Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of University of the Pacific. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2005

Document Type

Thesis - Pacific Access Restricted

Degree Name

Master of Science (M.S.)

Department

Biological Sciences

First Advisor

Geoff Lin-Cereghino

First Committee Member

David Thomas

Second Committee Member

Lisa Wrischnik

Third Committee Member

Gregg D. Jongeward

Abstract

Pichia pastoris, a popular protein expression system, is limited in its ability to secrete heterologous proteins. The PMR1 gene, the disruption of which is known to improve the secretion of prochymosin, human prourokinase, and human tissue plasminogen activator in Saccharomyces cerevisiae, was cloned from P. pastoris. The pmr 1 mutant in S. cerevisiae also displayed a slow growth phenotype when grown on low Ca2+ medium. The putative P. pastoris PMR1 gene, encoding for a 924 amino acid P-type Ca2+ ATPase, was disrupted in P. pastoris and the secretion of horseradish peroxidase (HRP) and β-galactosidase (β-gal) analyzed. Secreted HRP activity was determined using 3,3',5,5' tetramethylbenzidine (TMB) colorimetric assay and western analysis. β-gal expression and secretion was determined by western analysis. Secretion in P. pastorius Δpmr1 for both heterologous proteins showed no appreciable difference compared to wild type, nor did P. pastoris Δpmr1 display the slow growth phenotype seen in S. cerevisiae Δpmr1 (Rudolph H. et al., 1989).

Pages

110

To access this thesis/dissertation you must have a valid pacific.edu email address and log-in to Scholarly Commons.

Find in PacificSearch

Share

COinS

If you are the author and would like to grant permission to make your work openly accessible, please email