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Photoelectron Photoion Coincidence (PEPICO) Spectroscopy studies on two unsaturated 

hydrofluorocarbons (HFCs), also known as hydrofluoroolefines (HFOs), are presented here.  

Previously, the Sztáray group has studied the dissociation of trans-1,3,3,3-tetrafluoroprop-1-ene 

(ElixClean), which is a fourth-generation refrigerant and propellant and has lower global 

warming potential than its precursors.1  My study is an extension of the ElixClean study as it 

aims to explore how the different number of fluorine atoms impact the dissociation reactions of 

these molecules.  Both 3,3,3-trifluoropropene (TFP) and cis-1,2,3,3,3- pentafluoropropene (PFP) 

are also utilized as propellants and refrigerants.2, 3  

Measurements were carried out with remote access to the CRF-PEPICO (combustion 

reactions followed by photoelectron photoion coincidence spectroscopy) endstation of the 

vacuum-ultraviolet (VUV) beamline at the Swiss Light Source (SLS).4, 5  Gas phase samples 

were intersected with tunable vacuum ultraviolet synchrotron light to create photoions and 

photoelectrons which are then detected in coincidence.  Breakdown diagrams were then obtained 

by integrating the photoelectron-photoion coincidence signal for times of flight corresponding 

the precursor and fragment ions and plotting their fractional abundances at each photon energy.  

Analysis of these dissociation mechanisms was aided by ab initio calculations.   



 7 
Dissociative photoionization of TFP was studied over the photon energy range of 11.8–

16.0 eV.  Besides the molecular ion (m/z 96), there were four main fragment ions detected: m/z 

95 (H-loss), 77 (F-loss), 46 (CF2-loss), 27 (CF3-loss).  The experimental data for the dissociative 

photoionization of PFP was taken over the photon energy range of 12.0–16.5 eV and indicated 

the formation of m/z 113(F-loss), m/z 82 (CF2-loss), m/z 69 (C2HF2-loss), and m/z 51 (C2F3-loss), 

but an H-loss is not detected. 

Quantum-chemical calculations at the B3LYP level were used to explore the potential 

energy surface and identify the most likely structures that play a role in the dissociative 

photoionization processes of these fluorinated propenes.  The energies of the most relevant 

stationary points were refined utilizing G4 composite method.  The dissociation/isomerization 

pathways of energy-selected TFP and PFP ions will be explored, and I will discuss the most 

likely mechanisms that lead to the lowest-energy products.   
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CHAPTER 1:  INTRODUCTION 

 

Photoionization of a neutral molecule can be studied with photoionization mass 

spectrometry (PIMS) or photoelectron spectroscopy (PES), but both techniques offer a limited 

amount of information about the photoionization event because they only focus on half of the 

event and disregard the other half.  In the case of PIMS, only the ion is analyzed and for PES, 

only the electron is analyzed.  This downfall can be compensated by utilizing Photoelectron 

Photoion Coincidence Spectroscopy (PEPICO), which is a combination of both PIMS and PES.  

PEPICO is able to collect the photoions and photoelectrons in coincidence with each other while 

providing even more information on the gas-phase system than just PIMS or PES alone.  

PEPICO can provide highly accurate thermochemical and kinetic data on gas-phase systems 

while also giving insight to the dissociation mechanisms of these systems.  In this work the gas 

phase dissociative photoionization of two fluorinated propenes, 3,3,3-trifluoropropene (TFP) and 

cis-1,2,3,3,3-pentafluoropropene (PFP), will be discussed utilizing PEPICO spectroscopy.   

This study began as an expansion on previous work of another unsaturated 

hydrofluorocarbon, trans-1,3,3,3-tetrafluoropropene (ElixClean).1  All three of these 

hydrofluoroolefines are fourth-generation man-made refrigerants and propellants and have lower 

global warming potential than their predecessors and zero ozone depleting potential.2, 3  The aim 

of this study was to expand on the previous work of ElixClean and to gain insight into how the 

different number of fluorine atoms affects the dissociation mechanisms for each molecule.  

Modeling the breakdown curve created from plotting the experimental fractional ion abundances 

over each photon energy with statistical rate theories with the dissociation rates from the time-of-
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flight (TOF) mass spectra or a center-of-mass (COM) Gaussian deconvolution reveal 

thermochemical and kinetic data about the systems. 

I will first discuss PEPICO spectroscopy in detail by giving relevant theoretical 

background and basic principles requires to understand this technique.  The next section of my 

thesis will then explain how to analyze experimental data and model it before I present 

experimental data on the two hydrofluoroolefines I have studied.  For my experimental data, I 

will give a detailed analysis of the experimental data followed up with a summary of these 

hydrofluoroolefines.   
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CHAPTER 2:  THEORY AND TECHNIQUES 

 

2.1 Photoelectron Photoion Coincidence Spectroscopy (PEPICO) 

This chapter will describe PEPICO in detail along with the relevant theories and 

techniques it utilizes.  The first subchapter will describe the photoionization process involved in 

PEPICO experiments and then the detection techniques that are used.  The next portion of this 

subchapter will explain much of the information that can be extracted from PEPICO experiments 

and how it can be utilized.  The second subchapter includes a detailed description of the PEPICO 

data analysis, including the modeling of experimental data, statistical theories, and quantum 

chemical calculations. 

2.1.1 The Photoionization Process 

As previously stated, photoelectron photoion coincidence (PEPICO) spectroscopy is a 

combination of photoionization mass spectrometry (PIMS) and photoelectron spectroscopy 

(PES).  All three techniques utilize vacuum ultraviolet (VUV) light to ionize a neutral gas phase 

molecule and then eject an electron if the absorbed photon has enough energy.  The first PEPICO 

instruments utilized a monochromatic VUV light source6, such as helium and neon discharge 

lamps, but most more modern instruments utilize a synchrotron light source that provides tunable 

VUV light.7  Tunable VUV light is required for TPEPICO experiments to ionize and fragment 

neutral molecules.8, 9  Tunable synchrotron radiation is produced when electrons moving at 

almost the speed of light are forced to change trajectory by either a bending magnet, wiggler or 

undulator.10, 11  Bending magnets will generate a broad spectrum of wavelengths, so they must be 

used with a grazing incidence grating monochromator in order to filter out unwanted photon 

energies.  Wigglers and undulators have alternating dipole magnets that force electrons to 
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oscillate when they travel through them.11  This oscillation produces VUV radiation with an 

intense light in a narrow energy range. 

The different dissociation reactions of the photoion as a function of its internal energy 

can be studied with these techniques by varying the photon energy and thus, the internal energy 

of the photoion that is created.  The dissociative photoionization process can be shown as: 

 AB + ℎ𝑣 → AB! + e" 	→ A! + B + e" Equation 1 

where AB is the neutral molecule, hv is the photon energy absorbed by the molecule, AB+ is the 

molecular ion that is formed from this ionization process, and e- is the electron that is ejected.12 

The adiabatic ionization energy (AIE) is the minimum energy required to make the 

neutral molecule into a molecular ion.  Once the energy of the absorbed photon is more than the 

AIE, photoionization can occur.  If the molecular ion (AB+) has enough internal energy, it can 

undergo fragmentation to produce the fragment ion A+ and neutral fragment B.  This is also 

represented visually in Figure 1.  The energy where fragmentation is possible even starting from 

an originally zero internal energy neutral molecule, is known as the 0K appearance energy (E0).  

This appearance energy is important in modeling the fragmentation of the molecular ion and will 

be further discussed in detail later.  When a molecule AB absorbs a VUV photon with the energy 

hv above the ionization energy (IE), then the ejected electron can have an energy that ranges 

from 0 to hv-IE. 
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Figure 1.  Sketch of the dissociative threshold photoionization process of a neutral molecule (AB). 

 

When there is no reverse barrier in the dissociative photoionization process, such as the 

dissociation in Figure 1 depicts, then the appearance energy (E0) and 0K heats of formation 

(ΔfH0K) of the precursor molecule (AB), fragment ion (A+), and neutral fragment (B) are related 

to each other through this thermochemical equation:  

 𝐸# =	∆$𝐻#%[𝐴!] + ∆$𝐻#%[𝐵] −	∆$𝐻#%[𝐴𝐵] Equation 2 

If two of the heat of formations are known, the third can be calculated when the appearance 

energy (E0) is measured experimentally.  Therefore, the PEPICO technique has been utilized to 

determine accurate heats of formations for many gas phase species.13, 14 

 The energetics for the ionization process can be summed up by this equation:  

 𝐸&'( = ℎ𝑣 − 𝐼𝐸 − 𝐾𝐸 +	𝐸)*+,-./ Equation 3 

where Eion is the internal energy of the ion that is produced in the photoionization process, hv is 

the photon energy, IE is the ionization energy of the neutral precursor molecule, KE is the kinetic 

energy of the photoelectron that is produced (which is zero in Threshold PEPICO, or TPEPICO), 

and Ethermal is the thermal energy of the neutral molecule before it dissociates.13  This equation 

utilizes the principle of the conservation of energy and assumes hv < E0.  The photon energy (hv) 



 19 
is experimentally controlled by the monochromator.  If the ionization energy of the neutral 

precursor is not known from literature, it can either be experimentally measured or estimated by 

high level quantum chemical calculations. 

The thermal internal energy distribution (Ethermal) of a neutral sample at T temperature can 

be calculated by utilizing the Boltzmann formula as shown in Equation 4, 

 
𝑃(𝐸) =

𝜌(𝐸)𝑒
"0
1!2

∫ 𝜌(𝐸)𝑒
"0
1!2

3
#

 Equation 4 

 

where kB is the Boltzmann constant and 𝜌(𝐸) is the ro-vibrational density of states function for 

the neutral.  (Note that in the mass spectrometry literature, internal energy is considered 

excluding the kinetic energy.) 

 In an ionization event of a PEPICO experiment, the photoions are mass analyzed in a 

Wiley McLaren time-of-flight (TOF) mass analyzer, where the start signal is provided for by the 

electron.  To study the internal energy of selected photoions, the kinetic energy of the 

photoelectron must be measured accurately and the photoions and photoelectrons from the same 

precursor must correctly correspond to each other.  Both stipulations can be accomplished 

through the utilization of threshold photoelectron photoion coincidence (TPEPICO) 

spectroscopy.  The advantage of TPEPICO is that only threshold electrons (those with zero 

kinetic energy) are detected in coincidence with their corresponding photoions, therefore 

allowing the internal energy of the ions to be selected accurately.1, 8, 9, 15-21 

 The experiments presented herein on the dissociative photoionization of 3,3,3-

trifluoropropene (TFP) and cis-1,2,3,3,3-pentafluoropropene (PFP) were carried out on the 

prototype CRF-PEPICO (combustion reactions followed by photoelectron photoion coincidence 
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spectroscopy) endstation of the vacuum-ultraviolet (VUV) beamline at the Swiss Light Source of 

the Paul Scherrer Institut in Switzerland.5 

2.1.2 Electron Detection in PEPICO and the “Hot Electron” Problem 

Hot electrons are energetic electrons with non-zero kinetic energy.  If these hot electrons 

have velocity vectors that are in the direction of the detector center, then they will be detected 

along with the threshold electrons (electrons with zero kinetic energy), leading to the “hot 

electron problem”.  In theory, an ion should dissociate at a certain photon energy, but because 

the hot electrons partition some of the available photon energy, the ion has less internal energy 

and therefore may not dissociate until higher photon energies.17  

In modern PEPICO spectroscopy, the detection of electrons is based off velocity map 

imaging (VMI).22  In 1997, Eppink and Parker23 developed VMI by improving the photofragment 

ion imaging method that was created by Chandler and Houston.24  VMI is able to distinguish 

particles based off their initial velocity because those with zero initial kinetic energy will be 

focused onto the center of the detector while particles with some initial velocity will be focused 

onto concentric rings whose radii are proportionate to their initial velocities perpendicular to the 

extraction axis.   

The first PEPICO experiment that applied this VMI technique was done by Li and Baer 

in 2002.18  Because VMI focuses threshold electrons to a small spot on the detector from a large 

ionization region, it also allowed them to increase threshold electron signal by a factor of 10 

while also increasing the threshold electron kinetic energy resolution by more than a factor of 4.  

Although this technique does decrease the hot electron contamination of the threshold electron 

signal, it does not completely solve the problem.  This is because some hot electrons may have a 

kinetic energy vector that is parallel to the extraction axis and therefore will still be detected in 
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the center of the detector.  Previously, there was no way to distinguish between these hot 

electrons and threshold zero kinetic energy electrons in the center of the detector, but in 2003, 

Sztáray and Baer developed a solution.17  

Their solution was to include a multichannel plate (MCP) detector with two separate 

anodes in their instrumental apparatus (Figure 2).  One anode would detect only hot electrons on 

the ring while the other anode would detect the threshold and hot electrons in the center.   

 

 

Figure 2.  The original detector designed by Sztáray and Baer in 2003 to resolve the hot electron 
contamination in PEPICO.17 

 

This allowed them to determine the signal only from the threshold electrons by subtracting the 

ring signal (only hot electrons) from the center signal (both hot and threshold electrons) and 

scaling for differences in their areas through an experimentally derived factor (f), as shown in 

Equation 5 and Equation 6. 

