Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award


Document Type

Thesis - Pacific Access Restricted

Degree Name

Master of Science (M.S.)


Biological Sciences

First Advisor

Craig A. Vierra

First Committee Member

Lisa A. Wrischnik

Second Committee Member

Srinivas Venkatram


Although numerous spider fibroins have been reported, no known silk coating peptides have been discovered. We provide the first biochemical evidence for a spider coating peptide, called SCP-2, found on gumfooted lines, scaffolding joints and egg cases. The presence of this spider coating peptide on the fibers is supported by MS/MS analysis. Using quantitative real-time PCR analysis, we also demonstrate that SCP-2 has a flagelliform-restricted mRNA pattern of expression. Molecular modeling of the SCP-2 amino acid sequence predicts it adopts an alpha-helical structure that is amphipathic in nature. SCP-2, which can be extracted from fibers using water, is hypothesized to influence the mechanical properties of the silk fibers as well as serve a protective function for the threads. Based upon the restricted pattern of expression of SCP-2, our findings reveal novel insight regarding the glandular function of the flagelliform gland in . cob weaving spiders, suggesting it produces aqueous coating materials that are deposited on a wide range of different silk types. In addition, in an attempt to advance our understanding regarding silk gene transcription, our lab has developed the first antibody against the bHLH factor SGSF. SGSF has been implicated as a potential transcriptional regulator of silk gene transcription in spiders. Development of the anti-SGSF antibody was accomplished via the overexpression and purification of a fusion protein in bacteria, which consisted of the C-terminal region of SGSF fused to thioredoxin. Purified SGSF fusion proteins were injected into rabbits and the polyclonal antiserum was collected and tested by western blot analysis to determine the specificity of the immunological reagent. Western blot analyses revealed the anti-SGSF antiserum was capable of recognizing bacterially expressed SGSF in an efficient manner. Collectively, these studies lay the groundwork for future investigations involving the use of the antibody to determine the role of SGSF in silk transcription.



To access this thesis/dissertation you must have a valid email address and log-in to Scholarly Commons.

Find in PacificSearch



Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).