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BAYESIAN-DERIVED VANCOMYCIN AUC24H THRESHOLD FOR NEPHROTOXICITY 
IN SPECIAL POPULATIONS 

 

Abstract 
 
 

By Dan Ho 
 

University of the Pacific 
2021 

 

A Bayesian-derived 24-hour area under the concentration-time curve over minimum 

inhibitory concentration from broth microdilution (AUC24h/MICBMD) ratio of 400 to 600 is 

recommended as the new monitoring parameter for vancomycin to optimize efficacy and 

minimize nephrotoxicity.  The AUC24h threshold of 600 mg*h/L for nephrotoxicity was 

extrapolated from studies that assessed the general population.  It is unclear if this upper 

threshold is consistent or varies when used in special populations such as critically ill patients, 

obese patients, patients with preexisting renal disease, and patients on concomitant nephrotoxins. 

The purpose of this study is to investigate the generalizability of the proposed 

vancomycin AUC24h threshold of 600 mg*h/L for nephrotoxicity.  The objective is to determine 

the optimal Bayesian-derived AUC24h threshold to minimize vancomycin-associated 

nephrotoxicity in special populations such as critically ill patients, obese patients, patients with 

preexisting renal disease, and patients on concomitant loop diuretics, ACEIs, ARBs, NSAIDs, 

aminoglycosides, piperacillin-tazobactam, and IV contrast dyes. 

The study design is a single-center, retrospective cohort study.  For each patient, 

nephrotoxicity was assessed and the Bayesian-derived AUC24h was estimated.  Using 

classification and regression tree (CART) analysis, the AUC24h threshold for nephrotoxicity was 

determined for each special population that had at least ten nephrotoxic patients.  The predictive 
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performances (e.g., positive predictive value [PPV], negative predictive value [NPV], sensitivity, 

specificity, and area under the receiver operating characteristic [ROC] curve) of each CART-

derived threshold were then compared to the guideline threshold’s predictive performances.  

PPV and sensitivity were given greater weight when comparing the thresholds.  

Of the 336 patients, 29 (8.6%) nephrotoxic patients were observed after  initiating 

vancomycin.  Among the special populations of interest, critically ill patients, obese patients, 

patients with preexisting renal disease, and patients on concomitant loop diuretics included at 

least ten nephrotoxic patients and thus were further analyzed to determine the CART-derived 

AUC24h thresholds.  The CART-derived AUC24h thresholds were 544 mg*h/L for critically ill 

patients (n=116), 586 mg*h/L for obese patients (n=111), 539 mg*h/L for patients with 

preexisting renal disease (n=54), and 543 mg*h/L for patients on concomitant loop diuretics 

(n=126).  Compared to the guideline threshold of 600 mg*h/L, the CART-derived thresholds for 

critically ill patients, patients with preexisting renal disease, and patients on concomitant loop 

diuretics had comparable PPVs but significantly higher sensitivities.  On the other hand, the 

CART-derived threshold for obese patients did not have a significantly different PPV, NPV, 

sensitivity, specificity, and area under the ROC curve.  

For critically ill patients, patients with preexisting renal disease, and patients on 

concomitant loop diuretics, a lower vancomycin AUC24h threshold for nephrotoxicity such as 

544 mg*h/L, 539 mg*h/L, and 543 mg*h/L, respectively, may be considered to minimize the 

risk of nephrotoxicity.  On the other hand, this study supports the continued use of the guideline 

threshold of 600 mg*h/L to minimize the risk of nephrotoxicity in obese patients.  
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  CHAPTER 1: INTRODUCTION 

 
 

Background 

 Vancomycin is a bactericidal glycopeptide antibiotic that remains a mainstay of treatment 

for methicillin-resistant Staphylococcus aureus (MRSA) and other severe gram-positive 

infections.1,2  When given intravenously, vancomycin demonstrates characteristics of a dose-

response and dose-toxicity relationship with a narrow therapeutic index which warrants careful 

dosing and monitoring of the antibiotic.  

 Previously published vancomycin therapeutic monitoring consensus guidelines 

recommended trough concentrations as a surrogate marker for the 24-hour area under the 

concentration-time curve over minimum inhibitory concentration (AUC24h/MIC) ratio due to a 

history of difficulty in obtaining multiple vancomycin concentrations and subsequently 

calculating the area under the concentration-time curve over 24 hours (AUC24h).1  However, an 

enhanced method of using Bayesian software programs has been shown to generate accurate and 

reliable estimates of the AUC24h.  Additionally, studies have shown a high degree of 

interindividual variability between a trough concentration and its respective AUC24h.9  A 

simulation of 5,000 vancomycin concentration versus time profiles derived from administering  

1,000 milligrams every eight hours examined the relationship between trough concentrations and 

AUC24h values.3  In the study, trough concentrations correlated with less than 50% of the AUC24h 

values (R2=0.409).  Trough concentrations are suspected to be poor surrogate markers for 

AUC24h values as a trough concentration is a single exposure point after a dose is administered 

while the AUC24h represents the cumulative drug exposure over 24 hours.  Furthermore, no link 
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between treatment success and vancomycin trough concentrations was demonstrated throughout 

the entire trough continuum.3  

On the other hand, with high vancomycin concentration targets, specifically 15 to 20 

mg/L, there is a considerable concern for unnecessarily high AUC24h values that can put patients 

at an increased risk of vancomycin-associated nephrotoxicity.4  Compared to trough-based 

monitoring, studies have shown that AUC24h-based monitoring significantly decreased the 

incidence of vancomycin-associated nephrotoxicity.5,6  In a retrospective, quasi-experimental 

study, Finch et al. assessed 546 patients dosed using trough concentrations versus 734 patients 

dosed using AUC24h.6  They determined that AUC24h-based monitoring was associated with a 

significantly lower incidence of vancomycin-associated nephrotoxicity (OR, 0.52; 95% CI, 0.34-

0.80; p=0.003).  Cox proportional hazards regression also revealed similar results (hazard ratio 

[HR], 0.53; 95% CI, 0.35-0.78; p=0.002).  Moreover, Neely et al. conducted a prospective 

observational study consisting of 252 patients and compared trough-based monitoring in the first 

year versus AUC24h-based monitoring  in the second and third year.7  Nephrotoxicity occurred in 

8% of the patients in the first year and occurred in 0% and 2% of the patients in the second and 

third year, respectively.  Compared to AUC24h-based monitoring, trough-based monitoring had 

significantly higher rates of trough concentrations greater than 15 mg/L (p<0.001) and 

vancomycin-associated nephrotoxicity (p=0.01).  

Over the past decade, trough-based monitoring for vancomycin has been well integrated 

into practice despite limited evidence on the clinical benefits of maintaining trough 

concentrations between 15 to 20 mg/L for serious MRSA infections.  However, in March 2020, 

the American Society of Health-System Pharmacists (ASHP), Infectious Diseases Society of 

America (IDSA), the Pediatric Infectious Diseases Society (PIDS), and the Society of Infectious 
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Diseases Pharmacists (SIDP) published an updated vancomycin therapeutic monitoring 

consensus guideline that recommends AUC24h-based monitoring over trough-based monitoring 

for patients with suspected or definitive serious MRSA infections.4  Due to the guideline’s 

updated recommendation, more clinicians and hospital institutions are in the midst of 

transitioning or expected to transition to AUC24h-based monitoring for vancomycin. 

Introduction to Research 

The 2020 ASHP/IDSA/PIDS/SIDP updated vancomycin monitoring guideline no longer 

recommends trough-based monitoring with a target of 15 to 20 mg/L for patients with serious 

MRSA infections.4  Additionally, it recommends a Bayesian-derived AUC24h/MIC from broth 

microdilution (AUC24h/MICBMD) ratio of 400 to 600, as the new optimal pharmacokinetics (PK) 

and pharmacodynamics (PD) target for vancomycin.  Rybak et al. concluded that AUC24h-based 

monitoring using an AUC24h/MICBMD ratio of 400 to 600 optimizes clinical efficacy and 

minimizes nephrotoxicity risk in patients with serious MRSA infections such as bacteremia, 

pneumonia, and osteomyelitis. 

The vancomycin AUC24h threshold of 600 mg*h/L for nephrotoxicity was primarily 

extrapolated from studies that assessed the general population.4,8-12  They demonstrated that 

AUC24h values greater than thresholds ranging from 550 to 800 mg*h/L were significantly 

associated with an increased likelihood of nephrotoxicity.1-6  It is unclear if this upper threshold 

is consistent or varies when used in special populations such as critically ill patients, obese 

patients, patients with preexisting renal disease, and patients on concomitant nephrotoxins.4  ICU 

patients and obese patients were shown to be associated with a significantly higher risk of 

vancomycin-associated nephrotoxicity.9,13-16  Preexisting renal disease and concomitant 

nephrotoxins were also shown to play a synergistic role with vancomycin in increasing the risk 
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of vancomycin-associated nephrotoxicity.17-20  However, literature assessing the vancomycin 

AUC24h threshold for nephrotoxicity in the aforementioned special populations is limited and 

warrants further investigation. 

Definition of Terms 

 Definitions of the terms commonly used in this study are defined in Table 1.  
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Table 1 
Key Terms and Definitions 
Term Definition 

AUC24h 
The area under the concentration-time curve over 24 hours 
which represents the cumulative drug exposure over 24 hours. 

MIC 
The lowest concentration of an antibiotic that completely 
inhibits the growth of a microorganism in vitro.   

AUC24h/MIC 
The 24-hour area under the concentration-time curve over MIC 
ratio.  

Peak Concentration  
The highest serum concentration reached by a drug following 
an administered dose.  

Trough Concentration 
The lowest serum concentration reached by a drug before the 
next dose is administered.  

Steady State 
The state when the rate of drug intake equals its rate of 
elimination. 

Bayesian PK 
The prediction of PK parameters and dosing regimens by 
integrating information gathered from population PK and the 
patient’s measured drug levels. 

CART Analysis 
The use of classification to create a predictive model that 
predicts the value of an outcome or dependent variable using 
known values of explanatory variables.  

CART-Derived Threshold 
Used in this study to refer to the vancomycin AUC24h threshold 
for nephrotoxicity that was derived from this study’s CART 
analysis. 

Guideline Threshold 

Used in this study to refer to the vancomycin AUC24h threshold 
of 600 mg*h/L for nephrotoxicity recommended by the 2020 
ASHP/IDSA/PIDS/SIDP updated vancomycin monitoring 
guideline. 

PPV 
The probability of patients with a positive screening test truly 
having the condition. 

NPV 
The probability of patients with a negative screening test truly 
not having the condition.  

Sensitivity 
The proportion of patients with a condition who are correctly 
identified by a screening test as truly having that condition. 

Specificity 
The proportion of patients without a condition who are 
correctly identified by a screening test as truly not having that 
condition. 

Area under the ROC Curve 
A combined measure of sensitivity and specificity which 
numerically provides the overall predictive performance of a 
screening test or diagnostic test. 

Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours; MIC, minimum 
inhibitory concentration; AUC24h/MIC, 24-hour area under the concentration-time curve over the 
minimum inhibitory concentration ratio; PK, pharmacokinetics; CART, classification and 
regression tree; PPV, positive predictive value; NPV, negative predictive value; ROC, receiver 
operating characteristic.  
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Purpose and Objectives 

The purpose of this study is to investigate the generalizability of the proposed 

vancomycin AUC24h threshold of 600 mg*h/L for nephrotoxicity.  The primary objective is to 

determine the optimal Bayesian-derived AUC24h threshold to minimize vancomycin-associated 

nephrotoxicity in special populations such as intensive care unit (ICU) or critically ill patients 

and obese patients.  In addition, this study investigated the optimal Bayesian-derived AUC24h 

threshold for nephrotoxicity in patients with preexisting renal disease and patients on 

concomitant nephrotoxins other than vancomycin. 

