Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award


Document Type

Dissertation - Pacific Access Restricted

Degree Name

Doctor of Philosophy (Ph.D.)


Pharmaceutical and Chemical Sciences

First Advisor

Miki Park

First Committee Member

Leslie Benet

Second Committee Member

William Chan

Third Committee Member

Jialing Dai

Fourth Committee Member

James Uchizono


Predicting drug concentrations in the blood and at the site of action is the hottest topic in pharmacokinetics (PK). In vitro-in vivo extrapolation (IVIVE) and physiological based pharmacokinetics (PBPK) models are two major PK prediction strategies. However, both IVIVE and PBPK models are considered as immature methodologies due to their poor predictability. The goal of the research is to investigate the discrepancies within IVIVE and PBPK predictions according to first-principles: convection, diffusion, metabolism, and carrier-mediated transport. In Chapter 2, non-permeability limited hepatic elimination under perfusion steady state is examined. The well-stirred model is re-derived from the convection-dispersion-elimination equation when both dispersion and concentration gradient are ignored and re-named as the zero-gradient model. Pang and Rowland’s lidocaine data are re-analyzed. Their data analysis was based on an unfair comparison of the zero-gradient and parallel- tube models at two different efficiency number ranges. The interference of sensitivity greatly biased the comparison. I also show that both theoretical discussions and experimental results indicate that apparent intrinsic clearance and intrinsic clearance could be affected by blood flow and protein binding. In Chapter 3, I discuss permeability limited hepatic elimination under perfusion steady state. Permeability limited elimination is classified to diffusion dominated, carrier-mediated transport mediated, and mixed effects based on drug passage mechanisms. Each of these three drug passage classes is sub-divided to sink condition and finite volume condition based on the boundary conditions of drug passage. In Chapter 4, the discrepancies within IVIVE for both non-permeability limited and permeability limited drugs are explored. The deficiencies in assay design and data analysis of common in vitro metabolism assays are investigated. The scaling/converting equations for both non-permeability limited and permeability limited drugs are derived. In Chapter 5, I focus on transient PK models. Numerical analysis using finite difference and finite volume methods are introduced into the derivation and discussion of transient PBPK models. In addition, the use of partition coefficient in the non-eliminating tissue/organ models is discussed.





To access this thesis/dissertation you must have a valid email address and log-in to Scholarly Commons.

Find in ProQuest



If you are the author and would like to grant permission to make your work openly accessible, please email


Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).