 Threshold signal = (center signal) – f × (ring signal) Equation 5 

 𝑓 ≅ 	
𝐴4
𝐴5

 Equation 6 

The areas of the center and ring are denoted as A1 and A2, respectively.  The factor (f) is only an 

approximation because it depends on the distribution of electron kinetic energies.  Because these 

energies can vary between experiments, the factor usually needs slight adjustment in order to 
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account for all of the total hot electron contamination.  In imaging PEPICO, the size and position 

of the center and ring on the detector can be selected to optimize for the best resolution.   

2.1.3 Ion Detection in PEPICO 

 In most PEPICO experiments, ions are mass analyzed by a two-stage Wiley-McLaren 

type time-of-flight (TOF) mass spectrometer and are space focused onto a multichannel plate 

detector.25, 26  This setup allows for a good mass resolution despite the photoions being extracted 

from a large ionization region with a constant electric field.  Without the two-stage Wiley-

McLaren setup, since there is a wide spacial distribution of ions of the same mass (isomass ions), 

their flight times could also have a wide distribution.  However, in Wiley-McLaren mass 

analysis, the isomass ions that are closer to the beginning of the extraction region will have a 

short acceleration distance and lower kinetic energy when they enter the field free drift region 

than compared to isomass ions that are extracted further from the ionization volume.  Therefore, 

the latter will eventually catch up with the slower-flying ions that were formed closer to the 

detector, minimizing the spread in time of flight due to the distribution of ionization positions.  

After the ions have been separated by their time-of-flight, they are detected by a microchannel 

plate detector.  A reflectron can be added to the PEPICO instrument, in order to increase mass 

resolution, but careful consideration must be used as some of the ion signal may be lost as a 

result of this addition. 

2.1.4 Coincidence Detection in Threshold PEPICO 

 The previous subchapters mentioned how photoions and photoelectrons can be detected 

through TPEPICO spectroscopy, this subchapter will elaborate on how coincidence detection is 

implemented in the instruments we use at the Swiss Light Source.  Samples are introduced into 

the spectrophotometer via an infusive inlet or molecular beam.  The gas phase samples are then 
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intersected and ionized with the monochromatic VUV synchrotron radiation.  This creates 

photoions and photoelectrons which are then extracted with electric fields (-800V and +120 V) 

into opposite directions and detected at opposite ends of the PEPICO spectrometer (Figure 3).  

The electron flight tube (to the left) is 265 mm long and has a 20 mm wide opening to velocity 

map image the electron beam onto a Roentdek DLD40 position sensitive delay-line detector.23,27  

Photoelectrons with zero kinetic energy (ZKE) will hit the center of the imaging detector and 

will be considered in coincidence events.  As explained previously, hot electrons with some 

kinetic energy may be detected both in the center of the detector and also on concentric rings 

around the center, which is used to account for their contribution to the threshold electron signal.  

As depicted in Figure 3, photoions are extracted to the right and are mass analyzed as they are 

separated based on their time-of-flight.  They will go through two extraction regions (with the 

first being 5.5 cm long and the second being 1 cm long) prior to a 55 cm long drift region before 

being space-focused onto a Jordan TOF C-726 microchannel plate detector. 

 

 

Figure 3.  Diagram depicting the simplified setup of our TPEPICO experiments. 

 

Because the photoelectrons have a very small mass, they will hit the detector almost 

immediately after photoionization.  These photoelectrons will give a start signal for the time-of-

flight measurement and the ions will give a stop signal and the time difference between the start 
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and stop signals is the time-of-flight of the corresponding photoion.28  When the electron and ion 

are from the same precursor molecule, this is called a true coincidence.  A false coincidence is 

when an ion and electron from two different ionization events are paired together, because by 

chance they happened to be detected within the chosen coincidence detection window, even 

though they were coming from different ionization events.  True coincidences will give time-of-

flight peaks that are around the same value whereas the false coincidences will be evenly 

distributed throughout the whole time-of-flight measurement window.  This creates a 

background with random noise (from the false coincidences) and distinguished time-of-flight 

peaks (from the true coincidences). 

For a single-start/single-stop (SS/SS) coincidence scheme, the electron signal starts the 

measurement and then the first ion detected will stop the measurement.  While the time-of-flight 

measurement is active, other electrons are not detected until the measurement is restarted.  When 

ionization rates are low, the ionization events are well separated, so this electron-ion pair will be 

the only one formed in the time-of-flight window of the measurement, and therefore determining 

the coincidence pair is relatively straightforward.  The first PEPICO spectrophotometers had low 

ionization rates due to the limitation of light intensity of laboratory-based VUV light sources.29  

When ionization rates are higher, ionization events begin to overlap, thus causing the incorrect 

electron-ion pairing from different ionization events.  Consequently, the SS/SS coincidence 

scheme cannot be utilized efficiently because there may be too many false coincidences being 

detected relative to the true coincidences, thus creating a spectrum that is undecipherable. 

When the ionization rate is over 10 kHz, one needs to use the multiple-start/multiple-stop 

(MS/MS) data acquisition scheme.30, 31  In this scheme, all threshold electrons and ions will be 

detected with all their times relative to a master clock.28, 31  Each electron will then be correlated 
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with each ion and the false coincidences will create a flat background while the true coincidences 

will have a true time-of-flight peak.  This data acquisition scheme can be utilized even with 

ionization rates as high as 106 s-1. 

The signal-to-noise ratio (S/N) due to the false coincidence background for a coincidence 

peak is independent of the ionization rate (because the Poisson-noise of the false coincidence 

count rates is proportional to the square root of the square of the ionization rate, while true 

coincidences are also directly proportional to the ionization rate).  Therefore, to boost the signal-

to-noise ratio, it is best to have long collection times, narrow peak widths, and high collection 

efficiencies but not arbitrarily high count rates. 

In PEPICO, ionization events create electrons and ions in pairs and because these are 

detected in coincidence it is possible to determine collection efficiencies.  The electron and ion 

collection efficiencies (he and hi) can be determined from the total coincidence count rate (Nc) 

and the measured electron and ion count rates (Ne and Ni, respectively) through these equations:  

 𝜂+ =
𝑁6
𝑁&

 Equation 7 

 𝜂& =
𝑁6
𝑁+

 Equation 8 

Being able to determine he and hi can aid in optimizing the spectrometer to have the best 

collection efficiency possible for the experiment.  The total ionization rate (NT) of the experiment 

can be determined once the electron and ion collection efficiencies are known (Equation 9). 

 𝑁2 =
𝑁+
𝜂+
=
𝑁&
𝜂&

 Equation 9 

2.1.5 What Can TPEPICO Tell Us? 

PEPICO spectroscopy can give a wide range of information on gas phase systems 

including thermodynamic, kinetic, and spectroscopic data along with mechanistic dissociative 
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photoionization reactions.  All PEPICO experiments provide information to create a breakdown 

diagram, which is a plot of the fractional ion abundances as a function of photon energy.  

Fractional ion abundances are found by integrating the corresponding TOF peaks in the TOF 

mass spectrum.  At higher photon energies, the energy distribution is also shifted to higher 

energies, so there is a higher probability for more dissociation to occur.   

A breakdown diagram gives information about the appearance energy (E0) of fragment 

ions, which can then be used in thermochemistry to obtain the heats of formations of the neutral 

molecule and fragment ions.  Since TPEPICO only considers zero energy electrons, the ion 

internal energy (Eion) can be calculated by: 

 𝐸&'( = ℎ𝑣 − 𝐴𝐼𝐸 + 𝐸)*+,-./ Equation 10 

where hv is the photon energy, AIE is the adiabatic ionization energy of the neutral, and Ethermal is 

the thermal energy distribution.  When the precursor neutral molecule has more thermal energy it 

requires less photon energy to dissociate.  The energy at which the molecular ion completely 

fragments and has an ion signal of zero is also known as the 0 K appearance energy of the 

fragment ion.  This is when the photon energy equals the appearance energy of the fragment ion 

(E0) and the whole energy distribution is above the dissociation limit.  In the breakdown 

diagram, the slopes of the fractional ion abundances reflect the internal energy distribution.  This 

is a function of temperature, so with lower temperatures the initial thermal energy distribution is 

narrower.  This is reflected in the breakdown diagrams with a steeper slope.   

Breakdown diagrams can also help visualize and quantitate the mechanisms for the 

dissociative photoionization of the molecule.32  They can help determine if a dissociation is 

parallel or consecutive or if there is more than one channel contributing to a specific ion signal.8  

Parallel dissociations are when fragment ions come from the same molecular ion while 
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consecutive dissociations are when a fragment ion can undergo further fragmentation.  When 

more than one channel contributes to a fragment ion, then there will be a notable change in slope 

of the breakdown diagram (vide infra, in Chapter 3). 

When there is only one fast dissociation channel, the relative fragment ion abundance 

will be based off what portion of molecular ion energy distribution has enough excess energy to 

dissociate.  In a fast dissociation, at the E0 (the appearance energy of the fragment ion), the 

fragment ion will have a relative abundance of 100% whereas the molecular ion’s relative 

abundance will be 0%.  When the dissociation is slow or there are more than one parallel 

dissociation channels present, then the dissociation rates must also be taken into account as a 

function of internal energy.  The rates can be extrapolated to E0 values for their corresponding 

fragment ions and aid in accurately modeling all relative fragment ion abundances in the 

experimental data.   

PEPICO experiments also provide kinetic information in the ion time-of-flight peak 

shapes and position.8, 14, 33  When a dissociation is slow, it creates a metastable fragment ion peak 

that is asymmetrical.  The unimolecular rate constants can be extracted from the mass spectra by 

fitting this asymmetrical time-of-flight peak.  The range for measuring ion dissociation rates is 

typically between 104-107 s-1.  This range can be increased by changing the extraction field 

settings or by adding onto the instrumental apparatus.  The addition would include a deceleration 

region after the first flight tube in the Wiley-McLaren type mass analyzer and a second, shorter 

drift region.   

A molecular ion will dissociate at a different position in the Wiley-McLaren time-of-

flight mass spectrometer depending on the unimolecular rate of the molecular ion’s dissociation.  

A fast dissociation occurs when all molecular ions dissociate once there is enough excess internal 
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energy to do so.  In fast dissociations, the appearance energy corresponds to when the molecular 

ion signal reaches zero.  Fast dissociations result in sharp peaks in the TOF spectra due to the 

fragment ions having the same flight time.  On the other hand, slow dissociations create 

metastable asymmetric fragment ion TOF peaks.  This is because the metastable molecular ion 

will dissociate while it is traveling through the first extraction region.  The ion’s total time of 

flight will be based off where the dissociation occurs within this region.  If it occurs towards the 

beginning of the extraction region, the time-of-flight will be shorter.  The time-of-flight values 

will range between the fragment ion’s flight time and the intact molecular ion’s flight time, thus 

creating a quasi-exponential TOF peak that changes shape based off the rate constant of the 

dissociation.  The dissociation rate (k(E)) can be modeled when the thermal distribution of the 

sample is considered, and these rate curves can be fitted to the asymmetrical peak shapes with 

the geometry of the spectrometer and the applied voltages.  The appearance energy can be 

accurately determined by extrapolating the energy where the dissociation rate reaches the 

minimum value. 

The higher the size of the molecule, the more likely a slow dissociation is to occur 

because there is a finite rate at which energy flow occurs between all the vibrational-rotational 

modes in a polyatomic ion.  This results in a kinetic shift, which will cause the experimental 

appearance energy of a fragment to be shifted to higher photon energies because at threshold the 

time for the molecular ion to fully dissociate is larger than the timeframe of the experimental 

TOF window.34-39  Kinetic shifts are accounted for quantitatively as the TOF peak shapes give 

absolute dissociation rates.  It is important to understand dissociation kinetics because this allows 

you to determine accurate appearance energy values and to calculate correct heats of formations.   
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As TPEPICO focuses on threshold electrons, a threshold photoelectron spectrum can be 

created by plotting the detected threshold electron signal as a function of photon energy.  In this 

spectrum, peaks will represent the system going into another ionic state with the first peak 

representing the experimental adiabatic ionization energy (AIE) of the neutral molecule being 

studied.  TPEPICO can also provide a mass-selected threshold photoelectron spectra (ms-TPES) 

by only looking at threshold photoelectrons that are in coincidence with a specific ion mass-to-

charge ratio.  This feature allows one to also obtain the threshold photoionization spectra of 

various neutrals in a mixture.  These can be utilized as spectral fingerprints to identify the neutral 

by comparing to spectra in literature or simulated TPES from Franck-Condon calculations.   

As noted, PEPICO spectroscopy is a combination of PES and PIMS, but it is truly greater 

than the sum of its parts and exceeds both techniques in the abundance of information that can be 

obtained.   

