Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2009

Document Type

Thesis - Pacific Access Restricted

Degree Name

Master of Science (M.S.)

Department

Biological Sciences

First Advisor

Craig A. Vierra

First Committee Member

Srinivas Venkatram

Second Committee Member

Joan Lin-Cereghino

Third Committee Member

Lisa Wrischnik

Abstract

Spider silk from the female black widow spider, Latrodectus hesperus, is made of extraordinary biomolecules of nature. Efforts of the scientific community to commercially synthesize silks have become a collaborating, yet competitive race, to characterize the proteins that contribute to its intriguing biomechanics. Little has been reported on aqueous silk molecules in black widow spider silk, which are quite different from the large water insoluble core fibroins. In this study, a novel, aqueous aggregate gland derived silk factor (AgSF 1) was investigated using proteomics and immunological approaches. Western blot analyses of whole tissue lysates and solublized silk fibers revealed high levels of AgSFl in the aggregate gland, in the web scaffolding junctions, and in wrapping silk. MS/MS analyses of tryptic digest products from solubilized wrapping silk and aggregate gland whole cell lysate also confirmed the presence of AgSFl in these samples. Possible post-translational modifications were also analyzed by two-dimensional gel electrophoresis (2DE) and MS/MS analysis. AgSFl was localized in the web scaffolding junctions and our data supports a role as an adhesive silk protein that serves as a center for connecting scaffolding fibers that functions to reduce the tensile strength of scaffolding fibers, which facilitates capture of aerial insects.

Pages

93

To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.

Find in PacificSearch

Share

COinS

If you are the author and would like to grant permission to make your work openly accessible, please email

 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).