Quantifying elastic vortex growth of DNA solutions in planar microbends
Document Type
Conference Presentation
Department
Bioengineering
Conference Title
ASME Fluids Engineering Division Summer Meeting/International Conference on Nanochannels, Microchannels, and Minichannels
Location
Chicago, IL
Conference Dates
August 2-6, 2014
Date of Presentation
8-2-2014
Abstract
Quantitative measurements are obtained for DNA flows in planar abrupt 90° micro-bends. Micro-particle image velocimetry (μPIV) is utilized to characterize flow fields including the secondary flow region in the inner, upstream corner of the bend where vortex growth is observed. The presence and strength of the elastic vortex is quantified at high resolution for increasing Reynolds and Weissenberg number (9.9 × 10−7 < Re < 4.2 × 10−3, 0.42 < Wi < 42). Velocity fields of a Newtonian fluid (water) in the micro-bend do not contain a secondary flow. Understanding the viscoelastic flow behavior of complex biological fluids anticipated for use in biomedical microdevices is critical for the advancement of optimized designs comprised of numerous spatially varying canonical microfluidic components.
DOI
10.1115/ICNMM2014-21428
Recommended Citation
Gulati, S.,
Muller, S. J.,
&
Liepmann, D.
(2014).
Quantifying elastic vortex growth of DNA solutions in planar microbends.
Paper presented at ASME Fluids Engineering Division Summer Meeting/International Conference on Nanochannels, Microchannels, and Minichannels in Chicago, IL.
https://scholarlycommons.pacific.edu/soecs-facpres/55