A multi-Node GPGPU implementation of non- Linear anisotropic diffusion filter
Document Type
Conference Presentation
Department
Electrical and Computer Engineering
Conference Title
Symposium on Application Accelerators in High-Performance Computing
Date of Presentation
12-12-2012
Abstract
The quality of an image is highly critical for applications such as robotic vision, surveillance, medical imaging, etc. The images captured in real-time are seldom noise free and therefore require noise removal for further processing. Out of several proposed noise removal schemes, anisotropic diffusion filtering is known to achieve highly precise results. However, the accuracy comes at an expense of high computation cost, especially for large data sets. The highly parallel nature of the aforementioned filtering algorithm makes it a good candidate for the General Purpose Graphical Processing Unit (GPGPU) clusters. In this research, we present a GPGPU cluster-based implementation of the non-linear anisotropic diffusion filter. Our implementation maps the computationally intensive parts of the algorithm to the GPGPU devices while the communication and serial processing are performed by the CPU hosts. Our efficiently mapped multi-node GPGPU implementation is capable of processing images as large as 156 mega-pixels and achieves a speed-up of 29x over an equivalent MPI-only implementation. In addition, our multi-node GPGPU implementation exhibits reasonable scaling behavior that improves with the size of the images. © 2012 IEEE.
ISSN
21665133
First Page
11
Last Page
18
DOI
10.1109/SAAHPC.2012.11
Recommended Citation
Pallipuram, V. K.,
Raut, N.,
Ren, X.,
Smith, M. C.,
&
Naik, S.
(2012).
A multi-Node GPGPU implementation of non- Linear anisotropic diffusion filter.
Paper presented at Symposium on Application Accelerators in High-Performance Computing.
https://scholarlycommons.pacific.edu/soecs-facpres/477