Research Questions 

1. For each special population, what is the CART-derived AUC24h threshold for vancomycin-
associated nephrotoxicity?  
 

a. ICU or Critically Ill Patients 

b. Obese Patients 

c. Patients with Preexisting Renal Disease 

d. Patients on Concomitant Nephrotoxins 

i. Loop diuretics 

ii. Angiotensin-Converting Enzyme Inhibitors (ACEIs) or Angiotensin II Receptor 
Blockers (ARBs)  
 

iii. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) 

iv. Aminoglycosides 

v. Piperacillin-Tazobactam  

vi. Intravenous (IV) Contrast Dyes 

2. For each special population, how do the predictive performances (i.e., positive predictive 
value [PPV], negative predictive value [NPV], sensitivity, specificity, and area under the 
ROC curve) of the CART-derived AUC24h threshold and guideline threshold compare to one 
another? 
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a. ICU or Critically Ill Patients 

b. Obese Patients 

c. Patients with Preexisting Renal Disease 

d. Patients on Concomitant Nephrotoxins 

i. Loop diuretics 

ii. ACEIs or ARBs 

iii. NSAIDs 

iv. Aminoglycosides 

v. Piperacillin-Tazobactam  

vi. IV Contrast Dyes 
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CHAPTER 2: REVIEW OF THE LITERATURE 

 

Methods to Estimate Vancomycin AUC24h 

 In a retrospective observational study, vancomycin’s efficacy and safety were shown to 

be more closely related to AUC24h and AUC24h/MIC ratio versus trough concentrations.21  Given 

vancomycin’s narrow range to optimize efficacy and minimize nephrotoxicity, an accurate 

method of calculating the AUC24h is needed.4  Until recently, the traditional method of using 

multiple PK samples and the linear-trapezoidal formula was used to calculate AUC24h.  However, 

the practical difficulties of this method for vancomycin monitoring are why trough 

concentrations were originally used as surrogate markers for AUC24h.4  Pai et al. proposed two 

simplified approaches that were shown to have a high precision and low bias despite only using 

one to two vancomycin concentrations.3  

 The first approach relies on Bayesian software programs, population modeling, and one 

or more vancomycin concentrations to estimate the AUC24h.3  By using a Bayesian approach, 

probabilities defined as the Bayesian priori and Bayesian posteriori are predicted.22  The 

Bayesian priori uses a population PK model and identifies demographic, pathophysiological, 

environmental, and drug-related factors that can impact vancomycin’s disposition.   

Vancomycin’s PK parameters and AUC24h are estimated for each patient by predicting how 

vancomycin will behave based on prior knowledge about the parameters of interest from 

previous patient population data.  Contrastingly, the Bayesian posteriori involves using patient-

specific information such as trough concentrations and peak concentrations to revise or update 

the estimations of the PK parameters of interest and AUC24h.22  The Bayesian method is shown 

to be as accurate as the traditional first-order PK method of using the linear-log trapezoidal 
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rule.23  Using a dataset derived from 19 ICU patients, Turner et al. compared the AUC values 

estimated by multiple Bayesian dose-optimizing software programs to the AUC values 

calculated using the linear-log trapezoidal rule (AUCREF).  The study obtained vancomycin 

serum levels during the vancomycin infusion, at the end of the infusion, at 60, 120 and 300 

minutes after the infusion, and immediately before the next dose of vancomycin.  In the study, 

accuracy was defined as the median ratio of the estimated AUC to AUCREF and bias was defined 

as the median of the absolute value of the percentage difference between the estimated AUC 

from AUCREF [(|AUC – AUCREF|/AUCREF) x 100].  With one to two vancomycin concentrations, 

the Bayesian method produced average accuracy ratios of 0.80 or higher and a bias of less than 

20% which are expected to be adequate when targeting an AUC24h of 400 to 600 mg*h/L.23  

 The second approach proposed by Pai et al. uses first-order PK equations and two steady 

state vancomycin concentrations that are obtained during the same dosing interval.3  With this 

method, a trough concentration and peak concentration are obtained to create a simple mono-

exponential curve.  The snapshot of the patient’s vancomycin dosing regimen is then used, along 

with first-order PK equations, to calculate the AUC24h.  With a dataset of 47 intensively sampled 

adults who received vancomycin, Pai et al. used a Bayesian-derived AUC24h from all 

vancomycin samples inputted as a reference to assess the accuracy of the second approach which 

only used two vancomycin samples.  Their results showed that the simplified equation-based 

approach tends to underpredict or overpredict the AUC24h by 2% or less which they deemed as 

clinically insignificant.9  

Despite having a similar accuracy as the Bayesian method, the second approach has a 

major downfall of only being able to provide a static estimation of the AUC24h during the 

specific time period when the concentration levels were collected.23  Therefore, the second 
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approach must be used at steady state and does not account for continuing acute physiologic 

changes such as renal impairment that can occur during or after the collecting period.  Slight lab 

errors during the collecting period of the two samples can also make a considerable impact on 

the estimation of the PK values.  For example, a vancomycin concentration that is collected too 

early may still be in the alpha phase and lead to erroneous estimates of the rate of elimination for 

the simple mono-exponential curve.  Contrastingly, the Bayesian method can use vancomycin 

concentrations obtained at any time.  It can estimate the AUC24h at steady state despite the 

sample being drawn before steady state.  This is especially advantageous for patients who are 

limited on being able to achieve steady state such as critically ill patients.  Another downfall to 

using first-order PK equations is that it creates a simple mono-exponential curve rather than 

capturing vancomycin’s two-compartment distribution and elimination.23  On the other hand, the 

Bayesian method allows for application of multiple PK models including a two-compartment 

model.  It can also be modified to be an adaptive program that can account for different dosing 

patterns such as when loading doses are given or when covariates such as creatinine clearance 

are unstable.3 

Therefore, this study followed the first approach proposed by Pai et al. to estimate the 

AUC24h values.3  The Bayesian software program used in this study was PrecisePK (Version 

20.02.00, Healthware Inc., San Diego, CA) and one or more trough concentrations were used to 

calculate the Bayesian posteriori. 

AUC24h/MIC Threshold for Vancomycin’s Efficacy 

The broth microdilution (BMD) method and Etest are the two most common methods to 

estimate the minimum inhibitory concentration (MIC) of staphylococci.  The Etest generally 

predicts the MIC to be 1.5- to 2-fold higher than the MIC calculated using the BMD method after 
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log conversion.24  An AUC24h/MICBMD ratio of 400 to 600 approximately corresponds to an 

AUC24h/MICEtest ratio of 200 to 400.  For vancomycin dosing in nonserious infections, the 

variability between the methods to estimate the MIC can be insignificant.  However, the 

standardization and confirmation of the MIC method is imperative for patients with serious 

MRSA infections who require prompt achievement of the target AUC24h/MIC ratio.  Therefore, 

the 2020 ASHP/IDSA/PIDS/SIDP updated vancomycin monitoring guideline recommends using 

the BMD method to estimate the MIC as most AUC24h/MIC ratio data were generated using 

MICBMD.4  Currently, an AUC24h/MICBMD ratio greater than or equal to 400 is recommended as 

the optimal PK target for vancomycin’s efficacy for serious MRSA infections. 

The AUC24h/MICBMD ratio of greater than or equal to 400 is supported by in vitro and in 

vivo research on the PK and PD of vancomycin.4,25  Animal model studies demonstrated a 1- to 

2-log reduction in bacterial inoculum when the vancomycin AUC24h/MICBMD ratio is greater than 

400.4  Additionally, in vitro data on two strains of methicillin-susceptible Staphylococcus aureus 

(MSSA) and MRSA showed that an AUC24h/MICBMD ratio less than 400 increases vancomycin 

resistance and the development of vancomycin-intermediate Staphylococcus aureus strains.  The 

vancomycin MIC of both strains increased from 1 mg/L to 4 mg/L within 144 hours of 

subtherapeutic vancomycin exposure.25 

Initially, studies on the relationship between AUC/MIC ratio and the clinical efficacy of 

vancomycin were small-scale retrospective studies that used a formula-based approach to 

estimate the AUC values.2,4,12,26-28  Moise et al. retrospectively evaluated patients with hospital-

acquired pneumonia due to MSSA or MRSA.28  Based on 70 patients, Moise-Broder et al. 

determined that there was a significantly higher clinical success rate in patients with 

AUC24h/MICBMD ratios greater than or equal to 350 (odds ratio [OR], 7.19; 95% CI, 1.91-27.3; 
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p=0.0036).  Additionally, the median duration for bacteriological eradication of MSSA and 

MRSA was significantly shorter for patients with AUC24h/MICBMD ratios greater than or equal to 

350 (10 days vs. excess of 30 days; p=0.0402).28  Similar methods were done on studies 

evaluating patients with MRSA bacteremia.2,26,27  Kullar et al. conducted a retrospective cohort 

study of 320 adults with MRSA bacteremia and identified an AUC24h/MICBMD threshold of 421 

using a classification and regression tree (CART) analysis.2  Patients with AUC24h/MICBMD 

ratios less than 421 had a significantly higher rate of treatment failure (61.2% vs. 48.6%; 

p=0.038).  Likewise, Holmes et al. and Jung et al. assessed patients with MRSA bacteremia and 

reported similar AUC24h/MICBMD thresholds.26,27  Holmes et al. followed a multicenter 

observational cohort of 182 adults.  Patients who achieved an AUC24h/MICBMD ratio greater than 

373 had a significantly lower rate of 30-day mortality (71.6% vs. 84.3%; p=0.043).27  Jung et al. 

assessed 76 patients with MRSA bacteremia and determined that an AUC24h/MICBMD ratio less 

than 398.5 was associated with a higher rate of treatment failure (45.0% vs. 23.2%; p=0.065).26   

In a retrospective cohort study of 44 patients with MRSA bacteremia, Mogle et al. used the 

trapezoidal rule and two-point PK approach to estimate AUC24h.12  Patients with 

AUC24h/MICBMD ratios greater than or equal to 297 had a greater than 2.7-fold increase in 

clinical success (94.4% vs. 50.0%; p=0.01).  

Instead of using the formula-based approach, recent studies used the Bayesian method to 

estimate the AUC values.21,29  In a retrospective study of 123 cases of MRSA bacteremia, Lodise 

et al. determined that treatment failure significantly decreased when day 1 AUC0-24h/MICBMD 

ratios were greater than 521 (relative risk [RR], 0.54; 95% CI, 0.32-0.91; p=0.02).  Patients with 

AUC24-48h/MICBMD  ratios greater than 650 on day 2 also had a significant reduction in treatment 

failure (RR, 0.58; 95% CI, 0.34-0.99; p=0.05).21  Casapao et al. evaluated 139 patients with 
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definite or possible MRSA infective endocarditis.  Even after adjusting for factors such as 

presence of heterogenous vancomycin-intermediate Staphylococcus aureus, ICU admission, IV 

drug use, previous hospitalization, and age, they determined that treatment failure remained 

significantly higher for patients with AUC0-24h/MICBMD ratios less than or equal to 600 (aOR, 

2.331; 95% CI, 1.012-5.371; p=0.047).29 

Two studies used a similar Bayesian approach to estimate AUC24h but only used MICEtest 

to calculate the AUC24h/MIC ratio.30,31  Brown et al. included 18 patients with infected 

endocarditis and 32 patients with complicated bacteremia (e.g., patients with two positive blood 

cultures and metastatic foci of the infection).30  They determined that patients who had 

AUC24h/MICEtest ratios less than 211 had a greater than 4-fold increase in death (38% vs. 8%; 

p=0.02).  On the other hand, Garwonoski et al. evaluated 59 patients who had MRSA bacteremia 

and osteomyelitis.31  Patients with AUC24h/MICEtest ratios greater than 293 were associated with a 

2.5-fold decrease in time to microbiological clearance (4 ± 2 days vs. 6 ± 3 days; p=0.01).  Due 

to the MICEtest usually being 1.5- to 2-fold higher than the MICBMD, the AUC24h/MICEtest  

thresholds are suspected to align with the AUC24h/MICBMD thresholds determined by previous 

studies.21,29-31 

The extrapolation of using an AUC/MICBMD ratio of 400 to 600 is limited because it is 

primarily based on retrospective, single-center analyses.  Therefore, Lodise et al. conducted a 

prospective, multicenter study that assessed the relationship between AUC/MIC ratios on day 2 

and clinical outcomes in 265 adult patients with MRSA bacteremia.32  No AUC/MICBMD 

threshold for vancomycin’s clinical efficacy was identified due to only 20% of the study 

population having AUC/MICBMD ratios less than 400 mg*h/L.  They recommended to continue 
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maintaining an AUC/MICBMD ratios greater than 400 mg*h/L as it remains unclear if 

vancomycin’s clinical efficacy is maintained below that threshold. 

The vancomycin AUC24h/MICBMD target is primarily derived from patients with 

Staphylococcus aureus bacteremia, pneumonia, osteomyelitis, and endocarditis.4  Hence, 

research on the AUC24h/MICBMD threshold in other MRSA-associated infections such as skin and 

soft tissue infections (SSTI), necrotizing fasciitis, infected hardware, and septic joints and in 

vancomycin special populations such as amphetamine users, IV drug users (IVDU), critically ill 

patients, and patients on concomitant immunosuppressants is warranted.  The current study 

initially included the objective of assessing the aforementioned MRSA-associated infections and 

vancomycin special populations and their AUC24h/MICBMD thresholds for clinical efficacy.   

