Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2006

Document Type

Thesis - Pacific Access Restricted

Degree Name

Master of Science (M.S.)

Department

Chemistry

First Advisor

Elizabeth F. Day

First Committee Member

Patrick R. Jones

Second Committee Member

James Blankenship

Third Committee Member

Elfie Kraka

Abstract

The discovery of cisplatin, cis-[pt(NH3)2Cl2], as an anticancer agent in 1969 by Rosenbert and his colleagues sparked interest in the area of metal complexes as chemotherapeutic agents. Anticancer dimetal complexes such as Re2(O2CCH2CH3)2Br4·2H2O are proposed to prevent replication of cancel cells by coordinating to the purine nucleobases in DNA. To investigate the interaction between dimetal compounds and DNA, dirhenium complexes coordinated to purine dinucleotides were isolated and analyzed. LC/MS, HPLC, 1H NMR, and UV-Visible spectroscopy were used to characterized complexes of Re2(O2CR)2X4·2H2O (R = CH3, CH2CH3; X= Cl, Br) with the purine dinucleotides dApG and dGpG. HPLC, UV-Vis, and 1H NMR are used to investigate the aquation of Re2(O2C2H3)2Cl4μ2H2O which may contribute to its biological activity.

Upon reaction of Re22C2H3)2Cl4μ2H2O with dApG or dGpG, the intact dirhenium:dinucleotide complex is observed by LC/MS after two days. In both of these reactions, dirhenium:GMP complexes are also observes.

1H NMR studies show the appearance of new resonances in the aromatic region that cannot be attributed to starting material or hydrolyzed DNA fragments. These resonances are proposed to result from the formation of dirhenium:dinucleotide complexes. Additionally, MS spectra support the conclusion that a complex between the dinuclear rhenium complex and the purine dinucleotides of dApG and dGpG is formed after two days. A dirhenium:nucleotide product is also formed as a result of the dinucleotide hydrolysis.

Pages

122

To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.

Find in PacificSearch

Share

COinS

If you are the author and would like to grant permission to make your work openly accessible, please email