Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2014

Document Type

Thesis - Pacific Access Restricted

Degree Name

Master of Science in Engineering (M.S.Eng.)

Department

Engineering

First Advisor

Michael Doherty

First Committee Member

Daniel Cliburn

Second Committee Member

Michael Doherty

Third Committee Member

Qindliang Zhao

Abstract

Complex realistic human motion sequences satisfying environmental constraints can be created by motion capture, which is a reliable way to reproduce human motions. However, motion capture data is difficult to modify in order to obtain variant motion sequences for multiple tasks. In this thesis, a system for synthesizing complex realistic human motion sequences based on a small group of sample motions to satisfy constraints is proposed. Methods are proposed for the system to preprocesses raw motion capture data to create sample motions that can be easily modified for the purpose of meeting specific requirements, while maintaining the subtleties of the origin motion capture data. Methods for the system to scan user-input constraints, to choose the best sample motion and synthesize the motion sequence based on route affected by the constraint are also proposed. Each generated motion piece is blended with the default motion, and thus a motion sequence composed of several pieces of motion based on constraints will be generated. Artifacts that arise during motion generation are identified and handled properly. Experimental results will show that the system can create cyclical sample motions from motion capture data, generate motion pieces based on environmental constraints, and synthesize complex realistic human motion sequences.

Pages

59

ISBN

9781321285055

To access this thesis/dissertation you must have a valid pacific.edu email address and create an account for Scholarly Commons.

Find in ProQuest

Share

COinS

If you are the author and would like to grant permission to make your work openly accessible, please email