However, the study was unable to accomplish this objective due to limitations explained in 

Chapter 5. 

AUC24h Threshold for Vancomycin-Associated Nephrotoxicity 

 An AUC24h of 600 mg*h/L is currently recommended as the upper threshold for 

vancomycin to minimize the risk of nephrotoxicity.4  The threshold was based on collective 

literature that showed the risk of vancomycin-associated nephrotoxicity increases along the AUC  

continuum and is at its highest when AUC24h is greater than 550 to 800 mg*h/L.  

In a retrospective study of 31 patients, Suzuki et al. compared the highest Bayesian-

derived AUC24h values during the treatment period versus the occurrence of nephrotoxicity.8  A 

majority of the patients who did not develop nephrotoxicity had AUC24h values between 400 to 

600 mg*h/L while most patients who experienced nephrotoxicity had AUC24h values between 

600 to 800 mg*h/L (p=0.014).  Allen et al. conducted a retrospective cohort study of 278 

patients.32  They compared the incidence of nephrotoxicity between patients with AUC0-24h 
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values less than 700 mg*h/L and patients with AUC0-24h values greater than 700 mg*h/L.33   

Patients above the prespecified threshold had a significantly higher incidence of nephrotoxicity 

(24.5% vs. 13.1%; p=0.021).  

Moreover, studies identified CART-derived vancomycin AUC thresholds for 

nephrotoxicity and suggested that the risk of nephrotoxicity increases in relation to AUC24h.33-36   

Lodise et al. assessed 166 patients and calculated AUC0-24h using a Bayesian method.33  They 

observed that an AUC0-24h greater than or equal to 1,300 mg*h/L increased the risk of 

vancomycin-associated nephrotoxicity (25.9% vs. 10.1%; p=0.05).  Zasowski reported similar 

findings in a multicenter, retrospective study of 323 patients.34  The incidence of nephrotoxicity 

significantly increased when AUC0-24h was greater than or equal to 677 mg*h/L, AUC24-48h was 

greater than or equal to 683 mg*h/L, and AUC0-48h was greater than or equal to 1218 mg*h/L.  In 

a retrospective study of 127 patients, Chavada et al. also demonstrated a similar relationship 

between AUC0-24h and vancomycin-associated nephrotoxicity.35  Patients with AUC0-24h values 

greater than the CART-derived threshold of 565 mg*h/L had a significantly greater risk of 

nephrotoxicity (40% vs. 11.2%; p=0.002).  Furthermore, Chavada et al. observed that the risk of 

nephrotoxicity increased by 0.2% as AUC0-24h increased by 1 mg*hr/L (OR, 1.002; 95% CI, 

1.001-1.004; p=0.021).  Lastly, Lodise et al. conducted a multicenter, prospective observational 

study of 265 adults with MRSA bacteremia and determined that the risk of AKI continually 

increased as AUC24-48h increased.  In their study, patients with AUC24-48h values greater than or 

equal to 793 mg*h/L had the highest risk of AKI (RR, 0.16; 95% CI, 0.04-0.29).36   

Aljefri et al. conducted a meta-analysis on randomized case-control and cohort studies 

that reported AUC values and the incidence of nephrotoxicity.10  Including the aforementioned 

studies, the meta-analysis consisted of six retrospective studies and two prospective studies.  The 
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studies estimated AUC using a Bayesian approach with the exception of the study by Finch et al. 

Because the studies reported multiple AUC values (e.g., AUC0-24h and AUC24-48h) that ranged 

from 550 to 700 mg*h/L, an endpoint of 650 mg*h/L was used to define low versus high AUC 

values.  Patients with low AUC0-24h values had a significantly lower risk of AKI than those with 

high AUC0-24h values (OR, 0.36; 95% CI, 0.23-0.56; p<0.001).  Patients with low AUC24-48h 

values also had similar results (OR, 0.68; 95% CI, 0.46-0.99; p=0.002).4  Similarly, Mogle et al. 

identified a CART-derived AUC24h threshold of 710 mg*h/L.12  Patients with AUC24h values 

greater than or equal to 710 mg*h/L within the first 96 hours of vancomycin had a higher rate of 

nephrotoxicity (33.3% vs. 2.5%; p=0.04). 

The aforementioned studies defined vancomycin-associated nephrotoxicity as an increase 

in serum creatinine (SCr) by greater than or equal to 0.5 mg/dL or a 50% increase from baseline 

on two or more consecutive measures.8,12,32-36  However, this study defined vancomycin-

associated nephrotoxicity as an increase in SCr by 0.3 mg/dL or more within 48 hours while on 

vancomycin or an increase in SCr by 1.5 times the baseline which is known or presumed to have 

occurred within seven days of discontinuing vancomycin.37  A less stringent definition of 

vancomycin-associated nephrotoxicity was used to include more nephrotoxic patients.   

Additionally, studies did not examine the vancomycin AUC24h thresholds for nephrotoxicity in 

vancomycin special populations.8,12,32-36  Rather, they assessed the thresholds for the general 

population of patients who were on vancomycin.  More studies are needed to determine if the 

vancomycin AUC24h threshold for nephrotoxicity is altered in certain vancomycin special 

populations.  This is especially important for vancomycin special populations that are associated 

with an increased risk of vancomycin-associated nephrotoxicity such as the ones discussed in the 

next section.   
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Vancomycin PK and PD Changes in Special Populations 

 Studies on the use of vancomycin in special populations such as critically ill patients, 

obese patients, patients with preexisting renal disease, and patients on concomitant nephrotoxins 

showed that the PK and PD of vancomycin can be altered as a result of physiological 

changes.13,17,18,20,24,38-40  Thus, these special populations can have an increased risk of adverse 

effects from vancomycin.  Host-related factors such as critical illness, increased weight, 

preexisting renal disease, and concomitant nephrotoxic agents have been associated with an 

increased risk of vancomycin-associated nephrotoxicity.14-16,33,41-43  However, there are currently 

no studies that investigate whether the AUC24h threshold for vancomycin-associated 

nephrotoxicity changes when used in the aforementioned special populations.4  Therefore, 

analyses on their vancomycin AUC24h thresholds for nephrotoxicity are warranted.  

Critically Ill or ICU Patients 

Critically ill patients require larger doses of vancomycin due to their high acuity and their 

offending pathogens being less susceptible.13  They also tend to have hemodynamic instability 

and renal hypoperfusion that can increase their risk of nephrotoxicity.  Furthermore, 

vancomycin’s altered volume of distribution (Vd) in critically ill patients increases the risk of 

nephrotoxicity.13,38  Critically ill patients with severe sepsis can experience fluid shifts from the 

intravascular compartment to the interstitial space due to excessive fluid resuscitation, 

widespread endothelial injury, and capillary leakages.13  This results in altering the PK of 

hydrophilic drugs like vancomycin by causing an increase in Vd and a decrease in plasma 

concentration.13,38  

Studies demonstrated that variables independently associated with vancomycin-

associated nephrotoxicity are ICU residence (aOR, 3.25; 95% CI, 1.18-9.98; p=0.02) and a high 
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Acute Physiology and Chronic Health Evaluation (APACHE) II score (22.9 ± 7.4 vs. 18.2 ± 8.5; 

p=0.006).16,33  In a retrospective study of 166 patients, Lodise et al. also showed that ICU 

patients have a greater than 20% probability of experiencing nephrotoxicity with initial trough 

concentrations greater than 10 mg/L.33 

Obese Patients 

Physiologic changes in obese patients have been shown to alter the Vd of vancomycin.39   

Obese patients have a higher Vd of vancomycin due to having higher levels of lean body mass 

and larger organs than patients of normal weight.40,44   Despite vancomycin being hydrophilic, 

high levels of adipose tissue are also suspected to play a role in increasing the Vd.  Due to water 

accounting for approximately 30% of the content of adipose tissues, vancomycin is able to 

distribute in the adipose tissue to a certain extent.39,40  Additionally, obese patients experience 

increased blood flow due to having a higher blood volume and cardiac output.40  In combination 

with vancomycin’s hydrophilic nature, their increased blood flow can contribute to a higher Vd.  

Currently, there are conflicting studies on the relationship between obesity and the risk of 

vancomycin-associated nephrotoxicity. 14,15,42,43,45  In a retrospective study of 207 obese patients 

with a body mass index (BMI) greater than 30 kg/m2 and 323 lean patients, obesity was not 

associated with an increased risk of nephrotoxicity (RR, 0.98; 95% CI, 0.93-1.04; p=0.59).45   

Contrastingly, there are multiple studies that suggest a relationship between obesity and an 

increased risk of vancomycin-associated nephrotoxicity.14,15,42,43  In a multicenter, retrospective 

study of 337 patients, weight greater than 100 kg was found to be an independent predictor of 

nephrotoxicity (OR, 2.74; 95% CI, 1.27-5.91).14  In a retrospective study of 270 veterans, Horey 

et al. also found weight to be significantly associated with an increased risk of nephrotoxicity 

(OR, 1.02; 95% CI, 1.00-1.03).15  Furthermore, Choi et al. demonstrated that obesity class III 
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(BMI ≥40 kg/m2) patients have a 3-fold greater risk of vancomycin-associated nephrotoxicity 

compared to obesity class I and II (BMI 30-39.9 kg/m2) patients and nonobese patients (OR, 

3.14; 95% CI, 1.27-7.75 and OR, 2.99; 95% CI, 1.12-7.94, respectively).42  These findings are 

consistent with results from a retrospective cohort study of 246 patients conducted by Lodise et 

al. which showed that patients who weigh greater than or equal to 101.4 kg were approximately 

3.5 times more likely to develop nephrotoxicity (HR, 3.65; 95% CI 2.52-5.28, p<0.001).43  A 

mechanistic explanation for obesity being associated with an increased risk of vancomycin-

associated nephrotoxicity remains unclear.  However, studies hypothesize that a likely factor is 

the large Vd that causes disproportionately larger doses of vancomycin and a more intensive 

vancomycin exposure profile.42,43
    

Patients with Preexisting Renal Disease 

Patients with preexisting renal disease are at a higher risk of developing vancomycin-

associated nephrotoxicity.20  Vancomycin is primarily eliminated renally and its extrarenal 

clearance is approximately 5%.17  Vancomycin is predominantly cleared through glomerular 

filtration and through active tubular secretion to a certain degree.  With a decrease in renal 

function, the half-life of vancomycin increases linearly.  Thus, patients with preexisting renal 

disease have a higher risk of vancomycin accumulating.  Normally, the half-life of vancomycin 

is six hours.  However, in patients with anuria, the half-life can soar up to 100 to 200 hours.  As 

vancomycin accumulates, there is a higher risk of vancomycin overdosing and subsequent 

nephrotoxicity.  

Patients on Concomitant Nephrotoxins 

Vancomycin has been shown to decrease the threshold for nephrotoxicity and has 

demonstrated synergistic activity with other nephrotoxins administered concomitantly.18,20  
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Studies demonstrated that the coadministration of nephrotoxins such as loop diuretics, renin‐

angiotensin system blockers, NSAIDs, aminoglycosides, piperacillin-tazobactam, and IV 

contrast dyes increases the risk of renal toxicity.18,46-50  In a prospective cohort study of 95 

patients, Hidayat et al. determined that patients on concomitant nephrotoxins were significantly 

associated with an increased risk of nephrotoxicity (91% vs. 20%; p<0.001).19  Even after 

performing a multivariate analysis and controlling other significant factors such as age, 

APACHE II score, admission to ICU, vancomycin trough concentrations, and duration of 

vancomycin therapy, coadministration of nephrotoxins remained the most significant predictor of 

nephrotoxicity occurrence (p=0.003).  

Matson et al. demonstrated that the concomitant use of loop diuretics, ACEIs, and  

NSAIDs increases the risk of vancomycin-associated nephrotoxicity by 43-fold, 5-fold, and 19-

fold, respectively.18  For aminoglycosides, Rybak et al. assessed 224 patients who received 

vancomycin alone, gentamicin alone, or vancomycin plus an aminoglycoside.47  Patients who 

received both vancomycin and an aminoglycoside had a significantly higher rate of 

nephrotoxicity than patients who received vancomycin or gentamicin alone (22% vs. 5% vs. 

