English Title
Solution of problems of arithmetic of finding numbers which, when divided by given numbers, leave given remainders
Enestrom Number
36
Fuss Index
12
Original Language
Latin
Content Summary
Euler proves the Chinese remainder theorem by constructing an algorithm to find the smallest number which, divided by given numbers, leaves given remainders. He begins by solving the case in which two relatively prime divisors with corresponding remainders are given and proposes that by repeating his algorithm, he can solve similar problems with any number of constraints. Euler then discusses scenarios in which divisors are not relatively prime, and ends the paper with an application of his algorithm to a classic problem: dating events from their Roman indictions.
Published as
Journal article
Published Date
1740
Written Date
1740
Original Source Citation
Commentarii academiae scientiarum Petropolitanae, Volume 7, pp. 46-66.
Opera Omnia Citation
Series 1, Volume 2, pp.18-32.
Record Created
2018-09-25