Nejat Düzgüneş: 0000-0001-6159-1391


Biomedical Sciences

Document Type


Publication Title

Cellular and Molecular Biology Letters









First Page


Last Page


Publication Date



Cationic liposome-DNA (lipoplexes) or polymer-DNA (polyplexes) complexes have been used to deliver therapeutic genes, both in vitro and in vivo. However, gene transfer by these non-viral vectors is usually inhibited by biological milieu. A relatively high efficiency of transfection could be achieved in human oral cancer cells transfected with the polycationic liposome, Metafectene, and the polyamine reagent, GeneJammer, in the presence of 60% fetal bovine serum (FBS) (Konopka et al., Cell. Mol. Biol. Lett. 10 (2005) 455-470). Here, we examined the efficacy of these vectors to deliver β-galactosidase (β-gal), luciferase and Herpes Simplex Virus thymidine kinase (HSV-tk) genes to SCCVII murine squamous cell carcinoma cells, which are used to generate an orthotopic murine model of oral cancer. We also evaluated the hydrodynamic size and zeta potential of the vectors and the effect of FBS and mouse serum (up to 60%) on the size of Metafectene and GeneJammer complexes with the pCMV.Luc plasmid. Our results indicate that Metafectene and GeneJammer are highly effective in transfecting SCCVII cells. Approximately 60-70% of SCCVII cells transfected with pCMV.lacZ were positive for β-gal staining. The expression of β-galactosidase was essentially not affected by serum. Mouse serum (20-60%) reduced both Metafectene- and GeneJammer-mediated luciferase expression by ∼30-45%, while FBS did not affect transfection efficiency. The delivery of the HSV-tk gene by Metafectene or GeneJammer in the presence of 0% or 60% FBS, followed by GCV treatment for 6 days, resulted in over 90% cytotoxicity. The mean diameters of the DNA complexes of Metafectene and GeneJammer decreased significantly as a function of the serum concentration. The reduction in the size of the lipoplexes and polyplexes by serum was essentially not inhibitory to transfection of SCCVII cells. This is in contrast to previous hypotheses that serum-induced decrease in the size of lipoplexes is the primary cause of serum inhibition of transfection. © 2006 by the University of Wrocław.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Dentistry Commons