11%, respectively; p<0.05).  Similarly, Hanrahan et al. assessed 158 critically ill patients and 

demonstrated that concomitant aminoglycosides with vancomycin increased the occurrence of 

nephrotoxicity (OR, 18.9; p=0.002).48  

Although piperacillin-tazobactam is not considered a nephrotoxin, piperacillin-

tazobactam has been associated with impaired renal recovery and acute interstitial nephritis.24  

Meta-analyses have also suggested that vancomycin with piperacillin-tazobactam can increase 

the risk of nephrotoxicity.49,50  Hammond et al. conducted a meta-analysis and analyzed 14 

studies.49  They concluded an adjusted OR of 3.11 (95% CI, 1.77-5.47; p<0.001) for 
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nephrotoxicity was significant when vancomycin plus piperacillin-tazobactam was compared to 

vancomycin plus a beta-lactam antibiotic.  Similarly, Giuliano et al. evaluated 15 studies and 

calculated an overall OR of 3.65 (95% CI, 2.16-6.17; p<0.001) which was significant when 

vancomycin in combination with piperacillin-tazobactam was compared to vancomycin alone.50  
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CHAPTER 3: METHODOLOGY  

 

Study Design and Population 

 The study design is a single-institution retrospective cohort study at San Joaquin General 

Hospital (SJGH), a 196-bed county hospital located in Stockton, California.  The study was 

approved by the University of the Pacific (UOP) Institutional Review Board (IRB) with protocol 

number 20-122 and by the SJGH IRB with protocol number 20-303.  Medical records were 

reviewed at SJGH to identify hospitalized patients treated with IV vancomycin between June 

2019 to May 2020.  Patient identifiable information was removed upon completing the data 

collection.  Inclusion criteria were patients who were 18 years or older, required vancomycin for 

the treatment of an infection, on vancomycin for 48 hours or longer, and had one or more 

vancomycin concentrations collected.  Exclusion criteria were pregnancy, vancomycin continued 

for an infection diagnosed from a previous admission, any form of renal replacement therapy, 

vancomycin for surgical prophylaxis, and vancomycin continuous infusion. 

Data Collection  

 Baseline demographics.  The following baseline demographics were collected. 

 Gender 

 Age 

 Weight 

 Height 

 Ethnicity 

 Comorbidities (e.g., preexisting liver disease, atherosclerotic cardiovascular disease 
[ASCVD], heart failure, diabetes, hypertension, amphetamine use, and IV drug use) 
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Clinical characteristics.  The following clinical characteristics were collected. 

 SCr upon initiating vancomycin 

 Number of days on vancomycin 

 Suspected or diagnosed infection that indicated the use of vancomycin (e.g., SSTI, 
necrotizing fasciitis, osteomyelitis, pneumonia, bacteremia, endocarditis, septic joint, 
empyema) 
 

Isolated bacterial species.  Based on microbiological reports, patients were categorized 

as having MRSA, non-MRSA isolated bacterial species, or no isolated bacterial species.  

 MRSA: Isolated pathogen was MRSA. 

 Non-MRSA Isolated Bacterial Species: Isolated pathogen was not MRSA but was 
still covered by vancomycin’s spectrum of activity (e.g., Enterococcus spp. and 
MSSA). 
 

 No Isolated Bacterial Species: Isolated pathogen that is not covered by vancomycin’s 
spectrum of activity (e.g., gram-negative bacteria) or no positive cultures obtained 
during the hospital stay. 

 
 Special populations.  Medical charts were reviewed to place patients into vancomycin 

special populations of interest: ICU or critically ill patients and obese patients.  

 ICU or Critically Ill Patients: Patients who required an admission to the medical ICU 
or surgical ICU during their vancomycin course of treatment.  
 

 Obese Patients: Patients with a BMI greater than or equal to 30 kg/m2 upon initiating 
vancomycin. 

 
 Preexisting renal disease and concomitant nephrotoxins.  Medical charts were 

reviewed to assess for patients with preexisting renal disease and patients on concomitant 

nephrotoxins other than vancomycin. 

 Patients with Preexisting Renal Disease: Patients who have chronic kidney disease or 
patients admitted with AKI that was unrelated to vancomycin. 
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 Patients on a Concomitant Nephrotoxin: Patients who received one or more doses of a 
loop diuretic, ACEI, ARB, NSAID, aminoglycoside, piperacillin-tazobactam, or IV 
contrast dye while on vancomycin.  
 

 Steady state AUC24h.  Using the Bayesian software program, PrecisePK (Version 

20.02.00, Healthware Inc., San Diego, CA), the patient’s age, gender, weight, height, SCr 

history, vancomycin dosing history, and vancomycin trough concentrations were entered into the 

program to calculate the AUC24h.  By assessing the concentration versus time graph, an interval 

when vancomycin’s steady state was reached and consistent was identified.  To decrease 

variability, the steady state was determined consistent if each of the dose’s peak concentrations 

was ±10% of its respective dosing regimen’s total average peak concentration.  The AUC24h for 

the steady state interval was then calculated using the equation below.  

 AUCଶସ୦ ቀ𝑖𝑛 
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ቁ =  

େమ ቀ 
∗

ಽ
ቁି େభ ቀ 

∗

ಽ
ቁ

୲మ ( ௨௦)ି ୲భ( ௨௦)
∗ 24 hours  

 Endpoints.  The primary endpoint is vancomycin-associated nephrotoxicity using the 

definition of nephrotoxicity from the 2012 KDIGO Clinical Practice Guideline for AKI.  

 Vancomycin-Associated Nephrotoxicity: An increase in serum creatinine by 0.3 
mg/dL or more within 48 hours while on vancomycin or an increase in serum 
creatinine by 1.5 times the baseline which is known or presumed to have occurred 
within seven days of discontinuing vancomycin. 
 

The secondary endpoint is the estimated vancomycin AUC24h thresholds for 

nephrotoxicity for critically ill or ICU patients, obese patients, patients with preexisting renal 

disease, and patients on concomitant nephrotoxins.   

The tertiary endpoint is the predictive performances of the vancomycin AUC24h 

thresholds which include the following parameters:51,52  

 Positive Predictive Value (PPV): The probability of patients with a positive screening 
test truly having the condition.  For this study, the PPV is the probability of patients 
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with AUC24h values greater than the threshold for nephrotoxicity actually 
experiencing vancomycin-associated nephrotoxicity.  
 

 Negative Predictive Value (NPV): The probability of patients with a negative 
screening test truly not having the condition.  For this study, the NPV is the 
probability of patients with AUC24h values less than the threshold for nephrotoxicity 
actually not experiencing vancomycin-associated nephrotoxicity.  
 

 Sensitivity: The proportion of patients with a condition who are correctly identified 
by a screening test as truly having that condition (i.e., identifying true positives).  For 
this study, the sensitivity is the proportion of nephrotoxic patients who are correctly 
identified as experiencing vancomycin-associated nephrotoxicity based on the 
AUC24h threshold for nephrotoxicity.  
 

 Specificity: The proportion of patients without a condition who are correctly 
identified by a screening test as truly not having that condition (i.e., identifying true 
negatives).  For this study, the specificity is the proportion of non-nephrotoxic 
patients who are correctly identified as not experiencing vancomycin-associated 
nephrotoxicity based on the AUC24h threshold for nephrotoxicity.  
 

 Area Under the Receiver Operating Characteristic (ROC) Curve: A combined 
measure of sensitivity and specificity which numerically provides the overall 
predictive performance of a screening test or diagnostic test.  As the area under the 
ROC curve increases towards a maximum value of one, the overall performance of 
the test increases.  For this study, it is the overall predictive performance of the 
AUC24h threshold for nephrotoxicity.  

 
Data Analysis 

Baseline demographics and clinical characteristics were reported using descriptive 

statistics.  Additionally, the relationship between the patients’ baseline demographics and clinical 

characteristics and vancomycin-associated nephrotoxicity was analyzed by comparing 

nephrotoxic patients to non-nephrotoxic patients.  The independent t-test was used to detect 

statistical differences for continuous data while the Chi-square test and Fisher’s exact test were 

used to detect statistical differences for nominal data.  

Each special population that included at least ten nephrotoxic patients was further 

analyzed to derive the AUC24h threshold where the incidence of nephrotoxicity was most 
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disproportionate.  The AUC24h thresholds were estimated using CART analysis.  Their predictive 

performances were assessed by calculating their PPVs, NPVs, sensitivities, and specificities.  

The equations below were used to calculate the parameters and an example of the method is 

displayed in Table 2.  

 PPV =  


ା
 x 100 

 NPV =  
ୈ

ୋୈ
 x 100 

 Sensitivity =  


ାେ
 x 100 

 Specificity =  
ୈ

ାୈ
 x 100 

Variables: A, true positive; B, false positive; C, false negative; D, true negative  

 
 
Table 2 
Example of Calculating PPV, NPV, Sensitivity, and Specificity for AUC24h Thresholds Predicting 
Nephrotoxicity  

AUC24h Threshold of 616 mg*h/L Nephrotoxic Non-Nephrotoxic 

AUC24h above 
threshold 

Number of Patients 18 
True Positive (A) 

47 
False Positive (B) 

% Within Threshold 27.7% 
PPV 

72.3% 

% Within Nephrotoxicity 62.1% 
Sensitivity 

15.3% 

AUC24h less than 
threshold 

Number of Patients 11 
 False Negative (C) 

260 
True Negative (D) 

% Within Threshold 4.1% 95.9% 
NPV 

% Within Nephrotoxicity 37.9% 84.7% 
Specificity 

Abbreviations.  PPV, positive predictive value; NPV, negative predictive value; AUC24h, area 
under the concentration-time curve over 24 hours. 
 
 
 

Each CART-derived threshold’s predictive performance for predicting nephrotoxicity 

was then compared to the predictive performance of the AUC24h threshold of 600 mg*h/L that is 
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currently recommended by the 2020 ASHP/IDSA/PIDS/SIDP updated vancomycin monitoring 

guideline.  A generalized score statistic was used to detect statistical differences between the two 

thresholds’ PPVs and NPVs and the McNemar test was used to detect statistical differences 

between their sensitivities and specificities.  When comparing the predictive performances 

between the CART-derived thresholds and the guideline threshold, maximizing the PPV and 

sensitivity is desired over maximizing the NPV or specificity.  A higher PPV increases the 

likelihood of identifying AUC24h values that result in nephrotoxicity.  Moreover, a higher 

sensitivity increases the accuracy of the threshold in predicting patients who truly have 

nephrotoxicity and decreases the probability of having a false negative.  In addition to comparing 

their predictive values, sensitivities, and specificities, ROC curves were analyzed to compare the 

thresholds’ overall predictive performances. 

Prior to identifying and assessing the AUC24h threshold for each special population, a 

validity test was performed to assess the method proposed by this study.  This was achieved by 

applying the method to the general population.  The method was considered validated if the 

CART-derived threshold for the general population was determined to be insignificant when 

compared to the guideline threshold that was based on preexisting literature. 

Lastly, to evaluate for any confounding factors, patients were divided into two groups: 

patients who had an AUC24h less than or equal to the CART-derived threshold and those who had 

an AUC24h above the CART-derived threshold.  Bivariate comparisons between the two groups’ 

baseline demographics, clinical characteristics, and types of infection were then conducted.  The 

independent t-test was used to detect statistical differences for continuous data and the Chi-

square test and Fisher’s exact test were used to detect statistical differences for nominal data.  
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In this study, p-values of less than or equal to 0.05 were considered statistically 

significant.  Statistical analyses such as the independent t-test, Chi-Square test, Fisher’s exact 

test, and CART analysis were performed using IBM SPSS software (Version 27.0, IBM 

Corporation, Armonk, NY).  The generalized score statistic and McNemar test were performed 

using RStudio software (Version 1.3.1073, RStudio Team, Boston, MA).  
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CHAPTER 4: RESULTS 

 

Description of Cohort 

A total of 336 patients was included in the study.  Baseline demographics of the study 

population are presented in Table 3.  A majority of the patients were male (84.8%) and 

Caucasian (41.4%).  Among the study population, mean age was 57.1 years (standard deviation 

[SD], 14.9 years), mean weight was 86.9 kilograms (SD, 28.1 kilograms), and mean height was 

173.0 centimeters (SD, 11.4 centimeters).  Common comorbidities included ASCVD (21.7%), 

diabetes (33.9%), hypertension (44.9%), and amphetamine use (20.5%). 

