PROTEOMIC ANALYSIS OF FETAL RAT NEURAL STEM CELLS AFTER TREATMENT WITH Hericium erinaceus

Bright Adam Test
University of the Pacific

Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds

Part of the Biochemistry Commons, Biology Commons, and the Biomedical Engineering and Bioengineering Commons

Recommended Citation

This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.
PROTEOMIC ANALYSIS OF FETAL RAT NEURAL STEM CELLS AFTER TREATMENT WITH *Hericium erinaceus*

By

Bright A. Test

A Thesis Submitted to the

Graduate School

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

College of the Pacific

Biological Sciences

University of the Pacific

Stockton, California

2020
PROTEOMIC ANALYSIS OF FETAL RAT NEURAL STEM CELLS AFTER TREATMENT WITH *Hericium erinaceus*

By

Bright A. Test

APPROVED BY:

Thesis Advisor: Craig Vierra, Ph.D.

Committee Member: Doug Weiser, Ph.D.

Committee Member: Lisa Wrischnik, Ph.D.

Department Chair: Eric Thomas, Ph.D.
PROTEOMIC ANALYSIS OF FETAL RAT NEURAL STEM CELLS AFTER TREATMENT WITH *Hericium erinaceus*

Copyright 2020

By

Bright A. Test
DEDICATION

This thesis is dedicated to my loving family. Thank you for your unconditional love and support. I will forever be especially grateful to you, mama and papa.
ACKNOWLEDGEMENTS

This thesis would not have been possible without the mentorship and support from the Vierra lab. Everyone contributed to a healthy and positive environment that allowed me to work at my best. Not a stale day went by as I chugged away to complete my thesis.

Most importantly, an infinite amount of thanks to Dr. Craig Vierra. Without his guidance and insight, I would not have been able to complete this project. I am forever grateful for his help and friendship.
PROTEOMIC ANALYSIS OF FETAL RAT NEURAL STEM CELLS AFTER TREATMENT WITH *Hericium erinaceus*

Abstract

By Bright A. Test

University of the Pacific
2020

The fungus, *Hericium erinaceus*, has outstanding chemical properties, displaying health benefits in digestive, hepatic, and nervous tissues. Its ease of accessibility and use makes it one of the most common substances used for treatment in Eastern medicine. More and more recent research is confirming the incredible health benefits of this fungus, especially the impact that is seen on nervous tissue growth and recovery post-treatment. Such neurite outgrowth and myelin sheath regeneration could illustrate the beginning of the cure to lifelong neurodegenerative diseases such as Multiple Sclerosis. In this first-of-its-kind study, we cultured and differentiated fetal rat neural stem cells while treating the samples with varying concentrations of aqueous extract of *Hericium erinaceus* mycelium. The cells were then harvested and lysed at various time points as the proteins were isolated and purified prior to analysis by LC-ESI mass spectrometry. A proteomic analysis was conducted where statistically significant changes in protein expression were observed between the control groups and the treated trials of both time points. While our initial targets of interest were not found, an up to 4-fold increase in protein expression was seen in a group of Histone H1 variants following treatment with *Hericium erinaceus*. These Histone H1 variants are known to be linker histones which interact with the core histone bead and play a role in chromatin remodeling. It is clear that *Hericium erinaceus*
plays a role in increasing the protein expression of Histone H1 variants which could lead to
downstream effects yet to be revealed. This exploratory research should serve as a helpful
launching point for those determined to understand the underlying mechanisms behind this
phenomenon and the results it may have on the nervous system.
TABLE OF CONTENTS

List of Tables.. 10
List of Figures.. 11
List of Abbreviations... 12

Chapter 1: Introduction.. 13
 Overview of Multiple Sclerosis... 14
 Chemical Properties and Effects of Hericium erinaceus... 17
 Proteomics... 20
 Purpose and Goal... 21

Chapter 2: Materials and Methods... 22
 Neural Stem Cell Differentiation and Sample Preparation.. 22
 Peptide Purification.. 25
 Colorimetric Peptide Assay and Normalization... 26
 Proteomic Analysis... 27
 RT-qPCR Analysis.. 28

Chapter 3: Results.. 30
 Neural Stem Cell Differentiation.. 30
 Normalization and Mass Spectrometry.. 32
 Quantitative Proteomic Analysis.. 35
 Post-Translational Modifications.. 44
 RT-qPCR Analysis.. 47

Chapter 4: Discussion.. 52
Neural Stem Cell Differentiation………………………………………………….52
Normalization and Mass Spectrometry…………………………………………53
Quantitative Proteomic Analysis………………………………………………….54
Post-Translational Modifications…………………………………………………..57
Conclusion and Future Directions………………………………………………….58
References………………………………………………………………………………….60
Appendices
A. List of T-test Significant Proteins and Fold Changes in Day 3 Groups……..63
B. List of T-test Significant Proteins and Fold Changes in Day 7 Groups………65
C. List of ANOVA Significant Proteins and Fold Changes in Day 3 and Day 7 Groups………………………………………………………………………..70
LIST OF TABLES

Table

1. Component Distribution for 100 mL StemPro® NSC SFM Complete Medium………………………………………………………………………………………………………24

2. Concentrations of *H. erinaceus* in 125 mL StemPro® NSC SFM Incomplete Medium………………………………………………………………………………………………………25

3. Observed Initial Concentrations of Chosen Samples and Post-Normalization Values……………………………………………………………………………………27

4. Primer Sequences for Histone H1 Family………29

5. RNA Absorbance Values ……47

6. Example of Spectral Count Normalization in Scaffold……55
LIST OF FIGURES

Figure

1. Comparison of morphology between undifferentiated stem cells and Day 3 control and treatment groups…………………………………………………. 30

2. Comparison of morphology between undifferentiated stem cells and Day 7 control and treatment groups……………………………………………. 31

3. Raw chromatography files from the Thermo Scientific™ Orbitrap Fusion™ Tribrid™ mass spectrometer after completing the sample processing…………………………………………………... 34

4. Normalized total spectra vs biosample.. 38

5. Normalized total spectra of nestin in controls vs nerve stem cells……………… 41

6. ANOVA test results of histones in controls vs trials.. 42

7. Recognized peptide sequences matched with a proteome database and mapped back to the histones of interest.. 43

8. Normalized total spectra of myelin expression factor 2 in the analyzed samples.. 44

9. Amino acid sequences of the five variants of histone H1 with possible PTMs labeled at certain sites.. 46

10. The difference in cycle time compared across the histone H1 variants.............. 49
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>DDT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>IAA</td>
<td>indole-3-acetic acid</td>
</tr>
<tr>
<td>LC-ESI</td>
<td>liquid chromatography - electrospray ionization</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µL</td>
<td>microliter</td>
</tr>
<tr>
<td>MBP</td>
<td>myelin basic protein</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>MS</td>
<td>Multiple Sclerosis</td>
</tr>
<tr>
<td>MS/MS</td>
<td>tandem mass spectrometry</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>NGF</td>
<td>nerve growth factor</td>
</tr>
<tr>
<td>NSC</td>
<td>neural stem cells</td>
</tr>
<tr>
<td>PNS</td>
<td>Peripheral Nervous System</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RT-qPCR</td>
<td>reverse transcription quantitative polymerase chain reaction</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION

The nervous system is arguably the most complex biological system in our body. There are many different types of cells and molecules that play vital roles in maintaining the health and wellbeing of the system. In vertebrates, the nervous system is divided into two categories: the central nervous system (CNS) and peripheral nervous system (PNS). The CNS is composed of the brain and spinal cord, whereas the PNS consists of the peripheral nerves and ganglia that stem from the brain and spinal cord. There are two different cell categories in the nervous system, which include neurons and neuroglia (glia). Neurons are the nerve cells that send electrical signals, known as action potentials, throughout the human body which control muscle cell contraction and relaxation. Glial cells are supporting cells that play auxiliary roles and keep the overall environment healthy and proper for the neurons. Neurons can also be supported by neuropeptides known as neurotrophic factors. There are many neurotrophic factors that are involved in the regulation of growth, maintenance, proliferation, and survival of nerve cells, but the most common one that supports the growth of certain target neurons is known as nerve growth factor (NGF). NGF plays a crucial role in a lot of nervous tissue development and is a subject of interest in many studies. After many years of research, various protein markers have been visualized and have been used to determine the developmental state of nervous tissue. During development, all nervous tissue begins as neural stem cells which then differentiate into a variety of different neuronal cell types. Nestin is the most widely known of these protein markers and is mostly only found in undifferentiated neural stem cells. Other markers include neuron-specific enolase and fibrillary acidic protein, which is commonly observed inside glia. These markers are typically visualized during the quantitative analysis stages of research.
While there are multiple kinds of neurons and glial cells, oligodendrocytes are the largest glial cells and play an irreplaceable role. Oligodendrocytes are glial cells in the central nervous system that generate myelin, an important sheath that is responsible for enveloping neurons and ensuring proper action potential propagation. They are aligned in rows between the nerve fibers of white matter and are close to the somata of neurons in gray matter. The cytoplasmic processes of oligodendrocytes typically extend to multiple axons at once and wrap themselves around the length of the axon until multiple lamellas are formed. These cells and the myelin they generate are presumed to be majorly affected in patients suffering from Multiple Sclerosis (MS).

Overview of Multiple Sclerosis

There are many neurological diseases in today’s world that are currently not curable, one of which is Multiple Sclerosis. MS is a demyelinating disorder in which the immune cells invade the CNS to remove myelin debris, but overdo it and cause neuron and oligodendrocyte death which leads to physical, mental, and psychiatric impairment problems\(^1\). White matter infiltration by our nervous system’s immune cells is the focal point of the pathology of MS\(^1^7\). The immune cells most responsible for the inflammatory processes that occur during the onset and progression of MS are CD4-positive T lymphocytes; however, monocytes, macrophages, neutrophils, and B lymphocytes are also involved. While it was previously thought that the human brain does not change much after the first stages of development, it is now common to come across research showing the brain demonstrating structural and functional plasticity throughout the course of human life. This brain plasticity is affected when these infiltrating immune cells secrete various factors that control and regulate neuronal function and signal formation in neuronal synapses\(^1^8\). While Multiple Sclerosis is not an inherently deadly disease, patients suffering from MS typically have a reduced life expectancy. Initially, non-durable
remyelination occurs which typically leads to neurological function recovery in the short-term. As time progresses, however, the pathological changes become dominated by widespread microglial activation associated with extensive and chronic neurodegeneration, the clinical correlate being progressive accumulation of disability15. Paraclinical investigations show abnormalities that indicate the distribution of inflammatory lesions and axonal loss, interference of conduction in previously myelinated pathways, and intrathecal synthesis of oligoclonal antibody15. Cellular and secretory activity of infiltrating leukocytes contributes to the creation of these inflammatory demyelinated lesions in the white matter of the brain. The gray matter of patients with MS is also affected, leading to motor, sensory, visual, and cognitive impairment with the ability to memorize and learn being severely impacted18. MS is a chronic condition that cycles between relapses and remissions. The remission periods can last up to years, but symptoms flare up again eventually. Multiple Sclerosis is sometimes more specifically referred to as Relapsing-remitting MS because of this.

The current immunotherapies inhibit further demyelination, but do not act to enhance remyelination1. Licensed disease-modifying agents reduce the frequency of new episodes but do not reverse fixed deficits and have questionable effects on the long-term accumulation of disability and disease progression15. These treatments are also very expensive. The cost-effectiveness of a few disease-modifying drugs from a US societal perspective was analyzed and the results illustrated that dimethyl fumarate was the most preferred therapy to manage relapsing-remitting multiple sclerosis3. In 2014, the average annual medication cost of dimethyl fumarate was about $47,71816. Between 2011 and 2015, the annual disease-modifying therapy (DMT) cost per MS patient increased from $26,772 to $43,606, a 13.0% average annual growth rate16. When comparing DMT users to non-DMT users, the annual health care cost per DMT user was
74% higher in 2011 ($50,352 vs $28,881), increasing to more than double in 2015 ($70,683 vs $29,821)16. In the United States, the prevalence of MS has been presumed to be approximately 100/100,000 people2. Baldassari et al. describes in great length the therapeutic strategies being developed to promote myelin repair22. Almost all cells in the nervous system are potential targets as drug manufacturers try to modulate cellular activity and environment to promote myelination and to inhibit demyelination. There have been several laboratories that identified compounds which promote endogenous oligodendrocyte progenitor cell (OPC) function. Mesenchymal stem cell transplantation, high-dose biotin treatment, and protein pathway blocking are treatment methods that have been tested and are currently being explored some more due to the difficulty of successful implementation and monitoring \textit{in vivo}. Other drugs such as dopamine antagonists, atypical antipsychotics, thyroid hormone inducers, and testosterone stimulators are also currently being investigated in clinical trials for remyelination potential in MS. Baldassari’s group also describes multiple methods of screening and assessing myelin integrity: positron emission tomography, magnetization transfer imaging, myelin water imaging, and diffusion tensor imaging. There are also indirect ways of measuring myelin integrity: neurite orientation dispersion and density imaging, functional MRI, and magnetic resonance spectroscopy. These forms of measurement will become more accurate as the field focuses more on repairing myelin instead of simply trying to halt demyelination, but as of right now, the major difficulties involve lack of accurate biomarkers and lack of specificity when tracking affected myelin. It is important to fully understand the mechanism of action of remyelinating agents and their long-term safety and reliability before applying such advances to clinical care22.
Chemical Properties and Effects of *Hericium erinaceus*

There may be a cheaper and more effective alternative on the horizon hiding inside a fungus. *Hericium erinaceus* (HE), also known as Lion’s Mane, is a medicinal mushroom that contains neurotrophic and neuroprotective properties and has been widely consumed in Asian countries such as China and Japan\(^4\). The first account of this mushroom being consumed dates back to 264 A.D. on Taiwan Island where the natives ate *houtougeng* (translated to monkey head thick soup) and considered the soup to be beneficial in neutralizing the ill-effects of alcoholic beverages\(^5\). This mushroom is widely found in Asia, Europe, and northern temperate latitudes where beech and oak trees grow\(^6\). Even with modern technology and transportation methods, there is an unfortunate lack of *H. erinaceus* consumption and utilization in North America. The American species, *H. americanum* is also not commonly consumed.