2.2 PEPICO Data Analysis 

 This subchapter will focus on how PEPICO experimental data is analyzed.  I will first 

provide a detailed description of how the experimental data is modeled with statistical 

thermodynamics.  The following section will then focus on quantum chemical calculations and 

its application in PEPICO experiments 

2.2.1 Modeling PEPICO Experiments   

In 2010, Sztáray et al. published the details of the PEPICO data analysis software and 

made it available to the scientific community.14  This code can model the experimental data (the 

breakdown diagram and the ion TOF distributions) utilizing statistical thermodynamics.  

Modeling the experimental data can aid in determining accurate kinetic and thermochemical data 

for the studied system. 
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The program calculates the density of states functions to model the experimental data 

when provided with the vibrational frequencies and rotational constants (from quantum chemical 

calculations) for the neutral, all the ions, and transition states if there are any.  Once this is 

determined, the program can then calculate the thermal energy distribution of the neutral 

precursor.  During ionization it is assumed that this thermal energy distribution is transferred to 

the ionic manifold, so thus the molecular ion’s internal energy (E(M+)) can be calculated by: 

 𝐸(𝑀!) = 𝐸(𝑀) + ℎ𝑣 − 𝐼𝐸 Equation 11 

where E(M) is the internal energy of the molecular neutral, hv is the photon energy, and IE is the 

ionization energy of the molecular neutral.  Dissociation will occur when the internal energy of 

the molecule is larger than the dissociation energy. 

Kinetic models aim to describe the energy dependence of the rate constant for a system 

using the smallest number of parameters possible.40  The modeling code provided by Sztáray et.  

al.  can use different unimolecular rate theories, but only one will be focused on here as it is the 

only one utilized in this thesis.   

The Rice-Ramsperger-Kassel-Marcus (RRKM) theory can be utilized to successfully 

model the kinetics for unimolecular reactions from just a few parameters.41-46  This theory was 

initially developed by Rice, Ramsperger44-46 and Kassel46 who based their work off 

Hinshelwood’s research47 but was later corrected by Marcus and Rice in 195143 and Rosenstock, 

Wahrhaftig, and Eyring in 1952.48  This theory is also sometimes referred to as the Quasi-

Equilibrium Theory (QET).  The advantage of using the RRKM theory to model experimental 

data is that even with minimum prior knowledge of the system it can still provide accurate and 

reliable results.   
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Unimolecular reactions are often first-order reactions.  When modeling with RRKM 

theory, the unimolecular rate constant (k(E)) can be calculated as: 

 
𝑘(𝐸) = 	

𝜎𝑁‡(𝐸 − 𝐸#)
ℎ𝜌(𝐸)  

Equation 12 

where s is the reaction degeneracy, 𝑁‡(𝐸 − 𝐸#) is the number of states of the transition state at 

(E-E0) excess energy above the dissociation limit, h is Plank’s constant, and r(E) is the precursor 

ion density of states.  When modeling with RRKM theory, 𝑁‡(𝐸 − 𝐸#) is calculated from the 

fixed vibrational frequencies from the transition state structure involved in the reaction.  How to 

determine the transition state structures will be further discussed in the next subchapter. 

Some systems may have parallel and consecutive dissociations.8  In a consecutive 

dissociation, a fragment ion (AB+) from one dissociation will further fragment into another ion 

and neutral for another consecutive dissociation scheme (Equation 13).   

 𝐴𝐵𝐶! → 𝐴𝐵! + 𝐶 → 𝐴! + 𝐵 + 𝐶 Equation 13 

It’s important to know the internal energy distribution after the first dissociation, in order to 

model the consecutive reaction, since the ion AB+ becomes a precursor ion for the consecutive 

dissociation.  The internal energy distribution of AB+ can be calculated from the internal energy 

distribution of the original molecular ion (ABC+) while taking into consideration how the excess 

energy after dissociation (E-E0) is split between the fragments (AB+ and C), as seen in Equation 

14. 

 𝐸 − 𝐸# = 𝐸& 	+	𝐸( + 𝐸),.(8/.)&'(./ Equation 14 

The internal energy of the ion and neutral fragments, AB+ and C, are represented by Ei and En, 

respectively, and Etranslational represents the translational energy released.  The ion AB+ will have a 

wider internal energy distribution than compared to the molecular ion ABC+.   
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Since the partition of excess energy after dissociation has been considered, the internal 

energy distribution of AB+ can now be calculated for each energy in the product ion’s energy 

distribution P(E) and summed over the molecular distribution.  This can be calculated as:  

 
𝑃B𝐸&,𝐸 − 𝐸#C =

𝜌:;"(𝐸&) ∫ 𝜌<(𝑥)𝜌),(𝐸 − 𝐸# − 𝐸& − 𝑥)𝑑𝑥
0"0#"0$
#

∫ 𝜌:;"(𝑦)
0"0#
# (∫ 𝜌<(𝑥)𝜌),(𝐸 − 𝐸# − 𝑦 − 𝑥)𝑑𝑥)𝑑𝑦

0"0#"=
#

 Equation 15 

where P(Ei, E-E0) is the probability of the fragment ion to have Ei energy from the total excess 

energy from E-E0 and rAB+, rC,  and rtr are the density of states of the fragment ion AB+, neutral 

fragment C, and translational degrees of freedom, respectively.49, 50  Once the fragment ion’s 

internal energy distribution is determined, it can be used to find the energy dependent rate 

constants for consecutive dissociations. 

 The next step of the modeling program involves modeling the breakdown diagram and 

TOF distributions.  As stated previously, the breakdown diagram is created by integrating the 

TOF peaks and plotting the fractional ion abundances as a function of photon energy.  This is 

modeled by using all the previously calculated ion energy distributions and dissociation rates for 

each dissociation in the experiment.  The breakdown curve of the molecular ion is photon energy 

dependent and is calculated as: 

 
𝐵𝐷(ℎ𝑣) = H 𝑃(𝐸, ℎ𝑣)𝑑𝐸 + H 𝑃(𝐸, ℎ𝑣)𝑒𝑥𝑝	(−𝑘(𝐸)>%&')𝑑𝐸

!¥

0#"?0

0#"?0

#
 

Equation 16 

Equation 16 ensures the breakdown curve accounts for the effect of slow dissociations 

with the second integral.  For fast dissociations, the relative abundance will only depend on the 

normalized internal energy distribution (E) at a given photon energy (hv) and the second term in 

Equation 16 is zero.  In other words, the molecular ion abundance is given by the area of the 

internal energy distribution that is below the dissociation limit (E0).  As stated previously in 

Equation 4 the width of the distribution is dependent on the temperature of the sample for fast 
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dissociations, but the appearance energy of the fragment ion (E0) is not temperature dependent.  

For slow dissociations, the internal energy dependent rate constant k(E) can be found by utilizing 

Equation 12.  Equation 16 also can account for kinetic shift in the experimental data by 

incorporating the probability that the molecular ion does not dissociate within a time window, 

tmax.  The time is based on the experimental geometry and extraction field. 

 The fragment ion breakdown curves (BDfrag(hv)) can therefore be calculated by taking 

into consideration that the molecular ion and fragment ion abundance must equal 1, as seen in 

Equation 17. 

 
𝐵𝐷$,.@(ℎ𝑣) = H 𝑃(𝐸, ℎ𝑣)(1 − 𝑒𝑥𝑝 L−𝑘B𝐸>%&'CM 𝑑𝐸

!¥

0#"0
 

Equation 17 

If there is more than one parallel dissociation, then for a specific fragment ion (i), the 

breakdown curve (BD) can be calculated as: 

 

𝐵𝐷&(ℎ𝑣) = H 𝑃(𝐸, ℎ𝑣)
𝑘&(𝐸)
∑ 𝑘A(𝐸)A

O1 − 𝑒𝑥𝑝 − PQ𝑘A(𝐸)𝜏-.B
A

ST𝑑𝐸
!¥

0#"?0
 Equation 18 

where 1$(0)
∑ 1((0)(

 is the branching ratio between the fragment ion (i) and all the other fragment ions 

(j) in the experiment. 

 For slow dissociations, the TOF distributions must also be modeled along with the 

breakdown diagram for the dissociation rates.  Modeling the peak shapes will reveal the energy 

dependent unimolecular rate constant (k(E)) in asymmetric fragment ion peaks. 

In the modeling program different parameters (such as appearance energy, temperature, 

vibrational frequencies for the transition states, and peak widths) are optimized to find the best fit 

of the experimental data (the breakdown diagram and the TOF spectra). 
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2.2.2 Quantum Chemical Calculations 

Quantum chemical calculations are very important in PEPICO data analysis.  As noted 

above, they provide vibrational frequencies and rotational constants for the stationary points on a 

potential energy surface for the model and aid in studying all the possible dissociation 

mechanisms of the photoionization process. 

Our typical analysis of experimental data is aided by ab initio calculations that are carried 

out using the Gaussian 09 suite of programs.51  All PEPICO quantum chemical calculations 

presented in this work begin with optimizing the neutral molecule and molecular ion with a 

Density Functional Theory (DFT)52, 53 method based on B3LYP (Becke, 3-parameter, Lee-Yang-

Parr) hybrid functional.54-58  The vibrational and rotational frequencies from these optimizations 

can then be extracted and used as input parameters for the modeling code to calculate the internal 

energy distribution.   

Since the fragment ions were mass analyzed, their m/z values are known.  Integrating 

their TOF peaks and plotting against photon energy creates a breakdown diagram that 

experimentally reveals the order of which these fragment ions appear.  Based off the m/z values 

and order of appearance, a rough dissociation scheme showing all the possible mechanisms can 

be drafted and all the possible fragments (ions and their corresponding neutrals) for each m/z 

value are then optimized with a B3LYP level of theory.  The energetics of each fragment can be 

extracted from these optimizations.  Calculating the energy difference between the precursor and 

the fragments gives the thermochemical limit for each reaction dissociation.  This 

thermochemical limit is the minimum energy required to form the fragment ion and neutral.  

Some of the possible mechanisms can be eliminated at this point if their thermochemical limits 

are significantly higher than the experimental appearance energies in the breakdown diagram. 
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For the remaining reactions, transition state (TS) structures from the precursor to the 

fragment ion are located by using relaxed potential energy scans along the bond breaking 

reaction coordinates.  The local maximum (if any) is then optimized as a transition state and the 

vibrational frequencies are used as an input for the model.  If a transition state cannot be found 

this way, then the Synchronous Transit-Guided Quasi-Newton (STQN) method is used 

instead.59,60  This method searches for a saddle point along the potential energy surface between 

the optimized reactant and product ion structures.  With both methods, if a transition state is 

identified, then an intrinsic reaction coordinate (IRC)61 calculation in run to prove that the TS is 

the local maximum from the reactant to the product.  If a TS still cannot be found, then this 

indicates that the dissociation reaction happens on a purely attractive potential energy surface 

that does not involve a reverse barrier.  Since RRKM theory requires TS vibrational frequencies 

as inputs in the model, such a loose transition state can be approximated by stretching the bond 

corresponding to the dissociation reaction coordinate to 4-5 Å long. 

All the B3LYP energetics in the potential energy surface can then be further refined with 

G4 composite method.62  This can accurately determine bond dissociation energies for systems 

that have a relatively low number of heavy atoms by extrapolating to the infinite basis full 

configuration interaction limit by using different levels of theory and basis sets.  Composite 

methods are utilized to decrease computational cost while still maintaining a relatively high 

accuracy.  They use approximations to estimate the electron correlation energy and the energies 

from translation, rotations, and vibrations while also correcting for non-considered correlation 

effects.   

Quantum chemical calculations aid in analyzing experimental data by playing a critical 

role in divulging the different dissociation mechanisms for the photoionization process.  The 
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thermochemical limits from these quantum chemical calculations can be compared to 

experimentally derived appearance energies to find the ones that agree, revealing the most likely 

dissociation mechanisms for that system.   
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CHAPTER 3:  RESULTS AND DISCUSSION 

 

3.1 3,3,3-Trifluoropropene (TFP) and cis-1,2,3,3,3-Pentafluoropropene (PFP) 

3.1.1 Background and Literature Review 

The Montreal Protocol (1987) restricted the use of chemicals with a high ozone depleting 

potential (ODP), which were replaced by hydrofluorocarbon refrigerants with sometimes high 

global warming potentials (GWP).  The Paris Accord (2016) aims at limiting the use of these 

high GWP substitutes and has led to the development of new alternatives63 with lower GWP and 

zero ODP.63-65  Hydrofluoroolefins (HFOs), such as 3,3,3-trifluoropropene (TFP) and cis-

1,2,3,3,3-pentafluoropropene (PFP), have shorter atmospheric lifetimes and, thus, a lower GWP, 

and recently been introduced to the market.  These fourth-generation refrigerants have numerous 

commercial applications and are more environmentally friendly than chlorofluorocarbons 

(CFCs) or hydrochlorofluorocarbons (HCFCs).  Their shortened lifetime is due the carbon–

carbon double bond in HFOs, which increases their reactivity.   

