Title

Chlamydia infection or epithelial cells expressing dynamin and Eps15 mutants: clathrin-independent entry into cells and dynamin-dependent productive growth

ORCiD

David M. Ojcius: 0000-0003-1461-4495

Document Type

Article

Publication Title

Journal of Cell Science

ISSN

0021-9533

Volume

112

First Page

1487

Last Page

1496

Publication Date

4-22-1999

Abstract

Chlamydiae enter epithelial cells via a mechanism that still remains to be fully elucidated. In this study we investigated the pathway of entry of C. psittaci GPIC and C. trachomatis LGV/L2 into HeLa cells and demonstrated that it does not depend on clathrin coated vesicle formation. We used mutant cell lines defective in clathrin-mediated endocytosis due to overexpression of dominant negative mutants of either dynamin I or Eps15 proteins. When clathrin-dependent endocytosis was inhibited by overexpression of the dynK44A mutant of dynamin I (defective in GTPase activity), Chlamydia entry was not affected. However, in these cells there was a dramatic inhibition in the proliferation of Chlamydia and the growth of the chlamydia vacuole (inclusion). When clathrin-dependent endocytosis was inhibited by overexpression of an Eps15 dominant negative mutant, the entry and growth of Chlamydia was unaltered. These results indicate that the effect on the growth of Chlamydia in the dynK44A cells was not simply due to a deprivation of nutrients taken up by endocytosis. Instead, the dominant-negative mutant of dynamin most likely affects the vesicular traffic between the Chlamydia inclusion and intracellular membrane compartments. In addition, cytochalasin D inhibited Chlamydia entry by more than 90%, indicating that chlamydiae enter epithelial cells by an actin-dependent mechanism resembling phagocytosis. Finally, dynamin is apparently not involved in the formation of phagocytic vesicles containing Chlamydia.