Evaluation of the resistance to cyclic fatigue among ProTaper Next, ProTaper Universal, and Vortex Blue rotary instruments.

ORCiD

Dr. Ove A. Peters: 0000-0001-5222-8718

Department

Endodontics

Document Type

Article

Publication Title

Journal of Endodontics

ISSN

0099-2399

Volume

40

Issue

8

DOI

10.1016/j.joen.2013.12.033

First Page

1190

Last Page

1193

Publication Date

8-1-2014

Abstract

INTRODUCTION: The purpose of this study was to compare the fracture resistance to cyclic fatigue of ProTaper Next (PTN; Dentsply Tulsa Dental Specialties, Tulsa, OK), ProTaper Universal (PTU, Dentsply Tulsa Dental Specialties), and Vortex Blue (VB, Dentsply Tulsa Dental Specialties) rotary instruments.

METHODS: Twenty instruments each of PTN X1-X5, PTU S1-F5, and VB 20/04-50/04 were rotated until fracture in a simulated canal of 90° and a 5-mm radius using a custom-made testing platform. The number of cycles to fracture (NCF) was calculated. Weibull analysis was used to predict the maximum number of cycles when 99% of the instrument samples survive.

RESULTS: VB 20/04-30/04 had significantly higher NCF than PTU S1-F5 and PTN X1-X5. VB 35/04-45/04 had significantly higher NCF than PTU S2-F5 and PTN X2-X5. PTN X1 had higher NCF than PTU S1-F5. PTN X2 had higher NCF than PTU F2-F5. The Weibull distribution predicted the highest number of cycles at which 99% of instruments survive to be 766 cycles for VB 25/04 and the lowest to be 50 cycles for PTU F2.

CONCLUSIONS: Under the limitations of this study, VB 20/04-45/04 were more resistant to cyclic fatigue than PTN X2-X5 and PTU S2-F5. PTN X1 and X2 were more resistant to cyclic fatigue than PTU F2-F5. The Weibull distribution appears to be a feasible and potentially clinically relevant model to predict resistance to cyclic fatigue.

Share

COinS