ORCiD

David M. Ojcius: 0000-0003-1461-4495

Department

Biomedical Sciences

Document Type

Article

Publication Title

BMC Bioinformatics

ISSN

1471-2105

Volume

10

Issue

271

DOI

10.1186/1471-2105-10-271

First Page

1

Last Page

16

Publication Date

8-1-2009

Abstract

Background: Promoter identification is a first step in the quest to explain gene regulation in bacteria. It has been demonstrated that the initiation of bacterial transcription depends upon the stability and topology of DNA in the promoter region as well as the binding affinity between the RNA polymerase σ-factor and promoter. However, promoter prediction algorithms to date have not explicitly used an ensemble of these factors as predictors. In addition, most promoter models have been trained on data from Escherichia coli. Although it has been shown that transcriptional mechanisms are similar among various bacteria, it is quite possible that the differences between Escherichia coli and Chlamydia trachomatis are large enough to recommend an organism-specific modeling effort.

Results: Here we present an iterative stochastic model building procedure that combines such biophysical metrics as DNA stability, curvature, twist and stress-induced DNA duplex destabilization along with duration hidden Markov model parameters to model Chlamydia trachomatis σ66 promoters from 29 experimentally verified sequences. Initially, iterative duration hidden Markov modeling of the training set sequences provides a scoring algorithm for Chlamydia trachomatis RNA polymerase σ66/DNA binding. Subsequently, an iterative application of Stepwise Binary Logistic Regression selects multiple promoter predictors and deletes/replaces training set sequences to determine an optimal training set. The resulting model predicts the final training set with a high degree of accuracy and provides insights into the structure of the promoter region. Model based genome-wide predictions are provided so that optimal promoter candidates can be experimentally evaluated, and refined models developed. Co-predictions with three other algorithms are also supplied to enhance reliability.

Conclusion: This strategy and resulting model support the conjecture that DNA biophysical properties, along with RNA polymerase σ-factor/DNA binding collaboratively, contribute to a sequence's ability to promote transcription. This work provides a baseline model that can evolve as new Chlamydia trachomatis σ66 promoters are identified with assistance from the provided genome-wide predictions. The proposed methodology is ideal for organisms with few identified promoters and relatively small genomes.

Share

COinS