Title

Dynorphin-phospholipid membrane interactions: Role of phospholipid head-group and cholesterol

ORCiD

Nejat Düzgüneş: 0000-0001-6159-1391

Document Type

Article

Publication Title

International Journal of Peptide and Protein Research

ISSN

0367-8377

Volume

47

Issue

1-2

DOI

10.1111/j.1399-3011.1996.tb00813.x

First Page

84

Last Page

90

Publication Date

1-1-1996

Abstract

The interaction of the κ-opioid receptor-selective heptadecapeptide dynorphin A(1-17) (Tyr1-Gly-Gly-Phe-Leu5-Arg-Arg-Ile-Arg-Pro10-Lys-Leu- Lys-Trp-Asp15-Asn-Glu) with phospholipid membranes has been investigated by monitoring the leakage of the internal aqueous contents of liposomes, the changes in the tryptophan emission spectrum, and the collisional quenching of tryptophan fluorescence by brominated lipids. The peptide induces more extensive leakage of contents from phosphatidylserine than from phosphatidylcholine vesicles, and experiences a blue shift of the Trp fluorescence emission maximum in the presence of phosphatidylserine vesicles. In the presence of phosphatidylcholine vesicles, however, the Trp fluorescence intensity is reduced without a blue shift. In phosphatidylserine membranes containing 10 mol% phosphatidylcholine,the intensity of the blue-shifted fluorescence is enhanced. This avid interaction of dynorphin A(1-17) with phosphatidylserine membranes is likely to be mediated by the positively charged Arg and Lys groups. It is proposed that, while the N-terminus of the peptide may be embedded in the bilayer in analogy with dynorphin (1-13), the C-terminal region of dynorphin A (1-17) bends back onto the bilayer/water interphase, and that the Trp14 residue is stabilized in a hydrophobic pocked near the interphase by the interaction of the neighboring charged amino acids with the phosphate, carboxyl and amino groups on phosphatidylserine.

Share

COinS