Time-resolved Pump-Probe Spectroscopy to Follow Valence Electronic Motion

Document Type

Conference Presentation

Department

Chemistry

Conference Title

American Chemical Society Meeting

Organization

American Chemical Society (ACS)

Location

Indianapolis, IN

Conference Dates

September 8-12, 2013

Date of Presentation

9-8-2013

Abstract

Recent advances in light sources will allow probing of the fastest time scales relevant to chemistry, the motions of valence electrons. Anticipating the experimental realization of attosecond pulses with photon energies of a few hundred eV to 1 keV, we have developed a simple theory which connects the evolution of a (IR/UV-pumped) nonstationary electronic state to an X-ray probe signal. The electronic states we follow evolve on time scales of a few femtoseconds. The essential principle is that the dynamic valence occupancy structure of these states can be probed, resolved in both space and time, by taking advantage of the inherent locality of core–valence transitions and the comparatively short time scale on which they can be produced. The an outline of the connection between the complexities of many-body theory and an intuitive picture of dynamic local occupancy structure will be given along with some key numerical results, which we hope to compare with future experiments. The phase (momentum) information contained in the complex natural particle and hole orbitals that best describe the dynamic excitation will be discussed.

This document is currently not available here.

Share

COinS