Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2000

Document Type

Dissertation - Pacific Access Restricted

Degree Name

Doctor of Philosophy (Ph.D.)

Department

Pharmaceutical and Chemical Sciences

First Advisor

David Fries

First Committee Member

James Blankenship

Second Committee Member

Alice Matuszak

Third Committee Member

Madhukar Chaubal

Fourth Committee Member

Donald Wedegaertner

Abstract

The naturally occurring polyamines play an essential role in cell growth and proliferation. The levels of polyamines have been shown to increase in rapidly proliferating cancer cells. Therefore, compounds that inhibit enzymes in polyamine biosynthetic pathway may have therapeutic potential. Compounds capable of providing both in vitro and in vivo inhibition of almost all enzymes in the polyamine biosynthetic pathway are known. An exception is the lack of an agent that inhibits spermidine/spermine N 1 -acetyltransferase (SSAT), the rate-limiting enzyme in the catabolism of polyamines. The design, synthesis and characterization of five new polyamine analogues as potential inhibitors of SSAT are presented. Three compounds, N 1 -[3-(propenamido) propyl]-1,4-diaminobutane dihydrochloride 5 , N 1 -[3-(maleimido)propyl]-1,4-diamino-butane dihydrochloride 7 and N 1 -[3-(2-bromoacetamido)propyl]-1,4-diaminobutane dihydrochloride 9 , were designed as active-site-directed affinity label inhibitors. Two compounds, N-[N-(5-acetamido-2-hydroxypentyl-3-aminopropyl)]-1,4-diaminobutane trihydrochloride 12 and N-[3-(2-hydroxyethylamino)propyl]-1,4-diaminobutane trihydrochloride 14 , were designed as transition state-like analogue inhibitors. These compounds were synthesized using one key intermediate, N-(3-aminopropyl)-N,N ′ -bis-(tert-butoxycarbonyl)-1,4-diaminobutane 3 . Three of these synthesized compounds, 5 , 7 and 12 were evaluated for their ability to inhibit SSAT. The enzyme used was a crude extract of human large cell undifferentiated lung carcinoma cell line NCI H157 cells. These synthetic analogues when tested against the crude enzyme extract at concentrations of 0.05, 0.1, 1 and 5 μM appeared to show no effects on the activity of SSAT.

Pages

127

ISBN

0599689153 , 9780599689152

To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.

Find in PacificSearch Find in ProQuest

Share

COinS

If you are the author and would like to grant permission to make your work openly accessible, please email

 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).