Nova demonstratio, quod evolutio potestatum binomii Newtoniana etiam pro exponentibus fractis valeat
English Title
A new demonstration, with respect to which prevails the expansion of binomial powers by Newton even by fractional exponents
Enestrom Number
637
Fuss Index
131
Original Language
Latin
Content Summary
Here, Euler notes a recursive relation for the general binomial coefficients. Namely, if (1+x)n = 1 + Ax + Bx2 + Cx3 + Dx4 + ... and (1+x)n+1 = 1 + A'x + B'x2 + C'x3 + D'x4 + ..., then A' = A+1, B' = B+A, C' = C+B, D' = D+C, etc. This generalizes the usual recursive relationship for the binomial coefficients.
Published as
Journal article
Published Date
1789
Written Date
1776
Original Source Citation
Nova Acta Academiae Scientiarum Imperialis Petropolitanae, Volume 5, pp. 52-58.
Opera Omnia Citation
Series 1, Volume 16A, pp.112-121.
Record Created
2018-09-25
E637de.pdf (100 kB)