Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2015

Document Type

Dissertation - Pacific Access Restricted

Degree Name

Doctor of Philosophy (Ph.D.)

Department

Pharmaceutical and Chemical Sciences

First Advisor

Robert Halliwell

First Committee Member

Jesika Faridi

Second Committee Member

John Livesey

Third Committee Member

Timothy Smith

Fourth Committee Member

Miroslav Tolar

Fifth Committee Member

James Uchizono

Abstract

The risks of damage to the developing nervous system of many chemicals are not known because these studies often require costly and time-consuming multi-generational animal experiments. Pluripotent stem cell-based systems can facilitate developmental neurotoxicity studies because disturbances in nervous system development can be modeled in vitro. In this study, neurons derived from embryonal carcinoma (EC) and induced pluripotent stem (iPS) cells, were first characterized to establish their suitability for developmental neurotoxicity studies. The EC stem cell line, TERA2.cl.SP-12, was differentiated into neurons that expressed voltage-gated sodium and potassium channels as well as ionotropic GABA and glutamate receptors. These cells could also fire action potentials when stimulated electronically. However spontaneous action potentials were not observed. In contrast, pre-differentiated neurons derived from iPS cells fired evoked and spontaneous action potentials. Furthermore, iPS cell-derived neurons also expressed a wide array of functional voltage- and ligand-gated ion channels. Antiepileptic drugs (AEDs) are associated with developmental neurotoxicity. These agents can cause congenital malformations, cognitive deficits and behavioral impairment in children as a result of in utero exposure. The impact of four major AEDs, namely phenobarbital, valproic acid, carbamazepine and lamotrigine, on cell viability, cell cycle and differentiation of TERA2.cl.SP-12 into neurons was studied. All AEDs tested reduced differentiating stem cell viability. Valproic acid and carbamazepine increased apoptosis and reduced cell proliferation. A brief exposure to phenobarbital, valproic acid and lamotrigine at the start of differentiation impaired the subsequent generation of neurons. Additionally, the effect of transient exposure to phenobarbital and carbamazepine on neuronal maturation of iPS-derived neurons was investigated. Exposure to both AEDs resulted in diminished membrane potentials and reduced the proportion of cells that were able to fire action potentials spontaneously in culture. The data from these studies suggest that impairments in proliferation, differentiation and maturation of neurons derived from human stem cells may be sensitive indicators of neurodevelopmental disruption by these drugs that can result from in utero exposure. Furthermore, these findings suggest that the use of human pluripotent stem cells and neurons derived from them can reduce the time, cost and the number of animals used in toxicological research.

Pages

191

ISBN

9781321698831

To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.

Find in PacificSearch Find in ProQuest

Share

COinS

If you are the author and would like to grant permission to make your work openly accessible, please email

 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).