The gas-phase reaction of cis-1,2,3,3,3-pentafluoropropene and other HFOs have been 

studied with some main tropospheric oxidants (Cl, OH, and NO3) to understand their degradation 

mechanism in the atmosphere.64, 65  It has been concluded that increasing in the number of 

fluorine atoms increases the rate coefficient for the reaction with OH.65  Therefore, the GWP of 

HFOs is considered negligible due to their short atmospheric lifetimes.64, 65  The negligible GWPs 

and low ODPs that make these compounds environmentally favorable. 

Previous studies on the ionic dissociation processes of 3,3,3-trifluoropropene (TFP) 

included ab initio calculations, electron ionization, and photoionization mass spectrometry 

studies.  The ionization energy of TFP has been estimated as 10.95 eV with the help of 
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calculated isodesmic reaction energies,66 11.24 ± 0.04 eV based on electron ionization mass 

spectrometry (EI-MS) results,67 and 10.9 eV using photoionization mass spectrometry (PI-MS).68  

The EI mass spectrum shows prevalent peaks for H-, F-, C2H3-, C2H2F-, CF2-, CF3- and CHF3-

loss dissociations.  Bond dissociation and appearance energies of these fragments have also been 

reported.67  This study highlighted that TFP exhibits ionic dissociations that can only happen 

through rearrangements, and that this species, similar to tetrafluoropropene,69 shows an intense 

fluorine-loss peak in the mass spectra.67  The TFP heat of formation has been reported at 298 K 

as −648.52 kJ/mol,67 −614.2 ± 6.7 kJ/mol,70 and −621.8 ± 1.6 kJ/mol,71 but these values are 

inconsistent with one another.  The ionic dissociation of PFP has not been previously studied 

with photoionization or other high energy-resolution mass spectrometry. 

This study is an extension of our recent PEPICO (photoelectron photoion coincidence) 

spectroscopy work on another fluorinated propene, trans-1,3,3,3-tetrafluoropropene,69 another 

fourth-generation man-made refrigerant and propellant, commercially referred to as HFO-

1234ze.  Through a threshold photoelectron spectrum (TPES), an adiabatic ionization energy was 

reported, and we have observed three parallel dissociation channels from internal energy selected 

parent ions: H-loss, F-loss, and CF2-loss pathways.  This study noted that even though direct 

bond breaking dissociations were possible, several of the lowest energy pathways involved 

hydrogen or fluorine shifts prior to dissociation, in order to form the more energetically favored 

allylic structure for the fragment ions.  While the lowest-energy fluorine loss did occur directly, 

hydrogen- and fluorine-shift isomerization was required for the observed H-loss and CF2-loss 

dissociation channels.  At slightly higher energies, several rearrangement pathways became 

accessible, due to the high mobility of the fluorine atom, and these all contributed to the 

observed dissociation channels.  According to density functional and G4 calculations, most of 
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the low-energy fragment structures were allylic fragment ions, showing extensive H and F 

scrambling. 

Hexafluoropropene (C3F6), a closely related perfluorinated analogue to the 

hydrofluoroolefins TFP and PFP studied here, was studied with photoionization mass 

spectrometry72, 73 and photoelectron photoion coincidence (PEPICO) spectroscopy.74  The 

adiabatic ionization energy was reported as 10.6 ± 0.2 eV.  This study noted that the CF3 group 

on the propene reduces the p nature of the carbon-carbon double bond, therefore increasing the 

perfluoro effect and the stability of the highest occupied molecular orbital in the neutral.  

Hexafluoropropene has four low-energy parallel dissociative ionization channels: F loss, CF2 

loss, C2F3 loss, and C2F5 loss.  At higher energies, a consecutive dissociation channel was 

observed: the loss of F + C2F4.  Some of these reactions have to be preceded by fluorine atom 

migration. 

In this paper, the dissociative photoionization of 3,3,3-trifluoropropene and cis-1,2,3,3,3-

pentafluoropropene was studied with threshold PEPICO spectroscopy below a photon energy of 

16.5 eV.  This study aims to expand on previous work of hydrofluoroolefins, exploring the 

rearrangement and dissociation processes of the energy selected ions, while also updating 

literature thermochemical values.  From previous studies, it can be hypothesized that we will 

observe H-loss, F-loss, CF2-loss, and CF3-loss dissociations, and possibly a C2F3-loss channel in 

PFP.  We also expect to see evidence for the migration (scrambling) of the hydrogen and fluorine 

atoms, leading to fragments that cannot be formed through direct dissociation of the molecular 

ion. 
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3.1.2 Methods 

3,3,3-trifluoropropene and cis-1,2,3,3,3-pentafluoropropene were purchased from abcr 

GmbH and used without further purification.  The experiments were conducted at the prototype 

CRF-PEPICO endstation of the VUV beamline at the Swiss Light Source of the Paul Scherrer 

Institut.5  Only a summary of the CRF-PEPICO apparatus is given here as further detailed 

information is available elsewhere.75  The gaseous samples were introduced at room temperature 

into the ionization region of the experimental chamber of the CRF-PEPICO through a Teflon 

tube, to reach a chamber pressure of 1.3 × 10−6 mbar.  VUV synchrotron radiation was 

collimated, dispersed by a 600 groves/mm laminar grating, and focused at the exit slit in a 

differentially pumped gas filter.  The gas filter contained a mixture of Ne and Ar at a pressure of 

10 mbar over an optical length of 10 cm to suppress higher order harmonics of the synchrotron 

light.  Ar autoionization lines were used to calibrate the VUV photon energy.  The sample was 

ionized by the monochromatic VUV radiation in the ionization region of the spectrometer in a 2 

mm × 2 mm cross section. 

Once ionized, the photoelectrons and photoions were extracted in opposite directions 

with a constant 220 V cm−1 electric field.  Photoions were mass analyzed in a gridless two-stage 

Wiley–McLaren-type time-of-flight (TOF) mass spectrometer and detected by a fast Roentdek 

DLD40 delay-line imaging detector.  The TOF mass analysis setup consists of a 2.7 cm long 

extraction, 8.7 cm long acceleration, and an 88.6 cm long field free drift region.  Photoelectrons 

were velocity map imaged onto a Roentdek DLD 40 position-sensitive delay-line detector with 

better than a 1 meV electron kinetic energy resolution at threshold.  Threshold electrons have 

zero kinetic energy and were detected in the center of the image while energetic (“hot”) electrons 

only contribute to the center signal if they have zero off-axis momentum.  Since they are also 
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detected elsewhere on the velocity map image, their contribution to the center signal can be 

accounting for by the average count rate in a concentric ring area around the center and scaling it 

by an experimentally determined factor.17  The photoelectrons provide the start signal for the 

time-of-flight (TOF) measurement in a multi-start/multi-stop coincidence scheme, while the 

photoions provide the stop signals.31  After the TOF mass analysis, a breakdown diagram is 

constructed by plotting the fractional abundances of ions in coincidence with threshold 

photoelectrons as a function of photon energy.29 

The low extraction field in the long extraction region allows ion residence times on the 

order of microseconds.  With these conditions, any metastable molecular ion with unimolecular 

dissociation rates between 103-107 s–1 will give asymmetrical fragment ion peaks in the time-of-

flight mass spectra while a fast dissociation of the molecular ions will produce symmetric 

fragment ion peaks.8, 14, 33  In the case of a hydrogen loss from a heavy molecular ion, such as 

from either of the studied fluoropropenes, the small mass difference does not allow for complete 

separation of the TOF peaks.  In this work, this issue was resolved by fitting the TOF peaks with 

Gaussian functions to obtain the fractional ion abundances, while the center-of-gravity (CoG) of 

the combined peaks was used to assess the effect of slow dissociation by quantifying the 

asymmetry of the hydrogen-loss peak, as described above.19, 76, 77  

Computational 

 Ab initio calculations were carried out with the Gaussian 09 suite of programs to assess 

the various isomerization/dissociation pathways, as well as to provide input parameters for the 

statistical rate analysis of the experimental data.51  The minimum-energy structures for the 

neutral precursors, the molecular ions, the possible fragment ions, as well as the identified 

isomerization products were optimized at the B3LYP/6-311++G(d,p) level of theory.  For the 
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dissociative pathways, transition state (TS) structures were located by constrained optimization 

by scanning along the reaction coordinate (loose TS) and by Synchronous Transi-Guided Quasi-

Newton (STQN) calculations (tight TS).78, 79  Verification of these latter transition states was 

done by intrinsic reaction coordinate (IRC) calculations, confirming the minimum-energy 

structures that the saddle points connect.61  The energies of all identified minima and saddle 

points were then further refined with the G4 composite method.80  Rotational constants and 

harmonic vibrational frequencies were calculated for all of these critical points (and approximate 

loose TS structures), to be used as input for the statistical mechanical modeling.  The 

experimental adiabatic ionization energy can be determined from the experimental TPES by 

fitting Franck-Condon-simulated theoretical spectrum to it.  These calculations were done at the 

B3LYP/6-311++G(d,p) level of theory for TFP and M06-2X/def2-TZVPP level of theory for 

PFP.   

Statistical Modeling 

The unimolecular rate constants of each dissociative pathway were calculated with the 

(rigid activated complex, rac-) Rice–Ramsperger–Kassel–Marcus (RRKM) theory as 

implemented in our PEPICO modeling code, as described earlier.14, 81  The rate constant, k(E), as 

a function of energy (E) is calculated with the following formula: 

 
𝑘(𝐸) = 	

𝜎𝑁‡(𝐸 − 𝐸#)
ℎ𝜌(𝐸)  Equation 19 

where s is the symmetry number of the reaction, 𝑁‡(𝐸 − 𝐸#) is the number of states function for 

the transition state at internal energy (𝐸 − 𝐸#), h is Plank’s constant, r(E) is the density of states 

of the dissociating ion at an internal energy E.  The densities and numbers of states were 

calculated using harmonic vibrational frequencies by the Beyer–Swinehart direct count 

algorithm.82 
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3.1.3 Results and Discussion 

For clarity, the numbering convention from here onwards is the following: the 3,3,3-

trifluoropropene molecular ion is labeled 1a, while its isomers and fragment ions are listed as 2a, 

3a, etc.  The cis-1,2,3,3,3-pentafluoropropene (1b) isomers and fragment ions are labeled as 2b, 

3b, etc. 

3,3,3-trifluoropropene 

 

 
Figure 4.  Threshold photoelectron spectrum (TPES) of 3,3,3-trifluoropropene (blue) fit using a 
Franck–Condon simulation (red) in the 11.0–12.0 eV energy range. 

 

The ground-state band of the threshold photoelectron spectrum (TPES) of 3,3,3-

trifluoropropene is shown in the 11.0–12.0 eV photon energy range in Figure 4, together with 

results of a Franck–Condon simulation at the M06-2X/def2-TZVPP level, convoluted with 60 

cm−1 fwhm Gaussians to account for the rotational envelope and the spectral resolution.  By 

varying the adiabatic ionization energy, the ionization energy of the FC simulation was shifted to 
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reproduce the experimental TPES best.  The experimental adiabatic ionization energy is, thus, 

determined as 11.17 ± 0.01 eV. 

  

 

Figure 5.  Breakdown diagram of 3,3,3-trifluoropropene over the 11.8–16.0 eV photon energy 
range.  Experimental data (open shapes) are fit by modeled breakdown curves (solid lines).  
Experimental 0 K appearance energies (E0) of the lowest-energy channels are denoted with solid 
arrows. 

 

Threshold photoionization time-of-flight mass spectra of 3,3,3-trifluoropropene was 

measured over the photon energy range of 11.8–16.0 eV.  The integrated peak areas in the 

coincidence time-of-flight mass spectra were converted to ion fractional abundances and plotted 

as a function of photon energy to create the breakdown diagram as shown in Figure 5.  Within 

the energy range of the experiment, there are four main fragment ions at m/z 95, 77, 46, and 27.  

The m/z 95 fragment ion corresponds to hydrogen loss from the molecular ion and appears at 

12.2 eV.  This fragment ion reaches 100% abundance and then begins to decrease slowly as other 

100

80

60

40

20

0

 F
ra

ct
io

na
l A

bu
nd

an
ce

 (%
)

16.015.515.014.514.013.513.012.512.0
Photon Energy (eV)

 m/z 96
 m/z 95
 m/z 77
 m/z 46
 m/z 27

 

E0=12.33
± 0.01 eV

E0=12.80
± 0.06 eV

E0=13.10
± 0.02 eV

E0=13.12
± 0.09 eV



 45 
dissociation channels open at higher photon energies.  As shown later, the formation of the m/z 

95 H-loss fragment ion requires rearrangement prior to dissociation at its onset energy. 

The m/z 77 fragment ion corresponds to 19 amu, i.e., fluorine atom loss.  Based on the 

change of slope in the breakdown curve at 14.5 eV, at least two active dissociation pathways 

contribute to this channel.  We will show that fluorine atom loss can occur (1) in the direct 

dissociation of a fluorine–carbon bond in the original 3,3,3-trifluoropropene molecular ion at a 

lower energy or (2) from an isomer parent ion at higher photon energy.  This is consistent with 

our previous work on tetrafluoropropene, which confirmed that rearrangement processes were 

involved in the fluorine-loss dissociative ionization in that system.69 

The m/z 46 ion corresponds to CF2 loss.  Clearly, this dissociation cannot occur through 

direct bond scission of the 3,3,3-trifluoropropene molecular ion and requires rearrangement prior 

to dissociation, similarly to the analogous channel in tetrafluoropropene.69 

The m/z 27 fragment ion corresponds to the loss of a trifluoromethyl radical.  Over the 

studied energy range, this reaction likely proceeds through more than one mechanism, as there is 

a marked increase in the slope of the breakdown diagram around 15.8 eV.  Theoretically, this 

dissociation channel can occur through a direct bond scission from the molecular ion, but this 

fragment ion is also available through a consecutive dissociation channel, losing a CF2 moiety 

from the F-loss fragment ion (m/z 77).  The existence of this latter, consecutive channel is 

supported by the experimental breakdown diagram because as the m/z 27 ion fractional 

abundance begins to increase around 15.5 eV, the abundance of the m/z 77 fragment ion starts to 

decrease with around same rate. 