As any fungus, HE is composed of mycelium and fruiting bodies. The powder of this crushed mushroom must be boiled in hot water to successfully extract the active compounds responsible for the health benefits experienced when consumed. These active compounds come in many forms including hericenones, erinacines, and polysaccharides, to name a few. Hericenones are a group of aromatic compounds that have previously been found in the fruiting bodies of HE. There were multiple aromatic compounds in this category that were isolated and purified by multiple researchers and the studies also revealed some anticancer properties tied to these compounds\(^21\). Hericinones, however, failed to stimulate NGF gene expression in primary cultured rat astroglial cells and 1231N1 human astrocytoma cells\(^23\). Li et al. describes erinacines as groups of cyathin diterpenoids that show biological activities as stimulators of NGF synthesis\(^24\). To date, 15 erinacines (erinacines A-K and P-S) have been identified and further investigations have demonstrated that eight of them have various neuroprotective properties,
such as enhancing NGF release (erinacines A-I), reducing amyloid-β deposition, increasing insulin-degrading enzyme (IDE) expression (erinacines A and S), or managing neuropathic pain (erinacine E), while others are either being currently discovered or have different pharmacological activities. Li’s group concludes by stating that erinacine A is effective in reducing neurodegenerative disease-induced cell death, but because there have been no studies illustrating erinacine A’s crossing of the blood-brain barrier, it is hard to say how effective this compound will prove to be when consumed orally. Beneficial polysaccharides have also been discovered and analyzed. A polysaccharide EP-1 isolated from HE mycelia culture demonstrated antioxidant activity and prevented oxidative stress induced by \(\text{H}_2\text{O}_2 \) through mitochondrial dependent apoptotic pathways in gastric mucosa epithelial cells. A heteropolysaccharide (HEP-S) was isolated from the fruiting bodies of *Hericium erinaceus* and was observed to function as an immunostimulator to stimulate both the innate and adaptive immune responses in mouse cells.

H. erinaceus has been reported to illustrate incredible health benefits for the body’s digestive, immune, circulatory, and nervous systems. Helicobacter pylori is a bacteria found in the stomach and is the main pathogenic factor of chronic gastritis, peptic ulcers, and adenocarcinoma of the distal stomach, but its growth can be inhibited by using ethanol extracts and ethyl acetate fractions of HE. The exopolymer produced in submerged mycelial culture of HE has been shown to significantly reduce the plasma triglyceride, total cholesterol, low-density lipoprotein cholesterol, phospholipid, and liver total cholesterol level in rats, implying that it has hypolipidemic effects. There is a plethora of benefits to the nervous system such as, but not limited to, peroneal nerve recovery after crush injury, coordination of neuron functions associated with complex neurodegenerative diseases, and enhanced myelination in mature
myelinating fibers12. Another study has also found that HE can activate the synthesis of nerve growth factor (NGF)13. The stimulation of this neurotrophic factor can be beneficial in increasing the neurite outgrowth in a nervous system trying to combat a neurodegenerative disease. Most importantly and according to a study cited by many, aqueous extract of this mushroom has been shown to improve and expedite the process of myelination in nerve cells14. This commonly cited study by Kolotushkina et. al. examined the effects of applying \textit{H. erinaceus} extract to cultures of newborn WISTAR rat cerebellums. When this group added the extract to their cells, they noticed no drastic changes in the development of nerve and glial cells, but the number of lamellae in the myelin sheaths did increase at a faster rate during development than untreated groups14. This activity, in theory, can directly counter the demyelination of nerves as seen in patients with Multiple Sclerosis. There are not many studies that cover this subject which make it difficult to find other studies that concur with the findings of this one. To our knowledge, there were no studies completed beforehand analyzing the proteomic contents of nerve cells in vitro being treated with \textit{Hericium erinaceus}. Proteome analysis of the mushroom itself was conducted recently where mass spectrometry was used to identify a total of 2543 unique proteins in the \textit{H. erinaceus} genome26. We can use the information from this study to help in our proteomic analysis, but the change in protein levels of rat fetal neural cells after treatment of \textit{H. erinaceus} remains to be analyzed for the first time. Therefore, analyzing the proteomic contents of these neural cells treated with this mushroom can lead to uncovering more details about the proteins involved in the aforementioned myelinating process.
Proteomics

Proteomics is the large-scale study of proteins and requires the use of a variety of techniques stemming from fields such as molecular biology, biochemistry, and genetics. One vital technique, known as mass spectrometry, is utilized when analyzing a large amount of proteins at once. After isolating, purifying, and breaking down the proteins of interest into smaller peptides, the sample is fed into a mass spectrometer where the now-accessible peptides are charged and turned into precursor ions through techniques like Electrospray ionization (ESI). Mass spectrometry is used to measure the mass-to-charge ratio of these ions that are pulled through the mass spectrometer machine by an oppositely charged current. These are measured by a mass analyzer to generate what is known as a MS1 spectrum. As the ions are analyzed, certain ones are pulled through the machine where they collide with inert gas and fragment into charged amino acids through a process called Higher-energy Collisional Dissociation (HCD). These fragments are analyzed a second time by either a different mass analyzer or the same one from before, generating a MS2 spectrum which we can further investigate using specific computer software. This information allows investigators to see exactly what peptides were recognized by the mass spectrometry, making it possible to match discovered peptides to large databases in an effort to map back to proteins of interest. The parameters for which precursor ions are sent to further dissociate are set on the machine’s software before the run begins. The machine we used for our studies is known as the Thermo Scientific™ Orbitrap Fusion™ Tribrid™ mass spectrometer. This machine’s mode of function and interior is further explained in a thorough paper published by Hebert and colleagues. 27
Purpose and Goal

This study aimed to analyze the proteome of neural stem cells after *H. erinaceus* extract treatment. The primary objective was to explore whether treatment of neuronal stem cells with *H. erinaceus* extract resulted in changes in gene expression profiles for proteins involved in the myelination synthesis pathway. In our studies, we demonstrated that treatment of rat neuronal stem cells with *H. erinaceus* extract did not upregulate the expression of myelin basic protein or myelin expression factor 2, two known markers associated with myelin biosynthesis. However, they did reveal increased expression of histone 1 variants, suggesting treatment of neuronal stem cells with *H. erinaceus* extract leads to alteration in chromatin remodeling and gene silencing, which may suggest associations with controlling the neuronal differentiation program.
Neural Stem Cell Differentiation and Sample Preparation

