Long-term in vivo imaging of viscoelastic properties of the mouse brain after controlled cortical impact.
Document Type
Article
Publication Title
Journal of Neurotrauma
ISSN
1557-9042
Volume
30
Issue
17
DOI
10.1089/neu.2012.2788
First Page
1512
Last Page
1520
Publication Date
9-1-2013
Abstract
Traumatic brain injury (TBI) presents a variety of causes and symptoms, thus making the development of reliable diagnostic methods and therapeutic treatments challenging. Magnetic resonance elastography (MRE) is a technique that allows for a noninvasive assessment of the mechanical properties of soft biological tissue, such as tissue stiffness, storage modulus, and loss modulus. Importantly, by quantifying the changes in the stiffness of tissue that is often associated with disease, MRE is able to detect tissue pathologies at early stages. Recent improvements in instrumentation have allowed for the investigation of small samples with microscopic resolution (μMRE). We hypothesize that μMRE can sensitively detect variations in micromechanical properties in the brain caused by the compressive and shearing forces sustained during TBI. To test this hypothesis, we randomized 13 C57BL mice to receive a controlled cortical impact at a 0.5 mm or 0.75 mm depth, with both sham and naïve mice as controls. Our objective was to propagate mechanical shear waves throughout the brain for in vivo TBI μMRE imaging. The mechanical properties of the injured brain tissue were determined at days 0, 1, 7, and 28 post-injury. For both groups, we observed a significant drop in the stiffness of the impacted region immediately following the injury; the 0.75 mm animals experienced increased tissue softness that lasted longer than that for the 0.5 mm group. Although the shear stiffness, storage modulus, and loss modulus parameters all followed the same trend, the tissue stiffness yielded the most statistically significant results. Overall, this article introduces a transformative technique for mechanically mapping the brain and detecting brain diseases and injury.
Recommended Citation
Boulet, T.,
Kelso, M. L.,
&
Othman, S. F.
(2013).
Long-term in vivo imaging of viscoelastic properties of the mouse brain after controlled cortical impact..
Journal of Neurotrauma, 30(17), 1512–1520.
DOI: 10.1089/neu.2012.2788
https://scholarlycommons.pacific.edu/soecs-facarticles/18