The statistical dissociative ionization model to reproduce the experimental data used the 

measured adiabatic ionization energy of 11.17 eV and a sample temperature of 300 K (Figure 5).  
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In the absence of a reverse barrier, the 0 K appearance energy (E0) corresponds to the 

thermochemical limit to dissociative ionization.  Otherwise, it gives us the energy of the rate-

limiting transition state of the fragmentation.  The best fit of the model to the experimental 

breakdown curve (Figure 5) and the center-of-gravity curve (Figure 6) (for the H-loss 

dissociation, carrying information about the dissociation kinetics) was obtained by optimizing E0 

and the transitional TS frequencies for each dissociation channel.  The model fits the 

experimental data very well up to a photon energy of 14.0 eV.  As shown later with the help of 

quantum chemical calculations, there are numerous possible dissociation channels at higher 

energies that may or may not contribute to fragmentation.  This multitude of energetically open 

pathways lead to a convoluted fragmentation mechanism, in which the individual channels and 

their contributions cannot be unambiguously identified.  Similarly complex high-energy 

fragmentation mechanism was also observed in fluoropropene, an analogous HFO,69 and can best 

be unveiled using potential energy surface exploration by computational chemistry.  The lowest-

energy structures involved in the dissociation processes, are summarized in Table 1 along with 

their energetics.  Further possible structures with higher energies are shown with their 

mechanism in Figure 10. 
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Figure 6.  TOF peak center-of-gravity analysis for the m/z 95 H-loss fragment channel in the 
12.0–13.0 eV photon energy range. 

 

Table 1   
Summary of Experimental and Calculated (G4) Appearance Energies (E0) for the Lowest-Energy 
Fragment Pathways of 3,3,3-Trifluoropropene 

Fragment Ion  Neutral 
Fragment 

E0 (eV) 

m/z Structure Experimental G4 

95  H 12.33 ± 0.01 

12.24 

 
12.29 

77 

 

F 12.80 ± 0.06 

12.77 

 
12.97 

 

13.04 
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(Table 1 Continued) 

 

 

 

  
13.10 

46 

 

CF2 13.10 ± 0.02 13.32 

27 
 

CF3 13.12 ± 0.09 13.14 

 

The first fragment ion, C3H2F3
+ (m/z 95), appears at 12.2 eV.  As mentioned earlier, the 

experimental mass resolution was not sufficient for baseline separation the molecular ion [M]+ 

(m/z 96) and the H-loss fragment ion [M – H]+ (m/z 95) peaks, as is commonly the case for H-

loss processes.  A Gaussian-fitting deconvolution was utilized to obtain the ion fractional 

abundances, while the combined (m/z 95 and 95) peaks’ center of mass was used to utilized as 

the experimental information on the dissociation rate constants.  The model was simultaneously 

fitted to the experimental breakdown diagram and the center of gravity curve by optimizing the 

barrier height, i.e., the dissociation limit, and the two lowest vibrational frequencies of the 

transition state, corresponding to the transitional modes (Figure 6).  The fit provided an H-loss 

appearance energy of 12.33 ± 0.01eV, in agreement with the calculated G4 thermochemical 

limits for the two lowest-energy m/z 95 fragment ions of 12.24 and 12.29 eV.  Both channels 

involve a fluorine-atom shift from C3 in the original molecular ion (1a) to C1 to form the isomer 

parent ion 2a, which subsequently loses a hydrogen from the C1 position (Figure 7 and Figure 

8).  The cis [5a] and trans [4a] H-loss fragments are calculated to be close in energy, and 

probably both are formed in dissociative ionization.  A slightly higher-energy H-loss fragment 
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ion can also be formed by first shifting a fluorine from the C3 position to C2 through an 

isomerization barrier at 11.97 eV, forming intermediate [3a] at 11.53 eV (at the G4 level) (Figure 

7).  From this structure, the central hydrogen atom can be lost, leading to another allylic structure 

at 12.80 eV (Figure 10).  Other possible higher-energy hydrogen loss products and the 

mechanisms leading to them are detailed in Figure 9 and Figure 10.  It is important to note that 

the lowest-energy H-loss fragment ions are those that feature an allylic structure, and these can 

only be formed after a rearrangement of 1a. 

 
Figure 7.  Rearrangements of the molecular ion that are involved in the lowest-energy 
dissociation processes.  Values refer to G4 energies in eV and the numbers on the arrows 
correspond to the transition states connecting these structures.  
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Figure 8.  Potential energy surface for the lowest-energy dissociation pathways of 3,3,3-
trifluoropropene with the corresponding G4 energies in eV. 

 

 
Figure 9.  Isomerization of the molecular ion 3,3,3-trifluoropropene with G4 thermochemical 
limits and transition states. 
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Figure 10.  TFP Higher energy H-loss, F-loss, and CF3-loss fragment mechanisms.  All energies 
are 0K and calculated at a G4 level of theory. 

 

The next dissociation channel, m/z 77, corresponds to C3H3F2
+, formed by fluorine atom 

loss from the molecular ion.  The statistical model of the first F-loss channel yielded a 0 K 

appearance energy of 12.80 ± 0.06 eV.  The fragment ion has a stable allylic structure, formed by 

losing a fluorine atom from the trifluoromethyl group in 1a.  At the G4 level, the calculated 

thermochemical limit for this channel was found to be 12.77 eV, in excellent agreement with the 

experimental appearance energy (Figure 8).  According to our calculations, there are three more 

stable allylic C3H3F2
+ isomers with similar but slightly higher thermochemical limits (12.97, 

13.04, and 13.10 eV at G4 (Table 1)), which may also contribute to the breakdown diagram.  

Other, higher energy F-loss fragment ions are shown together with their formation mechanism in 

(Figure 10). 
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The next two dissociation channels, m/z 46 and m/z 27, correspond to CF2 and CF3 loss 

from the molecular ion, respectively.  They are parallel dissociation channels from the molecular 

ion, with fitted experimental appearance energies of 13.10 ± 0.02 eV and 13.12 ± 0.09 eV at 0 K, 

respectively.  The lowest energy calculated thermochemical limit to form the C2H3F+ ion at m/z 

46 was calculated to be 13.32 eV, while the thermochemical limit to C2H3
+ (m/z 27) formation 

was found at 13.14 eV.  In order to form the lowest energy m/z 46 fragment ion, the fluorine 

from C3 in the molecular ion [1a] must move to the C2 position, similar to the hydrogen-loss 

mechanism detailed above.  From the intermediate [3a] at 11.526 eV, the CF2 group can 

dissociate to form the fluoroethylene cation at 13.32 eV (G4 value, Figure 8).  The latter value is 

slightly higher than the experimental appearance energy of 13.10 ± 0.02 eV.  The m/z 46 

fragment ion can also be formed through consecutive F-loss and CF- loss dissociation steps, but 

the thermochemical limit for this dissociation pathway is calculated to be much higher at 18.63 

eV. 

The m/z 27 fragment ion, the vinyl cation, C2H3
+, is readily formed by homolytic bond 

breakage between the C2 and C3 carbons.  The calculated thermochemical limit at 13.14 eV 

(Figure 8) is in excellent agreement with the experimental appearance energy of 13.12 ± 0.09 eV.  

The vinyl cation has a non-classical structure, in which a bridging hydrogen atom straddles the 

carbon–carbon double bond.9,83,84  At higher energies, a consecutive dissociation pathway may 

also contribute to the m/z 27 fragment ion signal, namely CF2 loss from the m/z 77 (C3H3F2
+) 

fragment ion, but the calculated thermochemical limit for this dissociation is much higher (16.78 

eV). 

As shown in Figure 5, the statistical model reproduces the experiment well under a 

photon energy of 14.0 eV.  Similar to tetrafluoropropene,69 several isomerization/dissociation 
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channels become energetically available due to the vagabond nature of the fluorine atom above 

this energy.  Unfortunately, these channels are not individually identifiable based on the 

experimental data.  Nevertheless, we have mapped several high-energy 

isomerization/dissociation pathways and these quantum chemical results are summarized Figure 

9 and Figure 10.   

Thermochemistry 

 

Table 2   
Auxiliary and Derived Thermochemical Data for 3,3,3-Trifluoropropene 

Formula Name ∆fH°0K ∆fH°298K Uncertainty 

     (kJ mol−1) 

C3H3F3 3,3,3-trifluoropropene −611.6a −622.3a,i ± 8.4 

   -648.52b  

   -604.6c ± 6.7 

   −614.2d ± 7 

   −621.8e ± 1.6 

   −629.8f ± 2.8 

C3H2F3
+ allylic cation [4a] 362.2a  ± 8.5 

  364.6g   ± 1.4 

C3H3F2
+ allylic cation [6a] 546a  ± 10 

C2H3F+ vinyl fluoride ion [8a] 846.6a  ± 8.5 

C2H3
+ bridged vinyl cation [7a] 1119.07h 1115.63h ± 0.55 

CF3× trifluoromethyl radical −464.95h −467.75h ± 0.45 

CF2 difluoromethylene −193.89h −193.42h ± 0.36 

H hydrogen atom 216.034h 217.998h ± 0.000 
aThis work.  bSteele and Stone67  cKolesov et.  al.85  dCox and Pilcher.70  ePaulechka et.  al.  
experimental.71  fPaulechka et.  al.  calculated.71  gRay and et.  al.69  hActive thermochemical 
Tables (ATcT).86  iConverted to T = 298 K using G4 thermal enthalpies. 
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Figure 11.  Thermochemical cycle of 3,3,3-trifluoropropene (TFP) system and corresponding H-, 
F- CF2- and CF3-loss pathways.  The ionization energy of TFP and the 0 K appearance energies 
of the fragments are experimentally derived and shown in blue.  New thermochemical values 
determined in this work are shown in purple and literature values are shown in red.  The 0 K 
heats of formations used in this cycle are shown in Table 2. 

 

In the absence of reverse barriers in the dissociative ionization of 3,3,3-trifluoropropene 

(TFP), the appearance energies correspond to the thermochemical limits even in the presence of 

isomerization steps in the H-loss and CF2-loss dissociation pathways (Figure 8).  Therefore, the 0 

K heat of formation of TFP can be calculated using literature values for the cation and neutral 

fragments together with the experimental appearance energy.  Auxiliary and derived 

thermochemical data are summarized in Table 2 and Figure 11. 

The m/z 27 dissociation channel corresponds to the formation of the vinyl cation (C2H3
+) 

and a trifluoromethyl radical (CF3×) loss from the molecular ion [1a].  This dissociation takes 

place directly in the molecular ion [1a] without isomerization.  The heat of formation for both 

fragments are known, and the heat of formation for the neutral 3,3,3-trifluoropropene, 
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∆fH0K(TFP), can be derived based on the appearance energy (E0) of the fragment ion.  With the 

experimental derived E0(C2H3
+) = 13.12 ± 0.09 eV and literature values of ∆fH0K(C2H3

+) = 

1119.07 ± 0.55 kJ/mol86 and ∆fH0K(CF3×) = −464.95 ± 0.45 kJ/mol86, we determine ∆fH0K(TFP) = 

−611.6 ± 8.4 kJ/mol.  Using B3LYP-calculated thermal enthalpies, this heat of formation 

converts to −622.3 ± 8.4 kJ/mol at 298 K.  Previously, the room temperature TFP heat of 

formation has been reported as −648.52,67 −614.2 ± 7,70 and −604.6 ± 6.7 kJ/mol.85  The last 

value was later reevaluated by Cox and Pilcher as −614.2 ± 6.7 kJ/mol in 197070 and again in 

2019 by Paulechka and Kazakov71 as −621.8 ± 1.6 kJ/mol.  In the latter paper, they also 

published a calculated value of −629.9 ± 2.8 kJ/mol.  Our value confirms the latest, revised 

enthalpies of formation reported in the literature. 