Rat Fetal Neural Stem Cells (Invitrogen™ N744-100) were expanded using T75 flasks. The T75 flasks were coated with a matrix consisting of CELLStart™ (Gibco™ A10142001) diluted 1:100 in D-PBS with calcium and magnesium. 560 mL of this matrix was made in total. 14 mL of this matrix was used to coat each flask which were then incubated at 37°C in a humidified atmosphere of 5% CO$_2$ in air for 1 hour before being stored until use. Two different solutions were made: one for expanding the cells and one for differentiating the cells. Cells were passaged using StemPro® NSC SFM complete medium consisted of KnockOut™ D-MEM/F-12 with StemPro® NSC SFM Supplement, EGF, bFGF, and GlutaMAX™-I (all from Gibco™ and ThermoFisher). A mixture of penicillin and streptomycin was added to prevent bacterial and fungal contamination. See Table 1 for the breakdown of concentrations. The same medium lacking EGF and bFGF was used to differentiate the cells at P2. The volume remained unchanged after removing these small amounts of growth factor. To begin with, 4 of the previously matrix-primed T75 flasks were coated with cells and 20 mL of complete medium in each. Each flask contained about 5×10^5 cells at this point. After letting the cells grow for 24 hours, the complete media was siphoned and replaced with fresh complete media to minimize the accumulation of cellular debris. The cells expanded for a total of 3 days in Passage 0. Photos were taken every day for three days using light microscopy (Leica DMI3000 B). After three days, two of the four T75 flasks were further expanded while the other two flasks were frozen and stored in liquid nitrogen. Cells were passaged according to the manufacturer’s instructions, except for the centrifugation step where 400 × g was used instead of 300 × g (MAN0001642).
The cells were then distributed evenly and plated into 8 T75 flasks to begin P1. The same procedure was followed and progress was recorded every day by light microscopy. The P1 cells were allowed to approach confluency (2 days of growth) and these cells were split (P2). P2 cells were split into smaller 100mm × 20mm plates and these cells were used as separate trials during the analysis. 6 mL of complete medium was used per plate which contained about 0.8 mL of cells. Cells were expanded for 3 days while progress was recorded. Three plates were harvested prior to the addition of the differentiation media. These cells belonged to an undifferentiated neural stem cell group of trials. The rest of the plates underwent an exchange of media where the complete medium was exchanged for one lacking EGF and bFGF (other concentrations remained the same as these small amounts did not affect volume significantly). Different versions of the incomplete medium were made containing different concentrations of dissolved *H. erinaceus* mycelia (supplied by Real Mushrooms) to be used for the cultivation of the trials. The mushroom powder was weighed out and dissolved in the media lacking the growth factors. The amounts used and concentrations generated are listed in Table 2. All proportions remained the same. Every remaining plate was coated with 10 mL of the differentiation medium. The remaining plates were grouped into different trials with different timepoints. Three replicates of the negative control, low concentration, medium concentration, and high concentration groups were harvested after 3 days of differentiation. At this time, the media was exchanged for media containing the mushroom extract. 5 mL was siphoned off to prevent the cells from being exposed to air and 10 mL of fresh differentiation media was added. The remaining three replicates of each group were harvested after 7 days of differentiation. Light microscopy was used to record the progress of cell differentiation. All cells were harvested and washed using the same procedure per plate. 7 mL of media was transferred to a conical tube using a sterile pipette
and cells were washed with 5 mL of D-PBS lacking Ca\(^{2+}\) and Mg\(^{2+}\). The D-PBS was aspirated off and 1 mL of accutase was added to each plate. Cells were rinsed with 4 mL of matching media which was then transferred to the same conical tube. Cells were centrifuged at 400 \(\times \) g for 4 minutes and the supernatant was discarded. The pellet was resuspended with 1 mL of cold D-PBS and spun again. This step was repeated once more and the resulting supernatant was removed. The cell pellet was frozen at -80°C. All cell subculturing protocols were carried out aseptically under a Laminar flow hood.

Table 1
Component Distribution for 100 mL StemPro® NSC SFM Complete Medium

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>KnockOut™ D-MEM/F-12</td>
<td>1X</td>
<td>97 mL</td>
</tr>
<tr>
<td>GlutaMAX™-I Supplement</td>
<td>2 mM</td>
<td>1 mL</td>
</tr>
<tr>
<td>bFGF</td>
<td>20 ng/mL</td>
<td>2 μg</td>
</tr>
<tr>
<td>EGF</td>
<td>20 ng/mL</td>
<td>2 μg</td>
</tr>
<tr>
<td>StemPro® NSC SFM Supplement</td>
<td>2%</td>
<td>2 mL</td>
</tr>
<tr>
<td>Penicillin + Streptomycin</td>
<td>0.5%</td>
<td>0.5 mL</td>
</tr>
</tbody>
</table>

Note. Table adapted from Invitrogen™ manual MAN0001642.
Table 2
Concentrations of *H. erinaceus* in 125 mL StemPro® NSC SFM Incomplete Medium

<table>
<thead>
<tr>
<th>H. erinaceus Trial Name</th>
<th>Concentration</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0.1 mg/mL</td>
<td>12.5 mg</td>
</tr>
<tr>
<td>Medium</td>
<td>0.25 mg/mL</td>
<td>31.25 mg</td>
</tr>
<tr>
<td>High</td>
<td>0.5 mg/mL</td>
<td>62.5 mg</td>
</tr>
</tbody>
</table>

Peptide Purification

In-solution tryptic digestion was performed to prepare samples for mass spectrometer analysis. A total of 200 µL of 6 M urea/100 mM Tris buffer (pH 7.8) was used to lyse the cells. Sonication was also conducted as an additional measure to ensure complete cell lysis. To help denature proteins, 5 µL of reducing reagent, 200 mM DTT, was added and the sample was mixed by gentle vortex. After letting sit for 10 minutes in room temperature, 20 µL of alkylating reagent, 200 mM IAA, was mixed into the tube and vortexed. After another 10 minutes, 20 µL of 200 mM DTT was mixed in and allowed to sit for 10 minutes at room temperature. 775 µL of sterile MilliQ water was added to each sample to dilute the urea concentration and create an environment where trypsin can retain its activity. Initially, 3 µL of Trypsin Gold Solution (0.5 mg/mL) was added and the digestion was carried out overnight at 37°C. The next day, another 1.5 µL of Trypsin was added and allowed to digest for another 2 hours. The reaction was then stopped by adding 5.125 µL of 10% TFA.

Pierce™ C18 Spin Columns (Thermo Scientific™ No. 89873) were used to purify the samples. The columns were activated with 50% ACN, equilibrated with 5% ACN + 0.5% TFA solution, and used according to the manufacturer’s instructions. About 1 mL of sample was bound, washed, and eluted. 20 µL of elution buffer was run through the columns twice to
guarantee a thorough product. This resulted in a 40 µL solution that would be stored and later used for analysis.

