Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award


Document Type

Dissertation - Pacific Access Restricted

Degree Name

Doctor of Philosophy (Ph.D.)


Pharmaceutical and Chemical Sciences

First Advisor

David Thomas

First Committee Member

Joan Lin-Cereghino

Second Committee Member

Roshanak Rahimian

Third Committee Member

Timothy Smith

Fourth Committee Member

James Uchizono


There is significant interest in the field of neuroscience to gain a better understanding of how neurons die in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. We have used the neuronal cell line NG115-401L with unique calcium signaling characteristics to test the hypothesis that improving calcium loading into the endoplasmic reticulum (ER) to increase ER calcium levels acts as a possible neuroprotective response. We approached this problem using both pharmacological and genetic approaches targeting the central mediator of calcium uptake in the ER localized sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA) enzyme. The pharmacological studies involved use of the ginger root compound 6-gingerol, which to date is the best documented agent for activating SERCA enzymes in heart and skeletal muscle. However, in our experiments, gingerol did not appear to activate NG115-401L SERCA pumps; indeed, the compound produced a response more like that of a SERCA inhibitor inducing a rapid ER calcium depletion. In addition, gingerol stimulated robust calcium influx responses, an unexpected result given the NG115-401L neural cell line is uniquely deficient in calcium influx pathways. Our genetic approach involved expressing the stromal interaction molecule 1 (STIM1) protein in the NG115-401L cell, which is also an ER localized protein that serves as a pivotal calcium influx channel regulator. NG115-40lL neurons present a native deficiency of STIM1 expression in a background phenotype with well characterized perturbations in ER calcium regulation and control of calcium influx pathways. Thus, STIM1 may be predicted to increase ER calcium levels, conferring protection against neuron cell death due to ER calcium store defects. STIM1 expression reconstituted the corrupted calcium influx pathway in NG115-401L neurons, which conferred neuroprotective responses to ER calcium perturbation, mitochondrial oxidative stress and subsequent cell death. Our results argue for unique and undiscovered regulatory effects of gingerol on the ER calcium circulation system, and suggest that the expression of STIM1 in these neurons protects against ER stress and oxidative stress via reconstruction of cellular calcium homeostasis.





To access this thesis/dissertation you must have a valid email address and log-in to Scholarly Commons.

Find in ProQuest



If you are the author and would like to grant permission to make your work openly accessible, please email


Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).