Campus Access Only
All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.
Date of Award
2014
Document Type
Thesis - Pacific Access Restricted
Degree Name
Master of Science in Engineering (M.S.Eng.)
Department
Engineering
First Advisor
Elizabeth Basha
First Committee Member
Carrick Detweiler
Second Committee Member
Louise Stark
Abstract
Monitoring the structural health of civil infrastructures with wireless sensor networks aids in detecting failures early, but faces power challenges in ensuring reasonable network lifetimes. Recharging select nodes with Unmanned Aerial Vehicles (UAVs) provides a solution that currently can recharge a single node; however, questions arise on the effectiveness of a limited recharging system, the appropriate node to recharge, and the best sink selection algorithm for improving network lifetime given a limited recharging system. This paper simulates such a network in order to answer those questions. This thesis first determines whether or not recharging with a UAV is an effective method of delivering limited power to the network. It then determines the best way to deliver that power. Finally, this thesis explores five different sink positioning algorithms to find which optimize the network lifetime by load-balancing the energy in the network, all in combination with the added capability of a UAV.
Pages
82
ISBN
9781303996672
Recommended Citation
Johnson, Jennifer Nichole. (2014). Optimizing network lifetime in sensor networks with limited recharging capabilities. University of the Pacific, Thesis - Pacific Access Restricted. https://scholarlycommons.pacific.edu/uop_etds/227
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.
Find in PacificSearch Find in ProQuestIf you are the author and would like to grant permission to make your work openly accessible, please email
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).