 

Table 3 
Baseline Demographics 
Characteristic Value for Patients (n=336) 
Gender, no. (%) 

Male 
Female 

 
285 (84.8) 
51 (15.2) 

Age (years), mean ± SD 57.1 ± 14.8 
Weight (kg), mean ± SD 86.9 ± 28.1 
Height (cm), mean ± SD 173.0 ± 11.4 
Ethnicity/Race, no. (%) 

Caucasian 
Hispanic 
Black or African-American 
Asian 
Mixed 
Other 

 
139 (41.4) 
96 (28.6) 
66 (19.6) 
17 (5.1) 
11 (3.3) 
7 (2.1) 

Comorbidity, no. (%) 
Preexisting Liver Disease 
Atherosclerotic Cardiovascular Disease (ASCVD) 
Heart Failure 
Diabetes 
Hypertension 
Amphetamine Use 
Intravenous Drug Use 

 
62 (18.5) 
73 (21.7) 
40 (11.9) 
114 (33.9) 
151 (44.9) 
69 (20.5) 
35 (10.4) 
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Clinical characteristics of the study population are illustrated in Table 4.  The mean SCr  

upon initiating vancomycin was 1.06 mg/dL (SD, 0.69 mg/dL) and the mean duration of therapy 

was 7.2 days (SD, 4.6 days).  The most common vancomycin indications were SSTI (34.2%), 

pneumonia (32.7%), and bacteremia (24.1%), and approximately a quarter of the population’s 

isolated pathogens were MRSA (24.1%).  

 
 
Table 4 
Clinical Characteristics  
Characteristic Value for Patients (n=336) 
Vancomycin Indication, no. (%) 

SSTI 
Necrotizing Fasciitis  
Osteomyelitis 
Pneumonia 
Bacteremia 
Endocarditis 
Septic Joint 
Empyema 
Other 

 
115 (34.2) 
9 (2.7) 
33 (9.8) 
110 (32.7) 
81 (24.1) 
5 (1.5) 
6 (1.8) 
6 (1.8) 
43 (12.8) 

Isolated Organism, no. (%) 
MRSA 
Non-MRSA 
No organism isolated or vancomycin-resistant organism  

 
81 (24.1) 
103 (30.7) 
152 (45.2) 

Initial Serum Creatinine (mg/dL), mean ± SD 1.06 ± 0.69 
Vancomycin Duration (days), mean ± SD 7.2 ± 4.6 

Abbreviations.  SSTI, skin and soft tissue infections; MRSA, methicillin-resistant 
Staphylococcus aureus. 
 
 

Comparison of Patient Characteristics Between Non-Nephrotoxic and Nephrotoxic Patients 

The bivariate comparison of the baseline demographics and clinical characteristics 

between patients who had nephrotoxicity and those who did not is displayed in Table 5.  

Twenty-nine (8.6%) patients experienced nephrotoxicity.  Patients who experienced 

nephrotoxicity were more likely to have preexisting renal disease (34.5% vs. 14.4%; p=0.014) 
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and had significantly higher SCr levels upon initiating vancomycin (1.52 ± 0.95 mg/dL vs. 1.02 

±. 0.65 mg/dL; p<0.001).  Furthermore, the nephrotoxic group had significantly more critically 

ill or ICU patients (75.9% vs. 30.6%; p<0.001) and patients who received concomitant loop 

diuretics (75.9% vs. 33.9%; p<0.001). 
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Table 5 
Patient Characteristics Between Non-Nephrotoxic and Nephrotoxic Patients 

Characteristic 
Non-Nephrotoxic 
(n=307) 

Nephrotoxic 
(n=29) 

P-value 

Demographics 
Age (years), mean ± SD 
Male, no. (%) 

 
56.7 ± 14.7 
260 (84.7) 

 
60.5 ± 14.7 
25 (86.2) 

 
0.186a 

1.000b 
Selected Comorbidities 

Preexisting Liver Disease, no. (%) 
ASCVD, no. (%) 
Heart Failure, no. (%) 
Diabetes, no. (%) 
Hypertension, no. (%) 

 
57 (18.6) 
64 (20.8) 
31 (10.1) 
101 (32.9) 
130 (42.3) 

 
5 (17.2) 
9 (31.0) 
9 (31.0) 
13 (44.8) 
21 (72.4) 

 
0.860 

0.203 

0.003b* 
0.195 
0.002* 

Selected Special Populations 
Critically Ill or ICU, no. (%) 
Obese (BMI≥30 kg/m2), no. (%) 
Preexisting Renal Disease, no. (%) 
Concomitant Nephrotoxin 

Loop Diuretic, no. (%) 
ACEI/ARB, no. (%) 
NSAID, no. (%) 
Aminoglycoside, no. (%) 
Piperacillin/tazobactam, no. (%) 
IV Contrast, no. (%) 

 
94 (30.6) 
101 (32.9) 
44 (14.4) 
 
104 (33.9) 
68 (22.2) 
41 (13.4) 
7 (2.3) 
12 (3.9) 
135 (44.0) 

 
22 (75.9) 
10 (34.5) 
10 (34.5) 
 
22 (75.9) 
6 (20.7) 
3 (10.3) 
2 (6.9) 
0 (0) 
7 (24.1) 

 
<0.001* 
0.862 
0.014b* 
 
<0.001* 
0.849 
1.000b 

0.177b 

0.610b 

0.039* 

Vancomycin Treatment Data 
Initial SCr (mg/dL), mean ± SD 

Vancomycin Indication 

SSTI, no. (%) 
Osteomyelitis, no. (%) 
Pneumonia, no. (%) 
Bacteremia, no. (%) 

Vancomycin Duration (days), mean ± SD 

 
1.02 ± 0.65  
 
109 (35.5) 
31 (10.1) 
95 (30.9) 
77 (25.1) 
7.1 ± 4.6 

 
1.52 ± 0.95 
 
6 (20.7) 
2 (6.9) 
15 (51.7) 
4 (13.8) 
7.4 ± 4.5 

 
<0.001a* 

 
0.108 
0.753b 

0.023* 

0.174 

0.775a 

* P-value was <0.05. 
a P-value was calculated using independent t-test. 
b P-value was calculated using Fisher’s exact test due to one or more expected values being <5.  
All other p-values were calculated using chi-square test.   
Abbreviations.  ASCVD, atherosclerotic cardiovascular disease; ICU, intensive care unit; ACEI, 
angiotensin-converting-enzyme inhibitor; ARB, angiotensin II receptor blocker; NSAID, 
nonsteroidal anti-inflammatory drug; SSTI, skin and soft tissue infection; SCr, serum creatinine. 
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Method Validation by Analyzing the General Population 

 For the general population of 336 patients, the CART analysis showed that the incidence 

of nephrotoxicity was significantly higher for patients with AUC24h values greater than 616 

mg*h/L (27.7% vs. 4.1%; p<0.001) (Figure 1). 

 
 

 
Figure 1.  CART-derived AUC24h nephrotoxicity threshold for the general population. 

 
 
 

  Table 6, Table 7, and Figure 2 compare the predictive performances of the CART-

derived threshold and guideline threshold.  No statistical differences were detected between their 

PPVs (p=0.163), NPVs (p=0.286), and sensitivities (p=0.157).  Moreover, their overall 

predictive performances were noninferior to one another as they had similar areas under the ROC 

curves (0.734 vs. 0.747; p=0.589).  The threshold of 616 mg*h/L was consistent with previous 

studies and was associated with practically similar predictive performances to the guideline 

threshold of 600 mg*h/L.4  
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Table 6 
Predictive Performances of CART-Derived AUC24h Threshold and Guideline Threshold for the 
General Population 
Predictive Performance AUC24h 616 mg*h/L AUC24h 600 mg*h/L P-value 
PPV (%) 27.7 25.0 0.163a,c 
NPV (%) 95.9 96.5 0.286a,d 
Sensitivity (%) 62.1 69.0 0.157b,e 

Specificity (%) 84.7 80.5 <0.001b,f* 

Area under ROC Curve (95% CI) 0.734 (0.626–0.841) 0.747 (0.646–0.849) 0.589g 

* P-value was <0.05 
a P-value was calculated using generalized score statistic. 
b P-value was calculated using McNemar test.  
c PPV data derived from 145 observations (65 patients with AUC24h >616 mg*h/L and 80 
patients with AUC24h >600 mg*h/L). 
d NPV data derived from 527 observations (271 patients with AUC24h <616 mg*h/L and 256 
patients with AUC24h <600 mg*h/L). 
e Sensitivity data derived from 29 nephrotoxic patients. 

f Specificity data derived from 307 non-nephrotoxic patients. 

g ROC analysis derived from 336 patients.  
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours; PPV, positive 
predictive value; NPV, negative predictive value; ROC, receiver operating characteristic. 
 
 
 

 
Figure 2.  Receiver operating characteristic (ROC) curves of CART-derived AUC24h threshold 
and guideline AUC24h threshold for the general population. 
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Table 7 
AUC24h of General Population That Experienced Nephrotoxicity  
 AUC24h ≤600 mg*h/L  AUC24h >600 mg*h/L  
AUC24h ≤616 mg*h/L  9 (31.0) 2 (6.9) 
AUC24h >616 mg*h/L  0 (0) 18 (62.1) 

P-value=0.157 (based on McNemar test); n=29 
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours. 
 
 
 

Special Populations and Nephrotoxic Patients 

Table 8 summarizes the total number of patients and patients with nephrotoxicity in each 

special population.  Special populations of interest included critically ill or ICU patients (34.5%), 

obese patients (33.0%), patients with preexisting renal disease (16.1%), and patients on 

concomitant nephrotoxins (76.8%).  The most common concomitant nephrotoxins were loop 

diuretics (37.5%), ACEIs or ARBs (22.0%), and IV contrast dyes (42.3%). 

There were at least ten nephrotoxic patients in critically ill or ICU patients, obese 

patients, patients with preexisting renal disease, and patients on concomitant loop diuretics.  The 

CART-derived AUC24h thresholds were derived for these special populations and their predictive 

performances were assessed, as described in the method section.  Contrastingly, less than ten 

nephrotoxic patients were observed in patients on concomitant ACEIs or ARBs, NSAIDs, 

aminoglycosides, piperacillin-tazobactam, or IV contrast dyes.  Due to inadequate sample sizes 

in these special populations, further analyses were not performed.  
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Table 8 
Special Populations and Nephrotoxic Patients  

Special Population Total Patients, no. Nephrotoxic Patients, no. 

Critically Ill or ICU Patient 
Obese Patient (BMI≥30 kg/m2) 
Patient with Preexisting Renal Disease 
Patient on a Concomitant Nephrotoxin 

Loop Diuretic 
ACEI/ARB 
NSAID 
Aminoglycoside 
Piperacillin/tazobactam 
IV Contrast Dye 

116  
111  
54  
 
126 
74 
44 
9  
12 
142  

22  
10  
10  
 
22 
6  
3  
2  
0  
7  

Abbreviations.  ICU, intensive care unit; BMI, body mass index; NSAID, nonsteroidal anti-
inflammatory drug; ACEI, angiotensin-converting-enzyme inhibitor; ARB, angiotensin II 
receptor blocker; IV, intravenous. 
 
 
 

CART-Derived Vancomycin AUC24h Thresholds for Nephrotoxicity 

Critically Ill or ICU Patients 

Of the 336 patients, 116 (34.5%) patients were identified to be critically ill or ICU 

patients.  The CART analysis showed that incidence of nephrotoxicity was significantly higher 

for critically ill or ICU patients with AUC24h values greater than 544 mg*h/L (35.8% vs. 4.8%; 

p<0.001) (Figure 3). 
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Figure 3.  CART-derived AUC24h nephrotoxicity threshold for critically ill and ICU patients. 
 
 
 

Table 9 and Figure 4 display the predictive performances of the CART-derived AUC24h 

threshold and guideline threshold for critically ill or ICU patients.  The CART-derived threshold 

had a significantly higher NPV (p=0.037) and sensitivity (p=0.031).  In other words, out of 22 

ICU patients with nephrotoxicity, the threshold of 544 mg*h/L identified six (27.3%) more 

nephrotoxic patients than the threshold of 600 mg*h/L (Table 10).  Moreover, the overall 

predictive performance of the CART-derived threshold was shown to be 0.058 (8.4%) higher 

than that of the guideline threshold based on the ROC curve analysis (0.751 vs. 0.693; p=0.278).  