Based on the newly obtained ∆fH0K (TFP) = −611.6 ± 8.4 kJ/mol, the heats of formation 

of three parallel primary dissociative ionization products can also be derived using their E0 and 

the literature heats of formation of the corresponding neutral fragments, as listed in Table 2.  For 

the H-loss dissociation channel (m/z 95), we can use this method despite the rearrangements 

because the isomerization barriers are below the thermochemical limit of the dissociation.  Thus, 

we determine the 0 K heat of formation of CHFCHCF2
+ as 362.2 ± 8.5 kJ/mol.  A different 

dissociative ionization pathway previously yielded 364.6 ± 1.4 kJ/mol69 for this value.  For the F-

loss dissociation channel (m/z 77), the heat of formation for CH2CHCF2
+ was determined as 546 

± 10 kJ/mol.  Finally, the dissociation channel yielding the m/z 46 fragment ion corresponds to 

CF2 loss.  Similar to the H-loss dissociation pathway, there are no reverse barriers as the 

isomerization barriers are below the thermochemical limit to dissociative ionization.  Therefore, 

we could determine the heat of formation of CH2CHF+ as 846.6 ± 8.5 kJ/mol at 0 K.  To the best 
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of our knowledge, the heats of formation of CH2CHCF2

+ and CH2CHF+ have not been previously 

reported. 

cis-1,2,3,3,3-Pentafluoropropene 

 

 
Figure 12.  Threshold photoelectron spectrum (TPES) of cis-1,2,3,3,3-pentafluoropropene (blue) 
taken in the 10.6–11.6 eV photon energy range, shown together with a Franck–Condon 
simulation (red dashed trace). 

 

The adiabatic ionization energy of cis-1,2,3,3,3-pentafluoropropene could be determined 

based on the threshold photoelectron spectrum (Figure 12) and Franck–Condon simulations,  

carried out on the electronic ground state of the neutral and the cation at the B3LYP/6-

311++G(d,p) level of theory.  The calculated transitions were convoluted with a Gaussian 

function with 80 meV FWHM.  By varying the adiabatic ionization energy, the calculated 

spectrum was fit to the experimental TPES.  From this, the adiabatic ionization energy was 

determined to be 10.744 ± 0.008 eV, which was used in the statistical rate model. 
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Figure 13.  Breakdown diagram of cis-1,2,3,3-pentafluoropropene over the 12.0–16.5 eV photon 
energy range.  Experimental breakdown curves (open shapes) were fit by a statistical model 
(solid lines).  Derived 0 K appearance energies (E0) are denoted by solid arrows. 

 

PEPICO time-of-flight spectra of cis-1,2,3,3,3-pentafluoropropene was measured over 

the photon energy range of 12.0–16.5 eV, and the factional ion abundances (the breakdown 

curve) are shown in Figure 13.  There are four main fragment ions at m/z 113, 82, 69, and 51 

within this energy range.  At the lowest energies, the only the parent ion is seen at m/z 132.  Two 

further fragment ions were seen at m/z 69 and m/z 51 with a low fractional abundance in the 

photon energy range of the experiment.  These were not included in the statistical model.   

The m/z 113 fragment ion is the first to appear at 12.3 eV and corresponds to a fluorine 

atom loss from the parent ion.  The fractional abundance of this fragment ion begins to decrease 

as the m/z 82 ion, which corresponds to CF2 loss from the molecular ion, begins to take over.  As 

was the case with trifluoropropene ion (vide supra), this process cannot happen through direct 

bond scission from the molecular ion but requires isomerization steps along the dissociation 

coordinate.  While the m/z 82 channel quickly outcompetes the fluorine-loss dissociation, it 
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never reaches 100% abundance.  Above 14.5 eV, the fluorine-loss fragment ion begins to 

increase in abundance again.  This experimental finding suggests that there are probably several 

other fluorine-loss pathways, which open up at higher energies.  Above 14 eV, two other parallel 

fragmentation channel appear, leading to the CF3
+ (m/z 69) and CHF2

+ (m/z 51) fragment ions. 

The statistical model includes the two lowest-energy channels, corresponding to F and 

CF2 loss, at 300 K sample temperature.  Like tri- and tetrafluoropropene,69 the fluorine atoms 

become mobile at high energies, leading to multiple competitive pathways to the same products.  

At these energies, the CF3
+ and CHF2

+ channels also become accessible.  Although they compete 

with the main two dissociative pathways, their fractional abundance stays too low for a reliable 

estimate on their experimental appearance energies.  While the statistical model only yields two 

well-determined appearance energies, we have nevertheless computationally explored several 

more isomerization pathways.  The lowest-energy structures involved and their energetics are 

summarized Table 3.  Possible higher-energy structures and the mechanisms leading to these are 

shown in Figure 14 and Figure 16. 
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Table 3  
The Most Important Experimental and Calculated (G4) Appearance Energies (E0) for the Lowest-
Energy Fragmentation Pathways of cis-1,2,3,3,3-Pentafluoropropene 

Fragment Ion Neutral 
Fragment 

E0 / eV 

m/z Structure Experimental G4 

113 

 

F 

12.39 ± 0.030 12.46 

 13.17 ± 0.10 

13.19 

 
13.26 

82 

 

CF2 
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Figure 14.  Isomerization of the molecular ion cis-1,2,3,3,3-pentafluoropropene with G4 
thermochemical limits and transition states. 

 

 
Figure 15.  Potential energy surface for cis-1,2,3,3,3-pentafluoropropene for the lowest energy 
dissociation pathways with corresponding G4 calculated energies. 
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Similar to 3,3,3-trifluoropropene, several cis-1,2,3,3,3-pentafluoropropene fragmentation 

channels also require the molecular ion to isomerize prior to dissociation.  The various possible 

molecular ion isomers and the relevant transition states connecting them are shown in Figure 14.  

The lowest energy pathway to form the fluorine-loss fragment ion, C3HF5
+, involves a fluorine 

shift from the C3 to C1 position to form isomerized molecular ion [3b], then a hydrogen shift 

from the C1 to C2, forming [4b], prior to losing a fluorine to form the most stable allylic 

structure CF2CHCF2
+ (Figure 15).  The fluorine- and hydrogen-shift transition states are at 12.17 

eV and 12.46 eV, respectively, and the latter represents the calculated appearance energy as it is 

higher than the thermochemical limit at 12.26 eV, all at the G4 level.  The experimental 

appearance energy of 12.39 ± 0.03 eV is in very good agreement with the calculated value of 

12.46 eV, further confirming that the lowest-energy, symmetrical allylic structure is indeed 

formed at low ion internal energies. 

At slightly higher energies, calculations suggest that other m/z 113 formation pathways 

become accessible.  Indeed, the experimental breakdown curve and the statistical model both 

confirm this hypothesis as there is a notable change in slope at ~14.5 eV; see Figure 13.  

Furthermore, without a second fluorine-loss pathway in the model, the fractional abundance of 

the m/z 113 channel drops to zero too early and the contribution of the m/z 82 channel (vide 

infra) is overestimated.  The appearance energy of this parallel m/z 113 channel was found to be 

13.17 ± 0.10 eV.  This E0 value energy is consistent with the calculated thermochemical limit for 

two other m/z 113 fragment ions structures: [7b] at 13.19 eV and [8b] at 13.26 eV, which are 

also allylic structures and cis/trans isomers of each other.  The former fragment ion can be 

formed through a direct fluorine loss from the molecular ion, while the latter one is accessible 
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from the [3b] isomer ion.  Since the latter one [8b] is formed through a submerged transition 

state, its appearance energy corresponds to the thermochemical limit, just like [7b].   

 The next dissociation channel, yielding the m/z 82 fragment ion, corresponds to CF2 loss 

to form the trifluoroethylene cation, C2HF3
+.  Since CF2 loss is not directly available from the 

molecular ion, the lowest energy pathway involves a fluorine shift from C3 to C2 to form the 

isomer structure [2b], which can then lose the CF2 moiety.  The isomerization barrier is 

calculated to be at 12.186 eV, significantly lower than the calculated thermochemical limit of 

12.947 eV.  The experimental appearance energy of 12.84 ± 0.03 eV is in good agreement with 

the latter. 

Above 14.5 eV, the statistical model begins to deviate from the experimental data, as new 

fluorine-loss dissociation pathways become available.  This is in line with our findings for 

trifluoropropene (vide supra) and tetrafluoropropene,69 as the mobile fluorine atoms result in 

extensive scrambling, followed by dissociation.  We have not attempted to model the 

dissociation channels leading to the m/z 69 and 51 fragment ions, as their abundance never 

amounts to more than a few percent.  Furthermore, calculations show that the CF3
+ fragment ion 

can be accompanied by three different neutral fragments in the 13.44–13.80 eV appearance 

energy range, namely a CF2–CH· and two CHF–CF· radical isomers, see Table 3. 

Another interesting aspect of this system that unlike trifluoropropene and 

tetrafluoropropene,69 the experimental data for pentafluoropropene does not show an H-loss 

dissociation channel.  For the lowest-energy hydrogen loss channel, a fluorine from C3 on the 

molecular ion [1a] must first shift to C1 before the hydrogen can be lost (Figure 16).  The G4 

thermochemical limit is 12.66 eV, which is within the experimental energy range.  However, F 
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loss takes place at a lower energy of 12.46 eV, explaining why the latter one does not appear in 

the experimental data.   

 

 
 
Figure 16.  PFP Higher energy H-loss, F-loss, CF2-loss, and C2HF-loss fragment mechanisms.  
All energies are 0K and calculated at a G4 level of theory. 

 

Thermochemistry 

 

Table 4   
Auxiliary and Derived Thermochemical Data for cis-1,2,3,3,3 Pentafluoropropene. 

Formula Name ∆fH°0K ∆fH°298K Uncertainty 

   (kJ mol−1)  

C3HF5 cis-1,2,3,3,3-trifluoropropene –948.3a –955.8a ± 5.3 

C2HF3 trifluoroethylene –493.8b –499.1b ± 4.4 

C2HF3
+ trifluoroethylene cation [9b] 484.4a  ± 4.4 
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(Table 4 Continued) 

 

CF2 difluoromethylene −193.89c −193.42c ± 0.36 
aThis work.  b Harvey et.  al.87  cActive thermochemical Tables (ATcT).86 

 

 

Figure 17.  Thermochemical cycle of cis-1,2,3,3,3-pentafluoropropene (PFP) system and its 
corresponding CF2-loss pathway.  The ionization energy of PFP and the 0 K appearance energy 
of the fragment are experimentally derived and shown in blue while new thermochemical values 
determined in this work are shown in purple and literature values are shown in red.  The 0 K 
heats of formations used in this cycle are shown in Table 4. 

 

The m/z 82 dissociation channel corresponds to the formation of a trifluoroethylene 

cation (C2HF3
+) [9b] and a CF2 neutral from the molecular ion [1b].  Although this dissociation 

involves isomerization, the transition state is submerged, so the appearance energy corresponds 

to the thermochemical limit.  The heat of formation of C2HF3
+ can be derived based on available 
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literature.  The AIE of C2HF3

+ is reported as 10.138 ± 0.007 eV88 and the ∆fH0K(C2HF3) = –493.8 

± 4.4.87  Therefore the ∆fH0K(C2HF3
+) is calculated as 484.4 ± 4.4 kJ/mol.  The heat of formation 

of cis-1,2,3,3,3-trifluoropropene can be calculated since the heat of formations for both 

fragments are known and the appearance energy of the fragment ion is derived experimentally.  

With E0 = 12.84 ± 0.03, ∆fH0K(C2HF3
+) = 484.368 ± 4.4 kJ/mol, and ∆fH0K(CF2) = –195.0 ± 2.9 

kJ/mol86, we determined the ∆fH0K(PFP) = –948.3 ± 5.3 kJ/mol.  As the lowest energy m/z 113 

(fluorine loss) dissociation channel involves a higher energy transition state (a reverse barrier), a 

heat of formation for C3HF4
+ was not determined. 

Conclusions 

We have studied the dissociative photoionization of 3,3,3-trifluoropropene (TFP) and cis-

1,2,3,3,3-pentafluoropropene (PFP) using imaging PEPICO spectroscopy.  The TFP adiabatic 

ionization energy was determined to be 11.17 ± 0.01 eV based on the threshold photoelectron 

spectrum and Franck–Condon simulations.  Threshold photoionization time-of-flight mass 

spectra of TFP revealed four main fragment ions: m/z 95 (H-loss), 77 (F-loss), 46 (CF2-loss), and 

27 (CF3-loss).  Although there is a possibility for a direct hydrogen loss fragment ion, the most 

energetically favorable fragment ions are formed through isomerization of the molecular ion 

involving a fluorine shift.  The lowest energy m/z 95 fragment ions are cis and trans allylic 

isomers of C3H2F3
+, differing by only 0.04 eV.  The next dissociation channel, F loss, can occur 

through homolytic bond breaking, also leading to an allylic fragment ion structure.  The next 

dissociation channel is CF2 loss, which (similarly to H loss) requires a rearrangement, made 

possible by the highly mobile fluorine atoms in the ion.  The highest-energy dissociation channel 

in the studied energy range is CF3 loss, taking place by bond rupture in the original molecular ion 

to form the non-classical vinyl cation.  At high internal energies, numerous dissociation channels 
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become energetically allowed because of low-barrier isomerization processes.  Because of the 

added complexity, the specific pathways contributing to the dissociation processes seen in the 

breakdown diagram cannot be identified experimentally.  Through the CF3-loss dissociation 

channel, the heat of formation of the neutral TFP was determined to be −611.6 ± 8.4 kJ/mol, in 

good agreement with literature values.  The heats of formation of two ions, CH2CHCF2
+ and 

CH2CHF+, were also reported for the first time as 546 ± 10 kJ/mol and 846.6 ± 8.5 kJ/mol.  We 

also confirmed a third heat of formation value, that of CHFCHCF2
+, previously measured by 

photoionization of trans-1,3,3,3-tetrafluoropropene.  The heat of formation of C3H2F3
+ is reported 

as 362.2 ± 8.5 kJ/mol.   