Colorimetric Peptide Assay and Normalization

Eighteen samples were analyzed by use of the Pierce Quantitative Colorimetric Peptide Assay (Thermo Scientific™ No. 23275). Prior to this analysis, these samples were lyophilized and then resuspended with 15 µL of 5% ACN + HPLC grade water + 0.1% Formic Acid solution. All reagents were made as per the manufacturer’s instructions and the protocol was followed stringently. 2 µL of each sample was mixed with 18 µL of autoclaved water before being mixed with the 180 µL of working reagent. After running the software analysis, some discrepancies were visible between the biological replicates. In order to maximize the amount of peptide binding to the mass spectrometer analytical column, the biological replicates with the higher peptide concentration were selected. These samples were normalized with HPLC grade water + 0.1% Formic Acid to match the limiting concentration of one of the samples (the control for Day 3). The concentrations and samples selected are illustrated in Table 3. After randomizing the order in which they would be processed, the samples were inserted into the mass spectrometer to begin the proteomic analysis. Every sample was injected twice at a volume of 25 µL per injection, creating technical replicates. The second injections were treated as separate samples when it came to randomizing the order.
Table 3

Observed Initial Concentrations of Chosen Samples and Post-Normalization Values

<table>
<thead>
<tr>
<th>Sample</th>
<th>Initial Concentration (µg/mL)</th>
<th>Concentration Needed (µg/mL)</th>
<th>Volume of Sample (µL)</th>
<th>Volume of Water Mixture (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C2</td>
<td>174.495</td>
<td>1.74495</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>7L1</td>
<td>200.901</td>
<td>1.74495</td>
<td>8.68</td>
<td>41.32</td>
</tr>
<tr>
<td>7H2</td>
<td>213.293</td>
<td>1.74495</td>
<td>8.18</td>
<td>41.82</td>
</tr>
<tr>
<td>3M2</td>
<td>236.433</td>
<td>1.74495</td>
<td>7.38</td>
<td>42.62</td>
</tr>
<tr>
<td>NSC2</td>
<td>250.005</td>
<td>1.74495</td>
<td>6.98</td>
<td>43.02</td>
</tr>
<tr>
<td>7M1</td>
<td>262.165</td>
<td>1.74495</td>
<td>6.65</td>
<td>43.35</td>
</tr>
<tr>
<td>3L2</td>
<td>324.988</td>
<td>1.74495</td>
<td>5.37</td>
<td>44.63</td>
</tr>
<tr>
<td>7C1</td>
<td>365.978</td>
<td>1.74495</td>
<td>4.77</td>
<td>45.23</td>
</tr>
<tr>
<td>3H1</td>
<td>438.012</td>
<td>1.74495</td>
<td>3.98</td>
<td>46.02</td>
</tr>
<tr>
<td>HeLa</td>
<td>155.022</td>
<td>-</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>

Note. Samples are notated by the format of [Trial Day][Trial Group][Replicate Number]. For example, 3C2 is Day 3 Control no. 2. NSC2 refers to the undifferentiated Nerve Stem Cells sample used. HeLa cells were included to check for consistency during the Mass Spectrometry run every 24 hours. Water mixture consists of HPLC grade water + 0.1% Formic Acid. All samples except for the HeLa cells were injected twice (25 µL per injection). The HeLa cells were injected four times with the same amount of protein per injection.

Proteomic Analysis

Peptides were eluted from the C18 column and subject to electrospray ionization and the samples were analyzed using our Thermo Scientific™ Orbitrap Fusion™ Tribrid™ mass spectrometer. Individual samples were subject to approximately a 2 hr chromatographic run using a previously established X-calibur program. The entire running time on the mass spectrometer was about 72 hours. A sample of HeLa cells was injected every 24 hours to confirm spray stability of the needle during the run. The total volume of HeLa cells was divided into four injections for a total of 25 µL per injection. Once completed, chromatography graphs,
MS and MS/MS data were generated. Data were further analyzed through quantitative analytical software, such as Peaks Studio and Protein Scaffold 4.

RT-qPCR Analysis

In order to complete reverse transcription and quantitative polymerase chain reaction analysis (RT-qPCR), total RNA was isolated, washed, and solubilized. A standard Trizol RNA isolation procedure was done according to Invitrogen’s manual (Pub.No. MAN0001271 B.0). All samples were lysed with Trizol containing 60 µL of 100% chloroform and centrifuged to generate separate phases within tubes. Each sample’s aqueous phase was transferred to a new tube and precipitated using 150 µL of 100% isopropanol along with centrifugation at 4°C. The gel-like pellets that resulted were then washed three times with 300 µL of 70% ethanol. After vacuum-drying the pellets for about 20 minutes, the pellets were resuspended in 20 µL of RNase-free water. The RNA yield for each sample was determined by use of the ThermoScientific™ NanoDrop 2000c Spectrophotometer and the appropriate absorbance values were recorded.

The purified RNA was then prepared for RT-qPCR analysis by mixing with the proper reagents from the PowerUp™ SYBR™ Green Master Mix (Applied Biosystems™). The RNA was first diluted to a concentration of 12.5 ng/µL. Then, the following mixture was produced: 4 µL of 12.5 ng/µL RNA; 10 µL of 2x SYBR green dye; 0.2 µL QN SYBR green Reverse Transcriptase mix; 1 µL of 20x primer mix; 4.8 µL RNase free water. Samples were analyzed for each of the five primers and technical duplicates were also generated. Forward and reverse primers were mixed (see Table 4) and checked for their ability to amplify their specific amplicon beforehand using 2% agarose gel electrophoresis. A 96-well plate was used to load 18 µL of each mixture and was then processed by the continuous fluorescence detector.
Table 4
Primer Sequences for Histone H1 Family

<table>
<thead>
<tr>
<th>Histone Name</th>
<th>Forward 5’ to 3’</th>
<th>Reverse 5’ to 3’</th>
<th>Forward MT (°C)</th>
<th>Reverse MT (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1.1</td>
<td>gaagccctgegaaagctgt</td>
<td>gaaactgcaaggtttcttgggc</td>
<td>64</td>
<td>66</td>
</tr>
<tr>
<td>H1.2</td>
<td>gtcggaaactgctctgctgc</td>
<td>ggettgccctgccccag</td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td>H1.3</td>
<td>ttgaaacatgtctgaaacagctcc</td>
<td>aagctaagctctcc</td>
<td>68</td>
<td>64</td>
</tr>
<tr>
<td>H1.4</td>
<td>aagaagaaggcccgcaaggtgctg</td>
<td>ccgctttctttgagttgta</td>
<td>68</td>
<td>62</td>
</tr>
<tr>
<td>H1.5</td>
<td>aagaagaagacaaaaaagctggc</td>
<td>cttagcccttgctttggcttc</td>
<td>66</td>
<td>68</td>
</tr>
</tbody>
</table>

Note. Melting Temperatures (MT) for both forward and reverse primers are shown. Primers are shown as 5’ to 3’.
CHAPTER 3: RESULTS

Neural Stem Cell Differentiation

Light microscopy was used to examine the process of growth and differentiation of the nerve stem cells. Photos were taken every day in greyscale and monitored for healthy progression. The Day 3 trial groups were compared to the Day 3 control and undifferentiated stem cells at Passage 2 (Figure 1). A visible difference between the morphology of the stem cells and the morphology of the differentiated cells was seen (Figure 1). The differentiated cells in both the control group and the trials seemed to successfully form neural connections typically seen in nervous tissue. The morphology of the cells from the trials did not seem to significantly deviate from the control group, illustrating that the addition of the *H. erinaceus* extract did not cause any significant changes to the physical appearance of the cells.
Figure 1. Comparison of morphology between undifferentiated stem cells and Day 3 Control and treatment groups using light microscopy. The yellow measurement bar is set to 100 µm for reference. The treated groups and undifferentiated stem cells are portrayed in 200x magnification while the Control group is portrayed in 100x magnification.