Statistical significance for the ROC analysis was not achieved due to a small sample size. 
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Table 9 
Predictive Performances of CART-Derived AUC24h Threshold and Guideline Threshold for 
Critically Ill and ICU Patients  
Predictive Performance AUC24h 544 mg*h/L AUC24h 600 mg*h/L  P-value 
PPV (%) 35.8 40.6 0.337a,c 
NPV (%) 95.2 89.3 0.037a,d* 
Sensitivity (%) 86.4 59.1 0.014b,e* 

Specificity (%) 63.8 79.8 <0.001b,f* 

Area under ROC Curve (95% CI) 0.751 (0.646–0.856) 0.694 (0.563–0.825) 0.278g 

* P-value was <0.05 
a P-value was calculated using generalized score statistic. 
b P-value was calculated using McNemar test.  
c PPV data derived from 85 observations (53 patients with AUC24h >544 mg*h/L and 32 patients 
with AUC24h >600 mg*h/L). 
d NPV data derived from 147 observations (63 patients with AUC24h <544 mg*h/L and 84 
patients with AUC24h <600 mg*h/L). 
e Sensitivity data derived from 22 nephrotoxic patients. 

f Specificity data derived from 94 non-nephrotoxic patients. 

g ROC analysis derived from 116 patients.  
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours; ICU, intensive 
care unit; PPV, positive predictive value; NPV, negative predictive value; ROC, receiver 
operating characteristic. 
 
 
 

 
Figure 4.  Receiver operating characteristic (ROC) curves of CART-derived AUC24h threshold 
and guideline AUC24h threshold for critically ill and ICU patients. 
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Table 10 
AUC24h of Critically Ill or ICU Patients Who Experienced Nephrotoxicity  
 AUC24h ≤600 mg*h/L  AUC24h >600 mg*h/L  
AUC24h ≤544 mg*h/L  3 (13.6) 0 (0) 
AUC24h >544 mg*h/L  6 (27.3) 13 (59.1) 

P-value=0.014 (based on McNemar test); n=22 
Abbreviations.  ICU, intensive care unit; AUC24h, area under the concentration-time curve over 
24 hours. 
 
 
 

Table 11 provides the bivariate comparison between critically ill or ICU patients with 

AUC24h values less than or equal to 544 mg*h/L and those with AUC24h values greater than 544 

mg*h/L.  No confounding factors were found that can impact the risk of vancomycin-associated 

nephrotoxicity between the two groups. 

 
  



51 
 

 
Table 11 
Patient Characteristics Between Critically Ill or ICU Patients with AUC24h Above and Below 
CART-Derived AUC24h Threshold 

Characteristic 
AUC24h ≤544 
mg*h/L 
(n=63) 

AUC24h >544 
mg*h/L 
(n=53) 

P-value 

Demographics 
Age (years), mean ± SD 
Male, no. (%) 

 
53.7 ± 16.0 
53 (84.1) 

 
60.1 ± 14.7 
41 (77.4) 

 
0.028a* 

0.354 
Selected Comorbidities 

Preexisting Liver Disease, no. (%) 
ASCVD, no. (%) 
Heart Failure, no. (%) 
Diabetes, no. (%) 
Hypertension, no. (%) 

 
6 (9.5) 
15 (23.8) 
5 (7.9) 
19 (30.2) 
23 (36.5) 

 
8 (15.1) 
10 (18.9) 
12 (22.6) 
8 (15.1) 
23 (43.4) 

 
0.359 

0.519 

0.026* 
0.056 
0.450 

Selected Special Populations 
Obese (BMI≥30 kg/m2), no. (%) 
Preexisting Renal Disease, no. (%) 
Concomitant Nephrotoxin, no. (%) 

Loop Diuretic, no. (%) 
ACEI/ARB, no. (%) 
NSAID, no. (%) 
Aminoglycoside, no. (%) 
Piperacillin/tazobactam, no. (%) 
IV Contrast, no. (%) 

  
23 (36.5) 
9 (14.3) 
 
34 (54.0) 
10 (15.9) 
4 (6.3) 
4 (6.3) 
4 (6.3) 
26 (41.3) 

 
15 (28.3) 
14 (26.4) 
 
37 (69.8) 
6 (11.3) 
7 (13.2) 
3 (5.7) 
1 (1.9) 
21 (39.6) 

 
0.348 

0.103 
 
0.081 
0.479 

0.209 

1.000b 

0.374 

0.857 

Vancomycin Treatment Data 
Initial SCr (mg/dL), mean ± SD 
Vancomycin Indication 

SSTI, no. (%) 
Osteomyelitis, no. (%) 
Pneumonia, no. (%) 
Bacteremia, no. (%) 

Vancomycin Duration (days), mean ± SD 
Nephrotoxicity, no. (%) 

 
1.12 ± 1.05  
 
9 (14.3) 
2 (3.2) 
31 (49.2) 
17 (27.0) 
8.2 ± 4.3 
3 (4.8) 

 
1.20 ± 0.78 
 
7 (13.2) 
3 (5.7) 
30 (56.6) 
11 (20.8) 
9.0 ± 6.1 
19 (35.8) 

 
0.649a 

 
0.867 
0.659b 

0.427 

0.435 

0.397a 

<0.001* 

* P-value was <0.05 
a P-value was calculated using independent t-test. 
b P-value was calculated using Fisher’s exact test due to one or more expected values being <5.  
All other p-values were calculated using chi-square test.   
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours; ASCVD, 
atherosclerotic cardiovascular disease; ICU, intensive care unit; ACEI, angiotensin-converting-
enzyme inhibitor; ARB, angiotensin II receptor blocker; NSAID, nonsteroidal anti-inflammatory 
drug; SSTI, skin and soft tissue infection; SCr, serum creatinine. 
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Obese Patients 

Of the 336 patients, 111 (33.0%) patients were identified to be obese and had a mean 

BMI of 38.2 kg/m2 (SD, 9.2 kg/m2).  The CART analysis showed that incidence of 

nephrotoxicity was significantly higher for obese patients with AUC24h values greater than 586 

mg*h/L (25.8% vs. 2.5%; p<0.001) (Figure 5).  

 
 

 

Figure 5.  CART-derived AUC24h nephrotoxicity threshold for obese patients. 

 
 

Table 12, Table 13, and Figure 6 show no statistical difference between the predictive 

performances of the CART-derived threshold and guideline threshold.  No statistical differences 

were found between their PPVs (p=0.968), NPVs (p=0.357), sensitivities (p=0.317), and 

specificities (p=0.083).  Additionally, the two thresholds had a difference in areas under the 

ROC curves of 0.035 (4.7%) and their overall predictive performances were noninferior to one 

another (0.786 vs. 0.751; p=0.488).  
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Table 12 
Predictive Performances of CART-Derived AUC24h Threshold and Guideline Threshold for 
Obese Patients  
Predictive Performance AUC24h 586 mg*h/L AUC24h 600 mg*h/L  P-value 
PPV (%) 25.8 25.9 0.968a,c 
NPV (%) 97.5 96.4 0.357a,d 
Sensitivity (%) 80.0 70.0 0.317b,e 

Specificity (%) 77.2 80.2 0.083b,f 

Area under ROC Curve (95% CI) 0.786 (0.635–0.938) 0.751 (0.579–0.923) 0.278g 

a P-value was calculated using generalized score statistic. 
b P-value was calculated using McNemar test.  
c PPV data derived from 58 observations (31 patients with AUC24h >586 mg*h/L and 27 patients 
with AUC24h >600 mg*h/L). 
d NPV data derived from 164 observations (80 patients with AUC24h <586 mg*h/L and 84 
patients with AUC24h <600 mg*h/L). 
e Sensitivity data derived from 10 nephrotoxic patients. 

f Specificity data derived from 101 non-nephrotoxic patients. 

g ROC analysis derived from 111 patients.  
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours; PPV, positive 
predictive value; NPV, negative predictive value; ROC, receiver operating characteristic.  
 

 
 

 
Figure 6.  Receiver operating characteristic (ROC) curves of CART-derived AUC24h threshold 
and guideline AUC24h threshold for obese patients. 
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Table 13 
AUC24h of Obese Patients Who Experienced Nephrotoxicity  
 AUC24h ≤600 mg*h/L  AUC24h >600 mg*h/L  
AUC24h ≤586 mg*h/L  2 (20.0) 0 (0) 
AUC24h >586 mg*h/L  1 (10.0) 7 (70.0) 

P-value=0.317 (based on McNemar test); n=10 
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours. 
 

 

The bivariate comparison of obese patients with AUC24h values less than or equal to 586 

mg*h/L versus those with AUC24h values greater than 586 mg*h/L is displayed in Table 14.  No 

confounding factors that can impact the risk of vancomycin-associated nephrotoxicity between 

the two groups were found.   
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Table 14 
Patient Characteristics Between Obese Patients with AUC24h Above and Below CART-Derived 
AUC24h Threshold 

Characteristic 
AUC24h ≤586.4 
mg*h/L 
(n=80) 

AUC24h >586.4 
mg*h/L 
(n=31) 

P-value 

Demographics 
Age (years), mean ± SD 
Male, no. (%) 
BMI (kg/m2), mean ± SD 

 
54.1 ± 15.0 
67 (83.8) 
37.7 ± 8.6 

 
57.8 ± 9.0 
26 (83.9) 
43.2 ± 14.0 

 
0.201a 

0.988 
0.071a 

Selected Comorbidities 
Preexisting Liver Disease, no. (%) 
ASCVD, no. (%) 
Heart Failure, no. (%) 
Diabetes, no. (%) 
Hypertension, no. (%) 

 
12 (15.0) 
12 (15.0 ) 
8 (10.0) 
33 (41.3) 
37 (46.3) 

 
7 (22.6) 
4 (12.9) 
7 (22.6) 
15 (48.4) 
17 (54.8) 

 
0.341 

1.000b 

0.119b 

0.496 
0.526 

Selected Special Populations 
Critically Ill or ICU, no. (%) 
Preexisting Renal Disease, no. (%) 
Concomitant Nephrotoxin, no. (%) 

Loop Diuretic, no. (%) 
ACEI/ARB, no. (%) 
NSAID, no. (%) 
Aminoglycoside, no. (%) 
Piperacillin/tazobactam, no. (%) 
IV Contrast, no. (%) 

  
28 (35.0) 
12 (15.0) 
 
41 (51.2) 
21 (26.3) 
18 (22.5) 
4 (5.0) 
2 (2.5) 
40 (50.0) 

 
10 (32.3) 
11 (35.5) 
 
15 (48.4) 
6 (19.4) 
7 (22.6) 
1 (3.2) 
1 (3.2) 
14 (45.2) 

 
0.785 

0.017a 

 
0.787 
0.447 

0.993 

1.000b 

1.000b 

0.647 

Vancomycin Treatment Data 
Initial SCr (mg/dL), mean ± SD 

Vancomycin Indication 

SSTI, no. (%) 
Osteomyelitis, no. (%) 
Pneumonia, no. (%) 
Bacteremia, no. (%) 

Vancomycin Duration (days), mean ± SD 
Nephrotoxicity, no. (%) 

 
1.13 ± 0.97  
 
35 (43.8) 
10 (12.5) 
23 (28.7) 
18 (22.5) 
6.8 ± 3.4 
2 (2.5) 

 
1.46 ± 0.83 
 
11 (35.5) 
3 (9.7) 
7 (22.6) 
10 (32.3) 
8.3 ± 7.7 
8 (25.8) 

 
0.102a 

 
0.428 
1.000b 

0.511 

0.288 

0.141a 

<0.001* 

* P-value was <0.05 
a P-value was calculated using independent t-test. 
b P-value was calculated using Fisher’s exact test due to one or more expected values being <5.  
All other p-values were calculated using chi-square test.   
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours; BMI, body mass 
index; ASCVD, atherosclerotic cardiovascular disease; ICU, intensive care unit; ACEI, 
angiotensin-converting-enzyme inhibitor; ARB, angiotensin II receptor blocker; NSAID, 
nonsteroidal anti-inflammatory drug; SSTI, skin and soft tissue infection; SCr, serum creatinine. 
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Patients with Preexisting Renal Disease 

Of the 336 patients, 54 (16.1%) patients were considered to have preexisting chronic 

kidney disease or AKI upon admission.  The CART analysis showed that incidence of 

nephrotoxicity was significantly higher for patients with AUC24h values greater than  539 

mg*h/L (31.2% vs. 0%; p=0.003) (Figure 7).  

 
 

 
Figure 7.  CART-derived AUC24h nephrotoxicity threshold for patients with preexisting renal 
disease. 
 
 
 

Table 15 and Figure 8 compare the predictive performance of the CART-derived 

AUC24h threshold and guideline threshold for patients with preexisting renal disease.  The 

CART-derived threshold had a significantly higher NPV (p=0.025) and sensitivity (p=0.025).  In 

other words, out of ten nephrotoxic patients with preexisting renal disease, the threshold of 539 

mg*h/L identified five (50.0%) more nephrotoxic patients than the guideline threshold of 600 

mg*h/L (Table 16).  Although statistical significance was not achieved due to a small sample 
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size, the overall predictive performance of the 539 mg*h/L threshold was shown to be 0.148 

(24.6%) higher than that of the 600 mg*h/L threshold (0.750 vs. 0.602; p=0.096).  