From the TPES, experimental adiabatic ionization energy of cis-1,2,3,3,3-

pentafluoropropene (PFP) was determined as 10.744 ± 0.008 eV.  There are four parallel 

dissociative ionization channels for PFP leading to fragment ions at m/z 113 (F loss), 82 (CF2 

loss), 69 (C2HF2 loss), and 51 (C2F3 loss), with the notable absence of a hydrogen-loss channel.  

Although fluorine loss could also occur directly from the molecular ion, the lowest-energy 

pathway is shown to involve prior isomerization steps with fluorine and hydrogen shifts.  At 

slightly higher energies, two new, closely related, fluorine-loss channels can also contribute.  

These dissociations can happen through a direct fluorine loss to create the cis [7b] fragment ion 

or from an isomerized molecular ion to create the trans [8b] fragment ion.  The next dissociation 

channel observed in the breakdown diagram is CF2 loss, which is necessarily preceded by a 

fluorine shift.  The F-loss and CF2-loss processes were modeled with a statistical rate model to 

extract experimental 0 K appearance energies.  High-energy processes, however, are very 

congested as numerous dissociation channels become energetically allowed and, at the same 

time, two minor channels also open up.  According to theory, the lowest-energy C2HF2-loss and 
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C2F3-loss (yielding CF3

+ and CHF2
+ ions, respectively) pathways both involve fluorine and 

hydrogen rearrangements, but there are two other C2HF2-loss direct dissociation channels 0.4 eV 

higher.  The heat of formation of the m/z 82 trifluoroethylene cation [9b] (CHFCF2) was 

calculated as 484.4 ± 4.4 kJ/mol from literature thermochemical values.  With this, the heat of 

formation of the neutral PFP was determined for the first time as –948.3 ± 5.3 kJ/mol. 

All three fluoropropenes, 3,3,3-trifluoropropene (TFP), trans-1,3,3,3-

tetrafluoropropene,69 and cis-1,2,3,3,3-pentafluoropropene (PFP), show similarities where several 

rearrangement processes occur in the internal energy selected molecular ions, made possible by 

the vagabond nature of the fluorine atoms.  These isomerizations allow for the formation of H-

loss and F-loss allylic structures, which are typically the most stable fragment ion candidates.  In 

the two smaller HFOs ion, the dissociations that do occur follow the same order (with increasing 

internal energy), where H loss is first, followed by F loss, and then CF2 loss.  However, PFP ions 

do not exhibit a hydrogen-loss dissociation, as fluorine loss is lower in energy.  At higher 

energies, TFP also shows a CF3-loss dissociation and PFP also show C2HF2 and C2F3 losses but, 

according to our calculations, several new rearrangement pathways open up, representing new 

ways for fluorine-loss dissociation. 

Acknowledgements 

This work was supported by the National Science Foundation under CHE1665464.  The 

experiments were carried out at the VUV beamline of the Swiss Light Source of the Paul 

Scherrer Institute with support from the Swiss Federal Office for Energy (BFE Contract No.  

SI/501269-01).   

  



  68 
 

REFERENCES 

 

1.   Ray, A.  W.; Weidner, P.; Bodi, A.; Sztaŕay, B.  The Vagabond Fluorine Atom: Dissociative 
Photoionization of trans- 1,3,3,3-Tetrafluoropropene.  ACS Publications 2020. 

2.   Tomassetti, S.; Nicola, G.  D.; Kondou, C.  Triple point measurements for new low- global-
warming-potential refrigerants: hydro-fluoro-olefins, hydro-chloro-fluoro-olefins, and 
trifluoroiodomethane.  Int.  J.  Refrig.  2021. 

3.   Yang, L.; da Rocha, Sandro R.  P.  Understanding Solvation in the Low Global Warming 
Hydrofluoroolefin HFO-1234ze Propellant.  J Phys Chem B 2014, 118, 10675-10687. 

4.   Sztáray, B.; Voronova, K.; Torma, K.  G.; Covert, K.  J.; Bodi, A.; Hemberger, P.; Gerber, 
T.; Osborn, D.  L.  CRF-PEPICO: Double velocity map imaging photoelectron photoion 
coincidence spectroscopy for reaction kinetics studies.  J.  Chem.  Phys.  2017, 147, 013944. 

5.   Johnson, M.; Bodi, A.; Schulz, L.; Gerber, T.  Vacuum ultraviolet beamline at the Swiss 
Light Source for chemical dynamics studies.  Nuclear Instruments & Methods in Physics 
Research Section A-accelerators Spectrometers Detectors and Associated Equipment - 
NUCL INSTRUM METH PHYS RES A 2009, 610, 597-603. 

6.   Brehm, B.; von Puttkamer, E.  Koinzidenzmessung von Photoionen und Photoelektronen 
bei Methan.  Zeitschrift für Naturforschung A 1967, 22, 8-10. 

7.   Weidner, P.; Voronova, K.; Bodi, A.; Sztáray, B.  Dissociative photoionization of 1,3-
dioxolane: We need six channels to fit the elephant.  J.  Mass Spectrom.  2020, 55, e4522. 

8.   Baer, T.; Sztáray, B.; Kercher, J.  P.; Lago, A.  F.; Bödi, A.; Skull, C.; Palathinkal, D.  
Threshold photoelectron photoion coincidence studies of parallel and sequential dissociation 
reactions.  Phys.  Chem.  Chem.  Phys.  2005, 7, 1507-1513. 

9.   Shuman, N.  S.; Ochieng, M.  A.; Sztáray, B.; Baer, T.  TPEPICO Spectroscopy of Vinyl 
Chloride and Vinyl Iodide: Neutral and Ionic Heats of Formation and Bond Energies.  The 
journal of physical chemistry.  A, Molecules, spectroscopy, kinetics, environment, &amp; 
general theory 2008, 112, 5647-5652. 

10.  Wille, K.  Synchrotron radiation sources.  Reports on Progress in Physics 1991, 54, 1005-
1067. 

11.  Winick, H.; Brown, G.; Halbach, K.; Harris, J.  Wiggler and undulator magnets.  Phys Today 
1981, 34, 50-63. 



  69 
 
12.  Ng, C.  Vacuum Ultraviolet Photoionization and Photodissociation of Molecules and 

Clusters; WORLD SCIENTIFIC: 1991; , pp 580. 

13.  Baer, T.  Ion dissociation dynamics and thermochemistry by photoelectron photoion 
coincidence (PEPICO) spectroscopy.  International Journal of Mass Spectrometry; Volume 
200: The state of the field as we move into a new millenium 2000, 200, 443-457. 

14.  Sztáray, B.; Bodi, A.; Baer, T.  Modeling unimolecular reactions in photoelectron photoion 
coincidence experiments .  Journal of Mass Spectrometry 2010, 1233-1245. 

15.  Stockbauer, R.  A threshold photoelectron—photoion coincidence mass spectrometer for 
measuring ion kinetic energy release on fragmentation.  International Journal of Mass 
Spectrometry and Ion Physics 1977, 25, 89-101. 

16.  Leyh, B.  Ion Dissociation Kinetics in Mass Spectrometry☆.  In Encyclopedia of 
Spectroscopy and Spectrometry (Third Edition); Lindon, J.  C., Tranter, G.  E.  and 
Koppenaal, D.  W., Eds.; Academic Press: Oxford, 2017; pp 300-308. 

17.  Sztáray, B.; Baer, T.  Suppression of hot electrons in threshold photoelectron photoion 
coincidence spectroscopy using velocity focusing optics.  Rev.  Sci.  Instrum.  2003, 74, 
3763-3768. 

18.  Baer, T.; Li, Y.  Threshold photoelectron spectroscopy with velocity focusing: An ideal 
match for coincidence studies.  International Journal of Mass Spectrometry - INT J MASS 
SPECTROM 2002, 219, 381-389. 

19.  Bodi, A.; Daniel Brannock, M.; Sztáray, B.; Baer, T.  Tunneling in H loss from energy 
selected ethanol ions.  Phys.  Chem.  Chem.  Phys.  2012, 14, 16047-16054. 

20.  Lang, M.; Holzmeier, F.; Hemberger, P.; Fischer, I.  Threshold photoelectron spectra of 
combustion relevant isomers.  The journal of physical chemistry.  A, Molecules, 
spectroscopy, kinetics, environment, & general theory 2015, 119, 3995. 

21.  Baer, T.; Tuckett, R.  P.  Advances in threshold photoelectron spectroscopy (TPES) and 
threshold photoelectron photoion coincidence (TPEPICO).  Phys.  Chem.  Chem.  Phys.  
2017, 19, 9698-9723. 

22.  Bodi, A.; Johnson, M.; Gerber, T.; Gengeliczki, Z.; Sztáray, B.; Baer, T.  Imaging 
photoelectron photoion coincidence spectroscopy with velocity focusing electron optics.  
Rev.  Sci.  Instrum.  2009, 80, 034101. 

23.  Eppink, André T.  J.  B.; Parker, D.  H.  Velocity map imaging of ions and electrons using 
electrostatic lenses: Application in photoelectron and photofragment ion imaging of 
molecular oxygen.  Rev.  Sci.  Instrum.  1997, 68, 3477-3484. 



  70 
 
24.  Chandler, D.  W.; Houston, P.  L.  Two-dimensional imaging of state-selected 

photodissociation products detected by multiphoton ionization.  J.  Chem.  Phys.  1987, 87, 
1445-1447. 

25.  Chandezon, F.; Huber, B.; Ristori, C.  A new-regime Wiley–McLaren time-of-flight mass 
spectrometer.  Rev.  Sci.  Instrum.  1994, 65, 3344-3353. 

26.  Wiley, W.  C.; McLaren, I.  H.  Time-of-Flight Mass Spectrometer with Improved 
Resolution.  Rev.  Sci.  Instrum.  1955, 26, 1150-1157. 

27.  Davies, J.  A.; LeClaire, J.  E.; Continetti, R.  E.; Hayden, C.  C.  Femtosecond time-
resolved photoelectron–photoion coincidence imaging studies of dissociation dynamics.  J.  
Chem.  Phys.  1999, 111, 1-4. 

28.  Osborn, D.  L.; Hayden, C.  C.; Hemberger, P.; Bodi, A.; Voronova, K.; Sztáray, B.  
Breaking through the false coincidence barrier in electron–ion coincidence experiments.  J.  
Chem.  Phys.  2016, 145, 164202. 

29.  Baer, T.; Bodi, A.; Sztáray, B.  Photoelectron–Photoion Coincidence Methods in Mass 
Spectrometry, (PEPICO)☆.  In Encyclopedia of Spectroscopy and Spectrometry (Third 
Edition); Lindon, J.  C., Tranter, G.  E.  and Koppenaal, D.  W., Eds.; Academic Press: 
Oxford, 2017; pp 635-649. 

30.  Bodi, A.; Sztáray, B.; Baer, T.  Dissociative photoionization of mono-, di- and 
trimethylamine studied by a combined threshold photoelectron photoion coincidence 
spectroscopy and computational approach.  Phys.  Chem.  Chem.  Phys.  2006, 8, 613-623. 

31.  Bodi, A.; Sztáray, B.; Baer, T.; Johnson, M.; Gerber, T.  Data acquisition schemes for 
continuous two-particle time-of-flight coincidence experiments.  Review of Scientific 
Instruments 2007. 

32.  Ferrier, B.; Boulanger, A.; Holland, D.  M.  P.; Shaw, D.  A.; Mayer, P.  M.  Nitro–Nitrite 
Isomerization and Transition State Switching in the Dissociation of Ionized Nitromethane: 
A Threshold Photoelectron–Photoion Coincidence Spectroscopy Study.  Eur J Mass 
Spectrom (Chichester) 2009, 15, 157-166. 

33.  Ackermann, T.  Book Review: Thermochemical Kinetics.  Methods for the Estimation of 
Thermochemical Data and Rate Parameters.  By S.  W.  Benson.  Angew.  Chem.  Int.  Ed 
Engl.  1977, 16, 883. 

34.  Lifshitz, C.  Time-resolved appearance energies, breakdown graphs, and mass spectra: The 
elusive “kinetic shift”.  Mass Spectrom.  Rev.  1982, 1, 309-348. 

