, it is clear that Br − , ClO 4 − , and CF 3 SO 3 − have a higher ability to promote the conversion to the square planar form for [NiCR] 2+ than Cl − or CF 3 COO − . The oxidation reaction of [NiCR] 2+ with either KHSO 5 or Na 2 S 2 O 8 in a molar ratio of 1/1 resulted in the same stable complex [Ni(CR-2H)] 2+ . A single crystal x-ray diffraction study gave the structure of Ni(CR-2H)(ClO 4 ) 2 . In addition, kinetic studies revealed the oxidation reaction to be first order. The six protons on the two methyl groups of the macrocyclic ligand were also found to be sufficiently labile to exhibit hydrogen/deuterium exchange. The [Ni(CR-2H)] 2+ displays a higher acidity than [NiCR] 2+ by H/D exchange. This observation supports the conjecture that there is an enhanced dπ-pπ* back-bonding effect associated with the presence of the additional imine formed in [Ni(CR-2H)] 2+ . The [NI(CR-2H)] 2+ species with KHSO 5 also displays an oxidation ability similar to [NiCR] 2+ with KHSO 5 in the reaction with a 17 base pair synthetic oligonucleotide. This implies that [Ni(CR-2H)] 2+ is not just an oxidation product of [NiCR] 2+ , but may also play an important role in the reaction with guanine residues in oligonucleotides. The reactions of [NiCR] 2+ or [Ni(CR-2H)] 2+ with linoleic acid under a high concentration of Ni complexes (3.21 × 10 −3 M, 200 fold over linoleic acid) resulted in the unexpected reduced nickel complexes, (Ni 0 (CR-4H)-H + ) − - m/z 311.1 and (Ni 0 (CR-2H)-H + ) − - m/z 313.1, instead of the hydroperoxide product (HpODE-H + ) − - m/z 311.2.
Pages
131
Recommended Citation
Chen, Chang-Nan. (2003). Structure, characterization and kinetics of nickel complexes and reactions with biomolecules. University of the Pacific, Dissertation - Pacific Access Restricted. https://scholarlycommons.pacific.edu/uop_etds/2615
To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.
Find in PacificSearch Find in ProQuestIf you are the author and would like to grant permission to make your work openly accessible, please email
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).