 

Table 15  
Predictive Performances of CART-Derived AUC24h Threshold and Guideline Threshold for 
Patients with Preexisting Renal Disease  
Predictive Performance AUC24h 539 mg*h/L AUC24h 600 mg*h/L  P-value 
PPV (%) 31.3 27.8 0.653a,c 
NPV (%) 100 86.1 0.025a,d* 
Sensitivity (%) 100 50.0 0.025b,e* 

Specificity (%) 50.0 70.5 0.003b,f* 

Area under ROC Curve (95% CI) 0.750 (0.617–0.883) 0.602 (0.401–0.803) 0.096g 

* P-value was <0.05 
a P-value was calculated using generalized score statistic. 
b P-value was calculated using McNemar test.  
c PPV data derived from 50 observations (32 patients with AUC24h >539 mg*h/L and 18 patients 
with AUC24h >600 mg*h/L). 
d NPV data derived from 58 observations (22 patients with AUC24h <539 mg*h/L and 36 patients 
with AUC24h <600 mg*h/L). 
e Sensitivity data derived from 10 nephrotoxic patients. 

f Specificity data derived from 44 non-nephrotoxic patients. 

g ROC analysis derived from 54 patients.  
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours; PPV, positive 
predictive value; NPV, negative predictive value; ROC, receiver operating characteristic.  
 
 
 

 
Figure 8.  Receiver operating characteristic (ROC) curves of CART-derived AUC24h threshold 
and guideline AUC24h threshold for patients with preexisting renal disease. 
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Table 16 
AUC24h of Patients with Preexisting Renal Disease Who Experienced Nephrotoxicity  
 AUC24h ≤600 mg*h/L  AUC24h >600 mg*h/L  
AUC24h ≤539 mg*h/L  0 (0) 0 (0) 

AUC24h >539 mg*h/L  5 (50.0) 5 (50.0) 
P-value=0.025 (based on McNemar test); n=10 
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours; ICU, intensive 
care unit. 
 
 
 

Table 17 shows no confounding factors that can impact the risk of vancomycin-

associated nephrotoxicity between the patients with AUC24h values less than or equal to the 

CART-derived threshold and those with AUC24h values above the CART-derived threshold. 
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Table 17 
Patient Characteristics Between Patients with Preexisting Renal Disease with AUC24h Above and 
Below CART-Derived AUC24h Threshold 

Characteristic 
AUC24h ≤539 
mg*h/L 
(n=22) 

AUC24h >539 
mg*h/L 
(n=32) 

P-value 

Demographics 
Age (years), mean ± SD 
Male, no. (%) 

 
60.7 ± 12.3 
21 (95.5) 

 
65.0 ± 13.8 
27 (84.4) 

 
0.240a 

0.383b 

Selected Comorbidities 
Preexisting Liver Disease, no. (%) 
ASCVD, no. (%) 
Heart Failure, no. (%) 
Diabetes, no. (%) 
Hypertension, no. (%) 

 
3 (13.6) 
9 (40.9) 
4 (18.2) 
10 (45.5) 
14 (63.6) 

 
9 (28.1) 
8 (47.1) 
11 (34.4) 
12 (37.5) 
24 (75.0) 

 
0.320b 

0.216 

0.192 
0.559 
0.369 

Selected Special Populations 
Critically Ill or ICU  
Obese (BMI≥30 kg/m2), no. (%) 
Concomitant Nephrotoxin 

Loop Diuretic, no. (%) 
ACEI/ARB, no. (%) 
NSAID, no. (%) 
Aminoglycoside, no. (%) 
Piperacillin/tazobactam, no. (%) 
IV Contrast, no. (%) 

  
9 (40.9) 
7 (31.8) 

 
14 (63.6) 
5 (22.7) 
2 (9.5) 
0 (0) 
0 (0) 
4 (18.2) 

 
14 (43.8) 
15 (50.0) 
 
16 (50.0) 
6 (18.8) 
4 (12.5) 
1 (3.1) 
2 (6.3) 
4 (12.5) 

 
0.836 

0.184 

 

0.322 

0.743b 

1.000b 

1.000b 

0.508 
0.702b 

Vancomycin Treatment Data 
Initial SCr (mg/dL), mean ± SD 

Vancomycin Indication 

SSTI, no. (%) 
Osteomyelitis, no. (%) 
Pneumonia, no. (%) 
Bacteremia, no. (%) 

Vancomycin Duration (days), mean ± SD 
Nephrotoxicity, no. (%) 

 
2.13 ± 1.53 
 
6 (27.3) 
1 (4.5) 
12 (54.5) 
3 (13.6) 
7.0 ± 3.1 
0 (0) 

 
1.94 ± 0.90 
 
14 (43.8) 
3 (9.4) 
12 (37.5) 
5 (15.6) 
6.53 ± 3.5 
10 (31.3) 

 
0.559a 

 
0.218 
0.638b 

0.215 

1.000b 

0.613a 

0.003b* 

* P-value was <0.05 
a P-value was calculated using independent t-test. 
b P-value was calculated using Fisher’s exact test due to one or more expected values being <5.  
All other p-values were calculated using chi-square test.   
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours; ASCVD, 
atherosclerotic cardiovascular disease; ICU, intensive care unit; ACEI, angiotensin-converting-
enzyme inhibitor; ARB, angiotensin II receptor blocker; NSAID, nonsteroidal anti-inflammatory 
drug; SSTI, skin and soft tissue infection; SCr, serum creatinine. 
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Patients on Concomitant Loop Diuretics 

The CART-derived AUC24h threshold for nephrotoxicity for the 126 (37.5%) patients on 

a concomitant loop diuretic was 543 mg*h/L.  Incidence of nephrotoxicity was significantly 

higher for patients with AUC24h values greater than 543 mg*h/L (34.5% vs. 2.9%; p<0.001) 

(Figure 9).  

 

 
Figure 9.  CART-derived AUC24h nephrotoxicity threshold for patients on concomitant loop 
diuretics. 
 
 
 

Table 18 and Figure 10 provide the predictive performances of the CART-derived 

threshold and guideline threshold for patients on a concomitant loop diuretic.  The CART-

derived threshold had a significantly higher NPV (p=0.028) and sensitivity (p=0.014).  In other 

words, out of 22 nephrotoxic patients on a concomitant loop diuretic, the threshold of 543 

mg*h/L identified six (27.3%) more nephrotoxic patients than the guideline threshold (Table 

19).  Although statistical significance was not met due to the small sample size, the ROC curve 
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analysis showed that the CART-derived threshold’s overall predictive performance was 0.055 

(7.7%) higher than that of the guideline threshold (0.772 vs. 0.717; p=0.292). 

 
 
Table 18 
Predictive Performances of CART-Derived AUC24h Threshold and Guideline Threshold for 
Patients on Concomitant Loop Diuretics 
Predictive Performance AUC24h 543 mg*h/L AUC24h 600 mg*h/L  P-value 
PPV (%) 34.5 40.0 0.235a,c 
NPV (%) 97.1 91.2 0.028a,d* 
Sensitivity (%) 90.9 63.6 0.014b,e* 

Specificity (%) 63.5 79.8 <0.001b,f* 

Area under ROC Curve (95% CI) 0.772 (0.677-0.867) 0.717 (0.591-0.844) 0.292g 

* P-value was <0.05 
a P-value was calculated using generalized score statistic. 
b P-value was calculated using McNemar test.  
c PPV data derived from 93 observations (58 patients with AUC24h >543 mg*h/L and 35 patients 
with AUC24h >600 mg*h/L). 
d NPV data derived from 159 observations (68 patients with AUC24h <543 mg*h/L and 91 
patients with AUC24h <600 mg*h/L). 
e Sensitivity data derived from 22 nephrotoxic patients. 

f Specificity data derived from 104 non-nephrotoxic patients. 

g ROC analysis derived from 126 patients.  
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours; PPV, positive 
predictive value; NPV, negative predictive value; ROC, receiver operating characteristic.  
 
 
 

 
Figure 10.  Receiver operating characteristic (ROC) curves of CART-derived AUC24h threshold 
and guideline AUC24h threshold for patients on concomitant loop diuretics. 
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Table 19 
AUC24h of Patients on Concomitant Loop Diuretics Who Experienced Nephrotoxicity  
 AUC24h ≤600 mg*h/L  AUC24h >600 mg*h/L  
AUC24h ≤543 mg*h/L  2 (9.1) 0 (0) 
AUC24h >543 mg*h/L  6 (27.3) 14 (63.6) 

P-value=0.014 (based on McNemar test); n=22 
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours. 
 

 

No confounding factors were found when comparing patients on concomitant loop 

diuretics with AUC24h values less than or equal to 543 mg*h/L to those with AUC24h values 

greater than 543 mg*h/L (Table 20).  
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Table 20 
Patient Characteristics Between Patients on Concomitant Loop Diuretics with AUC24h Above 
and Below CART-Derived AUC24h Threshold 

Characteristic 
AUC24h ≤543 
mg*h/L 
(n=68) 

AUC24h >543 
mg*h/L 
(n=58) 

P-value 

Demographics 
Age (years), mean ± SD 
Male, no. (%) 

 
58.9 ± 13.8 
63 (92.6) 

 
62.2 ± 14.8 
14 (77.6) 

 
0.189a 

0.016* 

Selected Comorbidities 
Preexisting Renal Disease, no. (%) 
Preexisting Liver Disease, no. (%) 
ASCVD, no. (%) 
Heart Failure, no. (%) 
Diabetes, no. (%) 
Hypertension, no. (%) 

 
14 (20.6) 
15 (22.1) 
17 (25.0) 
12 (17.6) 
25 (36.8) 
37 (54.4) 

 
16 (27.6) 
9 (15.5) 
14 (24.1) 
21 (36.2) 
14 (24.1) 
34 (58.6) 

 
0.358 
0.351 

0.911 

0.018* 

0.126 
0.635 

Selected Special Populations 
Critically Ill or ICU, no. (%) 
Obese (BMI≥30), no. (%) 
Amputee, no. (%)  

  
34 (50.0) 
34 (50.0) 
7 (10.3) 

 
37 (63.8) 
22 (37.9) 
5 (8.6) 

 
0.120 

0.174 
0.750 

Vancomycin Treatment Data 
Initial SCr (mg/dL), mean ± SD 
Vancomycin Indication 

SSTI, no. (%) 
Osteomyelitis, no. (%) 
Pneumonia, no. (%) 
Bacteremia, no. (%) 

Vancomycin Duration (days), mean ± SD 
Nephrotoxicity, no. (%) 

 
1.22 ± 1.03 
 
16 (23.5) 
3 (4.4) 
35 (51.5) 
16 (23.5) 
8.2 ± 4.0 
2 (2.9) 

 
1.29 ± 0.80 
 
16 (27.6) 
4 (6.9) 
30 (51.7) 
10 (17.2) 
9.1 ± 7.4 
20 (34.5) 

 
0.664a 

 
0.602 
0.702b 

0.977 

0.385 

0.426a 

<0.001* 

* P-value <0.05 
a P-value was calculated using independent t-test. 
b P-value was calculated using Fisher’s exact test due to one or more expected values being <5.  
All other p-values were calculated using chi-square test.   
Abbreviations.  AUC24h, area under the concentration-time curve over 24 hours; ASCVD, 
atherosclerotic cardiovascular disease; ICU, intensive care unit; ACEI, angiotensin-converting-
enzyme inhibitor; ARB, angiotensin II receptor blocker; NSAID, nonsteroidal anti-inflammatory 
drug; SSTI, skin and soft tissue infection; SCr, serum creatinine. 
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CHAPTER 5: DISCUSSION 

 
 

This retrospective cohort study identified and examined the vancomycin AUC24h 

thresholds for nephrotoxicity for critically ill patients, obese patients, patients with preexisting 

renal disease, and patients on concomitant nephrotoxins.  It is the first study to perform analyses 

on vancomycin special populations to assess for AUC24h thresholds for nephrotoxicity that differ 

from the guideline threshold of 600 mg*h/L.  Compared to previous studies of a similar nature, 

this study adopted a less stringent definition of vancomycin-associated nephrotoxicity to capture 

more nephrotoxic patients.8,12,32-36  Previous studies defined vancomycin-associated 

nephrotoxicity as an increase in SCr by 0.5 mg/dL or more or a 50% increase from baseline on 

two or more consecutive measures.  On the other hand, this study adapted the definition of AKI 

from the 2012 KDIGO Clinical Practice Guideline for AKI and defined vancomycin-associated 

nephrotoxicity as an increase in SCr by 0.3 mg/dL or more within 48 hours or a 50% increase 

from baseline which is known or presumed to have occurred within seven days of discontinuing 

vancomycin.37  Among the 336 patients included, 29 (8.6%) patients met the definition of 

nephrotoxicity.  Consistent with prior studies’ findings, an increased risk of nephrotoxicity was 

associated with critical illness, preexisting renal disease, higher initial serum creatinine levels, 

and concomitant loop diuretics. 

