Quantifying elastic vortex growth of DNA solutions in planar microbends

Document Type

Conference Presentation

Department

Bioengineering

Conference Title

ASME Fluids Engineering Division Summer Meeting/International Conference on Nanochannels, Microchannels, and Minichannels

Location

Chicago, IL

Conference Dates

August 2-6, 2014

Date of Presentation

8-2-2014

Abstract

Quantitative measurements are obtained for DNA flows in planar abrupt 90° micro-bends. Micro-particle image velocimetry (μPIV) is utilized to characterize flow fields including the secondary flow region in the inner, upstream corner of the bend where vortex growth is observed. The presence and strength of the elastic vortex is quantified at high resolution for increasing Reynolds and Weissenberg number (9.9 × 10−7 < Re < 4.2 × 10−3, 0.42 < Wi < 42). Velocity fields of a Newtonian fluid (water) in the micro-bend do not contain a secondary flow. Understanding the viscoelastic flow behavior of complex biological fluids anticipated for use in biomedical microdevices is critical for the advancement of optimized designs comprised of numerous spatially varying canonical microfluidic components.

DOI

10.1115/ICNMM2014-21428

This document is currently not available here.

Share

COinS