Campus Access Only
All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.
Date of Award
2014
Document Type
Thesis - Pacific Access Restricted
Degree Name
Master of Science (M.S.)
Department
Biological Sciences
First Advisor
Douglas Weiser
First Committee Member
Craig Vierra
Second Committee Member
Lisa Wrischnik
Abstract
Zipper-Interacting Protein Kinase (ZIPK) is a known modulator of actin-myosin contractility in vertebrate species. Interestingly, rodent and mouse ZIPK has undergone a divergence in regulation in comparison to other vertebrate orthologs including human. Whereas the human ortholog of ZIPK requires phosphorylation of residues TT299/300 for nuclear exit, rodents and mouse require interaction with another protein termed PAR-4. In this project we completed several experiments to examine zebrafish ZIPK in development and its effect on acto-myosin contractility. It was found that zebrafish ZIPK was expressed ubiquitously in maternal stages. In zygotic stages, ZIPK expression dropped dramatically and localized to the anterior portions of the embryo. Zebrafish and human ZIPK, but not rodent ZIPK were able to increase stress fiber formation and myosin light chain-2 (MLC-2) phosphorylation in vitro. Human and zebrafish ZIPK underwent nucleocytoplasmic shuttling without PAR-4 interaction, unlike rodent ZIPK, which required PAR-4 for nuclear exit. Unlike human ZIPK, zebrafish ZIPK TT299/300AA mutants were able to undergo shuttling. Similar to human ZIPK, catalytic mutations to zebrafish ZIPK abolished or dramatically reduced activity. Through these experiments we were able to show human and zebrafish ZIPK homologs function and are regulated similarly, while the rodent ZIPK was much more unique. Although the exhibited phenotypes were similar between human and zebrafish ZIPK orthologs, the mechanism of regulation is not completely conserved.
Pages
95
ISBN
9781321488203
Recommended Citation
Carr, Brandon W.. (2014). Characterization of zebrafish zipper-interacting protein kinase. University of the Pacific, Thesis - Pacific Access Restricted. https://scholarlycommons.pacific.edu/uop_etds/178
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.
Find in PacificSearch Find in ProQuestIf you are the author and would like to grant permission to make your work openly accessible, please email
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).