The same could not be said about the Day 7 group. In comparison to the Day 3 group, the Day 7 group illustrated more solid groupings of nerve cells and glia with more distinct crater-like low-density spaces in between the formations (Figure 2) illustrating a progression in maturation. A uniquely dense cluster of cells, similar to controls, was found when analyzing the Low Concentration trial for Day 7 as seen in Figure 2. When comparing the Day 7 trials, the ones that were treated with the medium and high concentrations of *H. erinaceus* exhibited what seemed to be less specific condensed grouping of cells which resulted in less crater-like low-density space compared to the low concentration and control trials, and which appeared to mimic the cells at Day 3 of treatment as opposed to untreated controls and low-dose treatments.
Proteomic Analysis and Mass Spectrometry

Prior to use for proteomic analysis, the grown cells from all samples were washed with D-PBS lacking Ca\(^{2+}\) and Mg\(^{2+}\) and detached at their respective time points with acutase, followed by cell lysis in urea. Following crude lysate collection and tryptic digestion, samples were purified using C18 spin columns and checked for peptide concentration using Colorimetric Peptide Assay. The initial concentrations were recorded (Table 3). After normalizing the concentrations to the baseline concentration of sample 3C2, samples were inserted into the mass spectrometer and analyzed over a 4 day period. Each individual sample was analyzed for about 2 hours. Chromatographic graphs were generated to illustrate the relative abundance of peptides eluting off of the column at every point in time. Similarities between retention time and relative abundance are best illustrated between the control and trial groups of the same day (Figure 3).
There are certain notable differences in the graphs, but for the most part, there is not much variation to be seen in the overall shape. This implies that the samples were handled and processed properly with little error. For the Day 3 group, there was a peak missing in 3C at roughly the 22.70 minute retention time that was visible in all the other trials in varying abundances (Figure 3). The Day 7 control group seemed to differ from the Day 7 treatment groups, most notably in the end of the chromatographic run around 91-94 minutes. There were a couple of peaks showing more abundance in the treated groups compared to the control, signifying that there may be proteins that are uniquely expressed and representative peptides are eluted off the column at that point that are not found in the control group. It may also be the case that those same peptides might have simply been eluted at a different point in a spread out way. This is unlikely, however, since by looking at the overall curve of the 7C graph, it is hard to spot where these peaks could have shifted to. Overall, these figures confirm our assertion that the samples analyzed display similar quantities of peptides, allowing us to carry on with further analysis using additional software.
Figure 3. Raw chromatography files from the Thermo Scientific™ Orbitrap Fusion™ Tribrid™ mass spectrometer after completing the sample processing. These graphs compare the relative abundance of peptide (y-axis) to the retention time (x-axis). A: Day 3 Group color-coded and labeled. B: Day 7 Group color-coded and labeled. Note the difference in order from top to bottom between A and B.
Quantitative Proteomic Analysis

Mass spectrometry data were analyzed using Protein Scaffold (Proteome Software, Inc.™), a software algorithm designed for quantitative proteomics. Within this software algorithm, MS/MS spectra were tallied up and normalized in preparation for quantitative comparison and analysis. Protein sequences, statistical correlation, and probability percentages were illustrated among many other useful metrics. Prior to optimization, a total of 365,537 spectra were obtained from the combined 8 sets of data (Day 3 Control, Day 7 Control, Day 3 Low, Day 3 Medium, Day 3 High, Day 7 Low, Day 7 Medium, Day 7 High). The protein threshold value, minimum number of peptides value, and peptide threshold value were modified. As the software conducts the internal statistical analysis, it checks for the probability of a protein or peptide actually existing in the sample according to the registered and recognized spectra. The protein and peptide thresholds are in reference to these probabilities. For our analysis, protein and peptide thresholds were set to 95%, indicating that Scaffold would only display proteins and peptides that the algorithm calculated of having at least a 95% probability of being present in the samples. The minimum number of unique peptides used for protein identification was set to 2, which is commonly accepted by the proteomic community to confirm the presence of proteins. These parameters narrowed the results and allowed for a more stringent and accurate observation of proteins that were most likely to be “real”. These parameters also minimized the false discovery rate and dramatically lowered the chances of encountering false positives in the data. After setting such parameters, there were a total of 648 unique proteins and 21,602 spectra found when comparing the Day 3 Control to the Day 3 Trial groups. A statistical two-tailed T-test was conducted and found that 61 of these proteins were statistically significant with a p-value of less than 0.05. Of these 61 proteins, 26 were expressed in higher quantities, up to a 4-fold difference,
in the Day 3 Control compared to the trials. The rest of the 35 proteins were expressed in lower quantities, up to a 4-fold difference, in the Day 3 Control compared to the trials (Appendix A). The same statistical analysis was conducted for the Day 7 groups where a total of 1042 unique proteins and 37,541 spectra were found following analysis using the same parameters. After finding 193 statistically significant proteins, 64 of them were expressed in higher amounts, up to a 4-fold difference, in the Day 7 Control compared to the trials. The other 129 proteins were expressed in lower quantities, up to a 4-fold difference, in the Day 7 Control compared to the trials (Appendix B). A final statistical analysis, ANOVA (p-value < 0.05), was conducted to illustrate significant variance between all three groups of trials (Controls vs Day 3 trials vs Day 7 trials). A total of 129 unique proteins across all samples were found to be statistically significant according to this analysis with respect to changes in protein expression (Appendix C). Of these proteins, 36 were unanimously expressed in higher amounts, up to a 4-fold difference, in the Day 3 and Day 7 trials when compared to the Control groups. On the other hand, 17 proteins were expressed in lower amounts, up to a 4-fold difference, in the Day 3 and Day 7 trials when compared to the Control groups. These proteins were researched one-by-one to find any correlation to previous studies about *H. erinaceus* or Multiple Sclerosis. While there were no statistically significant proteins found that have a direct role in either of these subjects, there was a profound change seen in the expression of certain histones between the control groups and the trial groups. There were multiple notable histones such as H2A, H1.1, H1.2, H1.3, H1.4, and H1.5. Most of these histones were variants of the H1 family. Differences in expression are visualized in Figure 4 where there was at least a 4-fold difference in normalized spectral counts between the control and trial groups. The largest differences are visualized in Figures 4B, 4C, and 4D. Simultaneously, the undifferentiated cells were compared to the controls to confirm that
differentiation was successful on a genotypic level. Nestin, a protein expressed at high levels in neural stem cells and a widely employed marker28, was shown to be expressed less in the differentiated controls as illustrated in Figure 5.
A