 Previous studies used various AUC parameters (e.g., AUC0-24h, AUC24-48h, and AUC24h) 

and methods to assess their CART-derived AUC thresholds.8,12,32-36  Prior to analyzing the 

special populations, the general population was analyzed to validate the method proposed in this 

study.  For the general population, a CART-derived AUC24h threshold of greater than 616 

mg*h/L was significantly associated with an increased risk of nephrotoxicity.  The difference in 
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predictive performances between the CART-derived threshold and guideline threshold was not 

statistically significant.  No statistical differences were detected between the two thresholds’ 

PPVs, NPVs, sensitivities, and areas under the ROC curves.  Because the threshold of 616 

mg*h/L was consistent with preexisting literature, the proposed method to estimate the CART-

derived AUC24h thresholds for nephrotoxicity and to assess their predictive performances was 

validated.  

Although PPV, NPV, sensitivity, and specificity were estimated, PPV and sensitivity 

were given greater weight when determining the threshold for nephrotoxicity with the optimal 

predictive performance.  For predicting nephrotoxicity, a higher PPV increases the likelihood of 

identifying patients with vancomycin exposures that result in nephrotoxicity.  In addition, a 

higher sensitivity increases the accuracy of the AUC24h threshold in detecting a true positive for 

nephrotoxicity and decreases the probability of having a false negative.   

Critically ill patients frequently need larger doses of vancomycin due to their high acuity 

and their typically more resistant pathogens.13,41  Additionally, they are more inclined to have 

hemodynamic instability, renal hypoperfusion, and an increased Vd of vancomycin that can 

increase their risk of nephrotoxicity.  ICU residence and high APACHE II scores are 

independently associated with an increased risk of nephrotoxicity (aOR, 3.25; 95% CI, 1.18-

9.98; p=0.02 and 22.9 ± 7.4 vs. 18.2 ± 8.5; p=0.006, respectively).16,33  In this study, a CART-

derived threshold of 544 mg*h/L was identified for critically ill patients.  Compared to the 

guideline threshold, the CART-derived threshold had a similar PPV and a significantly higher 

sensitivity.  Therefore, this study demonstrates that a lower vancomycin AUC24h threshold than 

the guideline threshold of 600 mg*h/L should be considered in critically ill patients to decrease 

the risk of nephrotoxicity.  
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Currently, there are conflicting studies on the relationship between obesity and the risk of 

nephrotoxicity.  Davies et al. did not associate obesity with an increased risk of nephrotoxicity 

(RR, 0.98; 95% CI, 0.93-1.04; p=0.59).45  The current study also did not associate obesity with 

an increased risk of nephrotoxicity (32.9% vs. 34.5%, p=0.862).  However, other studies have 

shown weight to be associated with an increased risk of nephrotoxicity (OR, 1.02; 95% CI, 1.00-

1.03) and weight greater than 100 kg was an independent predictor of nephrotoxicity (OR, 2.74; 

95% CI, 1.27-5.91).14,15  Researchers hypothesize that the increased risk of nephrotoxicity is due 

to obese patients having an increased Vd of vancomycin that leads to disproportionately larger 

doses and a more intensive vancomycin exposure profile.42,43  However, the AUC24h parameter 

already accounts for vancomycin dosing and is directly proportional to the amount of 

vancomycin administered.  Thus, even if obesity is associated with an increased risk of 

nephrotoxicity, the AUC24h threshold for nephrotoxicity is suspected to not be lowered in obese 

patients.  In this study, a significant CART-derived threshold was not identified for obese 

patients.  Compared to the guideline threshold, the CART-derived threshold of 586 mg*h/L did 

not have a statistically significant PPV, NPV, sensitivity, specificity, or area under the ROC 

curve.  Therefore, this study supports the continued use of 600 mg*h/L as the AUC24h threshold 

for nephrotoxicity in obese patients. 

Studies have shown that patients with preexisting renal disease are associated with a 

higher risk of nephrotoxicity as vancomycin is predominantly eliminated renally.17,20  A 

significant CART-derived threshold of 539 mg*h/L was identified in patients with preexisting 

renal disease.  Compared to the guideline threshold, the AUC24h threshold of 539 mg*h/L had a 

comparable PPV and a significantly higher sensitivity.  To minimize the risk of vancomycin-
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associated nephrotoxicity, this study supports using a lower vancomycin AUC24h threshold than 

the guideline threshold of 600 mg*h/L in patients with preexisting renal disease.  

A prospective study determined that patients on concomitant nephrotoxins were 

significantly associated with an increased risk of nephrotoxicity (91% vs. 20%; p<0.001).19  

Concomitant nephrotoxins remained a significant predictor of nephrotoxicity after performing a 

multivariate analysis (p=0.003).  Concomitant loop diuretics increase the risk of vancomycin-

associated nephrotoxicity by 43-fold.18  The current study identified a significant CART-derived 

threshold of 543 mg*h/L for patients on concomitant loop diuretics.  The CART-derived 

threshold had a comparable PPV but a significantly higher sensitivity compared to the guideline 

threshold.  For patients on concomitant loop diuretics, a lower vancomycin AUC24h threshold 

than the guideline threshold of 600 mg*h/L should be considered to minimize the risk of 

nephrotoxicity. 

Other concomitant nephrotoxins such as renin-angiotensin system blockers, NSAIDs, 

aminoglycosides, piperacillin-tazobactam, and IV contrast dyes have also demonstrated 

synergistic activity with vancomycin in the development of nephrotoxicity.18,20,48-50  However, 

less than ten nephrotoxic patients were observed and therefore CART analysis was not 

performed in these special populations.  With the exception of patients on IV contrast dyes, these 

special populations had less than ten nephrotoxic patients due to their small sample sizes.  

Despite having an adequate sample size of patients who received IV contrast dyes, less than 10 

nephrotoxic patients were observed.  This was hypothesized to be due to patients commonly 

receiving sodium bicarbonate or acetylcysteine prior to receiving IV contrast dyes at SJGH to 

minimize the risk of nephrotoxicity.  Further research is needed to determine if the upper AUC24h 
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threshold is consistent or varies when used in patients on concomitant ACEIs, ARBs, NSAIDs, 

aminoglycosides, piperacillin-tazobactam, or IV contrast dyes.  

The CART-derived thresholds identified for critically ill patients, patients with 

preexisting renal disease, and patients on concomitant loop diuretics are inherently able to 

provide AUC24h thresholds where the risk of nephrotoxicity is most disproportionate.  However, 

studies theorize that the incidence of vancomycin-associated nephrotoxicity increases along the 

AUC24h continuum.4  Therefore, it is important to recognize that the study’s findings of AUC24h 

thresholds that are lower than the guideline threshold serve as a guidance for clinicians to be 

cognizant of the potential synergistic nephrotoxicity risk when dosing vancomycin in special 

populations such as critically ill patients, patients with preexisting renal disease, and patients on 

concomitant loop diuretics.  Clinicians should consider dosing vancomycin more conservatively 

in these special populations.  

Study Limitations 

The current study has several limitations that are mostly inherent to the study’s single-

center, retrospective study design.  Foremost, a majority of the patients were male and 

Caucasian.  However, no study has reported significantly different AUC24h thresholds for 

nephrotoxicity based on gender or race.  Based on statistical analysis using this study’s 

population, the incidence of nephrotoxicity was not significantly different between males and 

females (p=0.828) and between Caucasians and non-Caucasians (p=0.145).  Therefore, the 

dominant male and Caucasian population may not limit the application of the current study to 

females or other races.   

Moreover, not all of the patients included in the nephrotoxicity analysis had 

Staphylococcus aureus infections.  Patients on vancomycin due to suspected MRSA but then 



69 
 

finalized with other gram-positive or gram-negative pathogens were still included in the 

nephrotoxicity analysis.  However, the inclusion of non-MRSA infections was considered 

appropriate as the main endpoint measurement was nephrotoxicity rather than efficacy of the 

drug exposure.  In addition, it mimics real-life clinical practice settings where causative 

pathogens are commonly yet to be identified during the initial course of vancomycin.  

Additionally, trough concentrations were primarily used to estimate the Bayesian-derived 

AUC24h rather than both peak and trough concentrations.  However, Ho et al. demonstrated 

significant correlations between the Bayesian-derived AUC24h values estimated from one sample 

and those from two samples (p <0.001).53  Therefore, the CART-derived AUC24h thresholds 

derived from predominately trough concentrations would not be meaningfully different from 

those derived from peak and trough concentrations.   

Lastly, this study did not include the AUC24h/MICBMD threshold for efficacy of 

vancomycin.  This outcome had been planned in the early state of the research and the study 

initially aimed to identify the CART-derived AUC24h/MICBMD thresholds associated with 

treatment success in MRSA-associated infections and special populations such as critically ill 

patients, amphetamine users, IVDU, and patients on concomitant immunosuppressants.  

However, only 13 (3.9%) patients had clinical failure. Furthermore, only 81 (24.3%) patients 

were isolated with MRSA and 17 (21.0%) of those patients had AUC24h/MICBMD ratios less than 

400.  Therefore, this study focused only on the AUC24h threshold for nephrotoxicity.   

Future Directions 

As more hospitals continue to transition from trough-based monitoring to AUC24h-based 

monitoring, further studies should be conducted to establish a relationship between the 

vancomycin AUC24h threshold for nephrotoxicity and special populations such as critically ill 
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patients, obese patients, patients with preexisting renal disease, and patients on concomitant 

nephrotoxins.  Additional studies should also be conducted to assess the impact on the AUC24h 

threshold when patients meet the description of more than one special population.  

A follow-up multicenter, prospective study is warranted to validate the lower CART-

derived AUC24h that was identified in critically ill patients, patients with preexisting renal 

disease, and patients on concomitant loop diuretics.  The impact on the AUC24h threshold when 

patients meet the description of more than one special population should also be considered.  

Furthermore, conducting the study at multiple institutions can increase the sample size of the 

study.  Having more nephrotoxic patients in each special population can improve the estimation 

of the CART-derived thresholds for nephrotoxicity and the assessment of their predictive 

performances.  Additionally, it will allow further analyses on special populations that the current 

study was unable to analyze (e.g., patients on concomitant ACEIs, ARBs, NSAIDs, 

aminoglycosides, piperacillin-tazobactam, or IV contrast dyes).  Moreover, collecting both peak 

and trough concentrations would be ideal to maximize the accuracy of estimating the AUC24h.  

Additional parameters can also be collected to better describe the special populations. For 

example, a scoring system such as the APACHE II can be used to stratify critically ill patients 

based on the severity of their critical illness.  Similarly, recording the dose and duration of the 

concomitant nephrotoxins can help determine if conservative vancomycin dosing needs to be 

considered in patients who receive a single dose or low doses of a concomitant nephrotoxin.  

A multicenter, prospective study is also needed to investigate the generalizability of the 

proposed vancomycin AUC24h/MICBMD threshold of 400 for clinical efficacy in different MRSA-

associated infections and vancomycin special populations.  This will ensure that the study is 
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adequately powered and includes enough incidences of MRSA infections and clinical failures to 

estimate the CART-derived thresholds for clinical efficacy.  
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CHAPTER 6: CONCLUSION 

 
 

For critically ill patients, patients with preexisting renal disease, and patients on 

concomitant loop diuretics, a lower vancomycin AUC24h threshold for nephrotoxicity such as 

544 mg*h/L, 539 mg*h/L, and 543 mg*h/L, respectively, may be considered to minimize the 

risk of nephrotoxicity.  Compared to the vancomycin AUC24h threshold of 600 mg*h/L that is 

currently recommended by the 2020 ASHP/IDSA/PIDS/SIDP updated vancomycin monitoring 

guideline, these thresholds had comparable PPVs but significantly higher sensitivities.  On the 

other hand, this study supports the continued use of the vancomycin AUC24h threshold of 600 

mg*h/L to minimize the risk of nephrotoxicity in obese patients.  
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