35.  Chupka, W.  A.  Effect of Unimolecular Decay Kinetics on the Interpretation of Appearance 
Potentials.  J.  Chem.  Phys.  1959, 30, 191-211. 



  71 
 
36.  Stevens, W.; Sztáray, B.; Shuman, N.; Baer, T.; Troe, J.  Specific rate constants k(E) of the 

dissociation of the halobenzene ions: analysis by statistical unimolecular rate theories.  J 
Phys Chem A 2009, 113, 573-582. 

37.  Torma, K.  G.; Voronova, K.; Sztáray, B.; Bodi, A.  Dissociative Photoionization of the 
C7H8 Isomers Cycloheptatriene and Toluene: Looking at Two Sides of the Same Coin 
Simultaneously.  J Phys Chem A 2019, 123, 3454-3463. 

38.  Lifshitz, C.  Kinetic Shifts.  Eur J Mass Spectrom (Chichester) 2002, 8, 85-98. 

39.  Stevens, W.; Sztáray, B.; Shuman, N.; Baer, T.; Troe, J.  Specific Rate Constants k(E) of the 
Dissociation of the Halobenzene Ions: Analysis by Statistical Unimolecular Rate Theories.  
J Phys Chem A 2009, 113, 573-582. 

40.  Hinde, R.  J.  Reaction Kinetics (Pilling, Michael J.; Seakins, Paul W.).  J.  Chem.  Educ.  
1997, 74, 625. 

41.  Klippenstein, S.  J.  Variational optimizations in the Rice–Ramsperger–Kassel–Marcus 
theory calculations for unimolecular dissociations with no reverse barrier.  J.  Chem.  Phys.  
1992, 96, 367-371. 

42.  Baer, T.; Mayer, P.  M.  Statistical Rice-Ramsperger-Kassel-Marcus quasiequilibrium theory 
calculations in mass spectrometry.  J.  Am.  Soc.  Mass Spectrom.  1997, 8, 103-115. 

43.  Marcus, R.  A.; Rice, O.  K.  The Kinetics of the Recombination of Methyl Radicals and 
Iodine Atoms.  J.  Phys.  Chem.  1951, 55, 894-908. 

44.  Rice, O.  K.; Ramsperger, H.  C.  THEORIES OF UNIMOLECULAR GAS REACTIONS 
AT LOW PRESSURES.  II.  J.  Am.  Chem.  Soc.  1928, 50, 617-620. 

45.  Rice, O.  K.; Ramsperger, H.  C.  THEORIES OF UNIMOLECULAR GAS REACTIONS 
AT LOW PRESSURES.  J.  Am.  Chem.  Soc.  1927, 49, 1617-1629. 

46.  Kassel, L.  S.  Studies in Homogeneous Gas Reactions.  I.  J.  Phys.  Chem.  1928, 32, 225-
242. 

47.  Hinshelwood, C.  N.; Sidgwick, N.  V.  On the theory of unimolecular reactions.  
Proceedings of the Royal Society of London.Series A, Containing Papers of a Mathematical 
and Physical Character 1926, 113, 230-233. 

48.  Rosenstock, H.  M.; Wallenstein, M.  B.; Wahrhaftig, A.  L.; Eyring, H.  Absolute Rate 
Theory for Isolated Systems and the Mass Spectra of Polyatomic Molecules.  Proc.  Natl.  
Acad.  Sci.  U.  S.  A.  1952, 38, 667-678. 



  72 
 
49.  Baer, T.; Hase, W.  L.  Unimolecular Reaction Dynamics: Theory and Experiments; Oxford 

University Press: New York, 1996; , pp 446. 

50.  Sztáray, B.; Baer, T.  Consecutive and Parallel Dissociation of Energy-Selected 
Co(CO)3NO+ Ions.  J Phys Chem A 2002, 106, 8046-8053. 

51.  Frisch, M.  J.; Trucks, G.  W.; Schlegel, H.  B.; Scuseria, G.  E.; Robb, M.  A.; Cheeseman, 
J.  R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.  A.  Gaussian 09.  2009. 

52.  Vignale, G.; Rasolt, M.  Density-functional theory in strong magnetic fields.  Phys.  Rev.  
Lett.  1987, 59, 2360-2363. 

53.  Levy, M.  Universal variational functionals of electron densities, first-order density matrices, 
and natural spin-orbitals and solution of the v-representability problem.  Proc.  Natl.  Acad.  
Sci.  USA 1979, 76, 6062. 

54.  Becke, A.  D.  Density-functional thermochemistry.  III.  The role of exact exchange.  J.  
Chem.  Phys.  1993, 98, 5648-5652. 

55.  Lee, C.; Yang, W.; Parr, R.  G.  Development of the Colle-Salvetti correlation-energy 
formula into a functional of the electron density.  Phys.  Rev.  B 1988, 37, 785-789. 

56.  Becke, A.  D.  Density-functional exchange-energy approximation with correct asymptotic 
behavior.  Phys.  Rev.  A 1988, 38, 3098-3100. 

57.  Becke, A.  D.  A new mixing of Hartree–Fock and local density-functional theories.  J.  
Chem.  Phys.  1993, 98, 1372-1377. 

58.  Lee, C.; Yang, W.; Parr, R.  G.  Development of the Colle-Salvetti correlation-energy 
formula into a functional of the electron density.  Phys.  Rev.  B.  Condens Matter 1988, 37, 
785-789. 

59.  Peng, C.; Ayala, P.  Y.; Schlegel, H.  B.; Frisch, M.  J.  Using redundant internal coordinates 
to optimize equilibrium geometries and transition states.  J.  Comput.  Chem.  1996, 17, 49-
56. 

60.  Peng, C.; Bernhard Schlegel, H.  Combining Synchronous Transit and Quasi-Newton 
Methods to Find Transition States.  Isr.  J.  Chem.  1993, 33, 449-454. 

61.  Fukui, K.  The path of chemical reactions - the IRC approach.  Acc.  Chem.  Res.  1981, 14, 
363-368. 

62.  Curtiss, L.  A.; Redfern, P.  C.; Raghavachari, K.  Gaussian-4 theory.  J.  Chem.  Phys.  
2007, 126, 084108. 



  73 
 
63.  Kirsch, P.   Halofluorocarbons, Hydrofluorocarbons, and Related Compounds.  In Modern 

Fluoroorganic ChemistryJohn Wiley & Sons, Inc.: 2013; pp 245-298. 

64.  Papadimitriou, V.  C.; Lazarou, Y.  G.; Talukdar, R.  K.; Burkholder, J.  B.  Atmospheric 
Chemistry of CF3CF═CH2 and (Z)-CF3CF═CHF: Cl and NO3 Rate Coefficients, Cl 
Reaction Product Yields, and Thermochemical Calculations.  J Phys Chem A 2011, 115, 
167-181. 

65.  Tovar, C.  M.; Blanco, M.  '.  B.; Barnes, I.  D.; Wiesen, P.; Teruel, M.  A.  Gas-phase 
reactivity study of a series of hydrofluoroolefins (HFOs) toward OH radicals and Cl atoms 
at atmospheric pressure and 298 K.  Atmos.  Environ.  2014, 88, 107-114. 

66.  Takhistov, V.  V.; Ponomarev, D.  A.  Isodesmic reactions and thermochemistry of ions.  
Org.  Mass Spectrom.  1994, 29, 395-412. 

67.  Steele, W.  C.; Stone, F.  C.  A.  An Electron Impact Study of 1,1,1-Trifluoroethane, 1,1,1-
Trifluoropropane and 3,3,3-Trifluoropropene.  J.  Am.  Chem.  Soc.  1962, 84, 3450-3454. 

68.  Bralsford, R.; Harris, P.  V.; Price, W.  C.  The effect of fluorine on the electronic spectra 
and ionization potentials of molecules.  Proceedings of the Royal Society of London.Series 
A.Mathematical and Physical Sciences 1960, 258, 459-469. 

69.  Ray, A.  W.; Weidner, P.; Bodi, A.; Sztáray, B.  The Vagabond Fluorine Atom: Dissociative 
Photoionization of trans-1,3,3,3-Tetrafluoropropene.  J Phys Chem A 2020, 124, 3738-3746. 

70.  Cox, J.  D.; Pilcher, G.  Thermochemistry of Organic and Organometallic Compounds.  
Academic Press, London and New York 1970.  643 Seiten.  Preis: 170s.  Berichte der 
Bunsengesellschaft für physikalische Chemie 1970, 74, 727. 

71.  Paulechka, E.; Kazakov, A.  Critical Evaluation of the Enthalpies of Formation for 
Fluorinated Compounds Using Experimental Data and High-Level Ab Initio Calculations.  
J.  Chem.  Eng.  Data 2019, 64, 4863-4874. 

72.  Lifshitz, C.; Long, F.  A.  Appearance Potentials and Mass Spectra of C3F6, C3F5Cl, and c-
C3F61.  J.  Phys.  Chem.  1965, 69, 3741-3746. 

73.  Berman, D.  W.; Bomse, D.  S.; Beauchamp, J.  L.  Photoionization threshold measurements 
for CF2 loss from perfluoropropylene, perfluorocyclopropane, and trifluoromethylbenzene.  
The heat of formation of CF2 and consideration of the potential-energy surface for 
interconversion of isomeric C3F6 neutrals and ions.  International Journal of Mass 
Spectrometry and Ion Physics 1981, 39, 263-271. 

74.  Jarvis, G.  K.; Boyle, K.  J.; Mayhew, C.  A.; Tuckett, R.  P.  Threshold 
Photoelectron−Photoion Coincidence Spectroscopy of Perfluorocarbons.  2.  Unsaturated 



  74 
 

and Cyclic Perfluorocarbons C2F4, C3F6, 2-C4F8, and c-C4F8.  J Phys Chem A 1998, 102, 
3230-3237. 

75.  Bodi, A.; Johnson, M.; Gerber, T.; Gengeliczki, Z.; Sztáray, B.; Baer, T.  T.  Imaging 
Photoelectron photoion coincidence spectroscopy with velocity focusing electron optics.  
Review of Scientific Instruments 2009. 

76.  Torma, K.  G.; Voronova, K.; Sztáray, B.; Bodi, A.  Dissociative Photoionization of the 
C7H8 Isomers Cycloheptatriene and Toluene: Looking at Two Sides of the Same Coin 
Simultaneously.  J Phys Chem A 2019, 123, 3454-3463. 

77.  Voronova, K.; Mozaffari Easter, C.  M.; Covert, K.  J.; Bodi, A.; Hemberger, P.; Sztáray, B.  
Dissociative Photoionization of Diethyl Ether.  J Phys Chem A 2015, 119, 10654-10663. 

78.  Peng, C.; Bernhard Schlegel, H.  Combining Synchronous Transit and Quasi-Newton 
Methods to Find Transition States.  Isr.  J.  Chem.  1993, 33, 449-454. 

79.  Chunyang, P.; Ayala, P.  Y.; Schlegel, H.  B.  Using Redundant Internal Coordinates to 
Optimize Equilibrium Geometries and Transition States.  Journal of Computational 
Chemistry 1996, 17, No.  1, 49-56. 

80.  Curtiss, L.  A.; Redfern, P.  C.; Raghavachari, K.  Gaussian-4 theory.  J.  Chem.  Phys.  
2007, 126, 084108. 

81.  Baer, T.; Hase, W.  L.  Unimolecular reaction dynamics: theory and experiments.  1996, 
438. 

82.  McKay, J.  Algorithm 262: Number of restricted partitions of N.  Communications of the 
ACM 1965, 8, 493. 

83.  Pople, J.  A.  The structure of the vinyl cation.  Chemical physics letters 1987, 137, 10-12. 

84.  Wu, X.; Zhou, X.; Hemberger, P.; Bodi, A.  The ionization energy of the vinyl radical: a 
Mexican standoff with a happy ending.  Phys.  Chem.  Chem.  Phys.  2019, 21, 22238-
22247. 

85.  Kolesov, V.  P.; Marynov, A.  M.; Skuratov, S.  M.  Standard Enthalpy.  of Formation of 
1,1,1-Trifluoropropen.  1967, 482-484. 

86.  Ruscic, B.; Bross, D.  H.  Active Thermochemical Tables (ATcT) Version 1.122r.  
https://atct.anl.gov/ (accessed November 19, 2021). 

87.  Harvey, J.; Bodi, A.; Tuckett, R.  P.; Sztáray, B.  Dissociation dynamics of fluorinated 
ethene cations: from time bombs on a molecular level to double-regime dissociators.  Phys.  
Chem.  Chem.  Phys.  2012, 14, 3935-3948. 



  75 
 
88.  Harvey, J.; Hemberger, P.; Bodi, A.; Tuckett, R.  P.  Vibrational and electronic excitations in 

fluorinated ethene cations from the ground up.  J.  Chem.  Phys.  2013, 138, 124301. 


	The Vagabond Flourine Atom Revisited: Dissociative Photoionization of Tri- and Pentafluoropropene
	Recommended Citation

	Microsoft Word - thesis_JD_v6_proquest.docx