Histone H2A type 1-C OS=Rattus norvegicus OX=10116 PE=1 SV=2

Normalized Total Spectra

- Controls
- Day 3 Trials
- Day 7 Trials

B

Histone H1.4 OS=Rattus norvegicus OX=10116 GN=H1-4 PE=1 SV=3

Normalized Total Spectra

- Controls
- Day 3 Trials
- Day 7 Trials
C

(Figure 4 Continued)

(D)
Figure 4. Normalized total spectra vs biosample. These graphs were exported as raw data from Protein Scaffold. The raw number of Total Spectra is not as important as the comparison in values and changes between the groups of samples. All histones significantly increased in expression when treated with *H. erinaceus*, regardless of elapsed days. A: histone H2A Type 1-C. B: histone H1.4. C: histone cluster 1 H1 family member d (histone H1.3). D: histone H1.5. E: histone H1.1. F: histone cluster 1 H1 family member c (histone H1.2).
Figure 5. Normalized total spectra of nestin in controls vs nerve stem cells. The lower amount of spectral counts in the controls implies that less of the marker protein is expressed in these samples. Based on this evidence, differentiation did successfully occur.

The Protein Scaffold software also generated scatterplots after the ANOVA test was conducted (Figure 6). The control group (Day 3 Control and Day 7 Control) was compared to the Day 3 trials separately from the Day 7 trials. Both graphs illustrated a similar pattern when comparing averaged normalized total spectra. This demonstrated that there was little variation in the trials due to the different time points. As a result, however; there was a clear significant difference shown between the controls and the trials.
Figure 6. ANOVA test results of histones in controls vs trials. The highlighted green box in both A and B refer to histone H1.4 simply for reference. The numbers on both axes represent Total Normalized Spectra as an average in those groups. The green boxes represent a protein that significantly shows more normalized spectra in a trial group than a control group and vice-versa. In this case, the six green boxes refer to the histones in Figure 4.

The amino acid sequences of these proteins were also examined to see if there were any substantial differences in the order of amino acids that could further explain the specific function of these histone variants. As illustrated in Figure 7, all of the six examined histone variants were rich in both arginine and lysine with minor variation in overall charge. This was to be expected, as histones must use an overall positive charge to tightly bind to DNA when condensing it into chromatin.
Figure 7. Recognized peptide sequences matched with a proteome database and mapped back to the histones of interest. The amino acids highlighted in yellow are confirmed to match by available spectra data. All peptides from each protein were examined, but only the best-matched peptide from each protein was chosen to be compared.

Since we selected a neural cell line based on previous studies of myelin sheath regeneration being affected by *H. erinaceus*\(^{14}\), it was useful to look for any proteins that could correlate our results to these previous studies. In our analysis, only one myelin related protein was found in every sample. This protein, known as Myelin expression factor 2, did not show any significant variation (ANOVA) in expression between the control group, the Day 3 trials, and the Day 7 trials (p-value = 0.34). The control for day 3 showed a drastically different result from the control for day 7 whereas the other groups did not show much variance within their respective groups. Based on this data, we cannot make any solid conclusions, but it was interesting to see the decrease in normalized total spectra when going from the Day 3 group to the Day 7 group. If it were true that Myelin expression factor 2 was being expressed less as time went on, then expression levels of myelin basic protein (MBP) would increase. This is because Myelin...
expression factor 2 is a transcriptional repressor for MBP. MBP is one of the main components of myelin sheath so seeing an increase in expression of this protein would illustrate an increase in total myelination occurring. The normalized total spectra data is illustrated in Figure 8.

Figure 8. Normalized total spectra of myelin expression factor 2 in the analyzed samples. This data was not deemed statistically significant by the ANOVA test, but was still worth looking at as it could present a lead for future studies.

Post-Translational Modifications

Post-translational modifications (PTMs) have always been a talking point when it comes to histones. Since many different studies have addressed specific PTMs, it was important to analyze the possible PTMs that were found in our samples to see if the affected charge and structure in the peptide sequence would affect histone binding and function. Using a different program now in the form of Peaks Studio X, we compared our samples using a similar algorithm. In this software; however, we were capable of visualizing the proper PTMs at certain sites within the amino acid sequences of each peptide. When comparing the controls to the trials, multiple amino acid sequences were found to be linked with the histone peptides. Some of these
sequences had PTMs that would occur more often than others. For example, when the five Histone H1 variants were processed, four of them showed sequences that were acetylated at the first serine in the amino acid chain (Figure 9). This does not mean that all of these peptides were acetylated, but it does show that some were. Further comprehension of Figure 9 shows that there were other modifications such as carbamylation and ubiquitination. There was little PTM variation seen between the histones for the first 65 amino acids with Histone H1.1 and Histone H1.5 being the most different. De novo peptides were fully matched and the confident modification sites were shown with a minimal ion intensity of 5%. This means that a pair of major fragment ions (b and y ions) must be found showing fragmentation before and after the modified amino acid with at least the given minimum intensity of 5%.
Figure 9. Amino acid sequences of the five variants of histone H1 with possible PTMs labeled at certain sites. Not all copies of these peptides are modified, but there are some that were modified in the samples. A: Histone H1.1. B: Histone cluster 1 family member C. C: Histone cluster 1 family member D. D: Histone H1.4. E: Histone H1.5. Little variation is illustrated between B, C, and D for the first 65 amino acids. Histone H1.1 and Histone H1.5 peptides were capable of being modified a bit differently.
RT-qPCR Analysis

Before the RT-qPCR analysis was conducted, the prepared RNA of every sample was measured for purity by calculating absorbance values through use of the NanoDrop™ 2000c Spectrophotometer (Thermo Scientific™). These values are illustrated below in Table 5.

Table 5
RNA Absorbance Values

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration (µg/µL)</th>
<th>A260/A280</th>
<th>A260/A230</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>1.9282</td>
<td>1.78</td>
<td>2.21</td>
</tr>
<tr>
<td>L3</td>
<td>1.2177</td>
<td>1.75</td>
<td>2.25</td>
</tr>
<tr>
<td>M3</td>
<td>0.8436</td>
<td>1.78</td>
<td>2.24</td>
</tr>
<tr>
<td>H3</td>
<td>1.2680</td>
<td>1.86</td>
<td>2.08</td>
</tr>
<tr>
<td>C7</td>
<td>1.1582</td>
<td>1.80</td>
<td>2.23</td>
</tr>
<tr>
<td>L7</td>
<td>1.1262</td>
<td>1.81</td>
<td>2.20</td>
</tr>
<tr>
<td>M7</td>
<td>1.0629</td>
<td>1.81</td>
<td>2.09</td>
</tr>
<tr>
<td>H7</td>
<td>1.3195</td>
<td>1.84</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Since the samples were confirmed to be pure enough by this data, the RT-qPCR analysis carried on with the use of a continuous fluorescence detector. This machine generated curves that illustrated the relative fluorescence as the cycles carried on. Forty cycles were completed according to the standard PCR specifications listed in the user guide (MAN0013511). After the curves were generated, a cycle time threshold of 0.180 was set to compare how quickly the contents amplified between the different histone H1 variants. Most of the variants exhibited the same basic trend where the curves of the treated groups would cross the threshold sooner than the curves of the control groups for both time points. The (c)T values (cycle time values) were
typically lower for the treatment groups and a bit higher for the control groups, illustrating that generally there was more histone H1 variant RNA in the cells post-treatment with *H. erinaceus* as shown in Figure 10.
Histone H1.1 - Day 3 | Day 7

