Enthalpy-Driven Stabilization of Transthyretin by AG10 Mimics a Naturally Occurring Genetic Variant That Protects from Transthyretin Amyloidosis
Document Type
Article
Publication Title
Journal of Medicinal Chemistry
ISSN
1520-4804
Volume
61
Issue
17
DOI
10.1021/acs.jmedchem.8b00817
First Page
7862
Last Page
7876
Publication Date
9-13-2018
Abstract
Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a fatal disease with no available disease-modifying therapies. While pathogenic TTR mutations (TTRm) destabilize TTR tetramers, the T119M variant stabilizes TTRm and prevents disease. A comparison of potency for leading TTR stabilizers in clinic and structural features important for effective TTR stabilization is lacking. Here, we found that molecular interactions reflected in better binding enthalpy may be critical for development of TTR stabilizers with improved potency and selectivity. Our studies provide mechanistic insights into the unique binding mode of the TTR stabilizer, AG10, which could be attributed to mimicking the stabilizing T119M variant. Because of the lack of animal models for ATTR-CM, we developed an in vivo system in dogs which proved appropriate for assessing the pharmacokinetics-pharmacodynamics profile of TTR stabilizers. In addition to stabilizing TTR, we hypothesize that optimizing the binding enthalpy could have implications for designing therapeutic agents for other amyloid diseases.
Recommended Citation
Miller, M.,
Pal, A.,
Albusairi, W.,
Joo, H.,
Pappas, B.,
Haque Tuhin, T.,
Liang, D.,
Jampala, R.,
Liu, F.,
Khan, J.,
Faaij, M.,
Park, M. S.,
Chan, W. K.,
Graef, I.,
Zamboni, R.,
Kumar, N.,
Fox, J.,
Sinha, U.,
&
Alhamadsheh, M.
(2018).
Enthalpy-Driven Stabilization of Transthyretin by AG10 Mimics a Naturally Occurring Genetic Variant That Protects from Transthyretin Amyloidosis.
Journal of Medicinal Chemistry, 61(17), 7862–7876.
DOI: 10.1021/acs.jmedchem.8b00817
https://scholarlycommons.pacific.edu/phs-facarticles/395