English Title

Solution of problems of arithmetic of finding numbers which, when divided by given numbers, leave given remainders

Authors

Leonhard Euler

Enestrom Number

36

Fuss Index

12

Original Language

Latin

Content Summary

Euler proves the Chinese remainder theorem by constructing an algorithm to find the smallest number which, divided by given numbers, leaves given remainders. He begins by solving the case in which two relatively prime divisors with corresponding remainders are given and proposes that by repeating his algorithm, he can solve similar problems with any number of constraints. Euler then discusses scenarios in which divisors are not relatively prime, and ends the paper with an application of his algorithm to a classic problem: dating events from their Roman indictions.

Published as

Journal article

Published Date

1740

Written Date

1740

Original Source Citation

Commentarii academiae scientiarum Petropolitanae, Volume 7, pp. 46-66.

Opera Omnia Citation

Series 1, Volume 2, pp.18-32.

Record Created

2018-09-25

E036en.pdf (196 kB)
E036en.pdf (196 kB)

Included in

Mathematics Commons

Share

COinS