Histone H1.2 - Day 3 | Day 7
(Figure 10 Continued)

Histone H1.3 - Day 3 | Day 7

Histone H1.4 - Day 3 | Day 7
Figure 10. The difference in cycle time compared across the histone H1 variants. The equation is $\Delta Ct = \text{Cycle time of Trial} - \text{Cycle time of Control}$. The day 3 trials were compared to the day 3 control and the day 7 trials were compared to the day 7 control. The threshold of 0.180 was crossed during the RT-qPCR analysis of each sample for every histone H1 variant. Both time points are illustrated in each graph. The more negative differences indicate more initial RNA in the sample for the depicted histone H1 variant as compared to the more positive differences which indicate less. Similar trends are visualized across all histone H1 variants analyzed.
CHAPTER 4: DISCUSSION

Neural Stem Cell Differentiation

Nervous tissue is notorious for being very delicate and although we performed every step meticulously, there was always a chance for contamination or inefficient growth. We kept this in mind as the results were processed. We initially wanted to treat the neural stem cells with larger concentrations of *H. erinaceus* extract to rival studies published previously; however, this proved to be difficult as the *H. erinaceus* extract powder failed to completely dissolve when added to the incomplete medium. After decreasing the concentrations through multiple iterations, the strongest concentration that could be completely dissolved in the medium (defined by no particles visible) was set to 0.5 mg/mL. The other two weaker concentrations were chosen for relative ease of calculation. After confirming that there were no particles to be seen in the mixture following addition of the powder, the mixtures were poured over a microfilter as another safety measure to ensure no contamination during the mixing process. Unfortunately, some of the material that was filtered out of the solution seemed to be particles of *H. erinaceus*. We were not able to measure the exact amount that did not pass through the microfilter and we did not know how this would affect our results. We were unable to restart the procedure as the cells were already in the process of growing and our supply of media was running low. It would have been ideal to run this experiment once more using different conditions, but due to financial and time restraints, we were limited to this path that we already started on. Despite this hiccup, we decided to continue with the experiment as it was. When observing the morphology of the differentiated cells under the electron microscope, little variation between the different concentrations of treatment groups was seen within the same day of trials. The data analyzed
during the later stages of the proteomic analysis reinforces the lack of variation except for when it came to the dense clustering of the cells seen in the Low Day 7 trials. The medium and high concentration counterparts did not exhibit such specific clustering and showed a broader distribution of cells with less clusters. According to these signs, one would assume that these higher concentrations are affecting the differentiation in an impactful way. However, even with the unique clusters seen in the Low Day 7 trials, the proteomic data bolsters the fact that this interesting morphology does not significantly impact the expression of proteins. It is unclear if this is due to insufficient concentration of *H. erinaceus* affecting the cells or if more time has to pass to visualize these differences more distinctly. It may also be possible that *H. erinaceus* has no effect whatsoever on the morphology of the cells and that it may only affect gene and protein expression unrelated to external physical appearance.

Normalization and Mass Spectrometry

Prior to running our samples through the mass spectrometer, we decided to lyophilize the samples in order to increase the concentration of protein. This allows the mass spectrometer to register more effective scans. During the colorimetric peptide assay, peptide concentration was recorded; however, one of the two biological replicates of each sample was more concentrated than the other and was chosen to be used for the mass spectrometry. Using the sample with the lowest concentration of total peptides (3C2), we normalized the other samples so the total peptide concentration would be closely similar across the board (Table 3). This was important to maintain consistency during the experiment. Randomizing the order of the samples during the run was key in preventing the occurrence of unwanted bias and variables. The samples were double-injected in order to create technical replicates. The technical replicates of the samples were also randomized and did not go in the same order as the original samples. A sample of
HeLa cells was injected multiple times in equal time intervals in between our samples to provide evidence for the machine’s consistency in spray pattern. In essence, this functioned as a technical control to see if there were any issues with the mass spectrometer’s run itself. No significant variation in spray pattern pattern was found, illustrating that the machine executed the procedure without issues. The mass spectrometer generated chromatographs (Figure 3) that were used to validate our data and vet it before moving on with the software-based quantitative proteomic analysis. The technical replicates generated identical chromatographs as those shown in Figure 3 and were not listed to avoid redundancy.

Quantitative Proteomic Analysis

To ensure a False Discovery Rate (FDR) of less than 0.1%, certain parameters had to be set during the Scaffold analysis. After setting the thresholds to the defined values mentioned in the Results section, we were able to achieve a point where we could analyze every peptide with extremely high confidence. For measuring protein abundance, spectral counting is one of the most effective methods to use. There is a very strong correlation between protein abundance and spectral counts. While another method of protein quantification, measuring ion peak intensity, is available for use, it typically has practical constraints when used for complex biological samples. Because of this, we used spectral counting for our analysis. However, it was vital to normalize the spectral counts in order to measure the variation between samples accurately. The Scaffold program normalized protein spectrum counts by completing multiple calculations in a stepwise manner. First, the total number of spectra in each biosample was calculated. Then, the average number of spectra across all biosamples was calculated. Finally, the spectral count of each protein in every sample was multiplied by the average count over the biosample’s total spectral count. An example of this calculation is illustrated by Table 6.
Table 6
Example of Spectral Count Normalization in Scaffold

<table>
<thead>
<tr>
<th>Biosample A</th>
<th>Spectral Count</th>
<th>Biosample B</th>
<th>Spectral Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein 1</td>
<td>12</td>
<td>Protein 1</td>
<td>8</td>
</tr>
<tr>
<td>Protein 2</td>
<td>6</td>
<td>Protein 2</td>
<td>3</td>
</tr>
<tr>
<td>Protein 3</td>
<td>4</td>
<td>Protein 3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Average: 18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biosample A</th>
<th>Normalized</th>
<th>Biosample B</th>
<th>Normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein 1</td>
<td>10</td>
<td>Protein 1</td>
<td>10</td>
</tr>
<tr>
<td>Protein 2</td>
<td>5</td>
<td>Protein 2</td>
<td>4</td>
</tr>
<tr>
<td>Protein 3</td>
<td>3</td>
<td>Protein 3</td>
<td>4</td>
</tr>
</tbody>
</table>

Note. Biosample A protein spectral counts are multiplied by $18/22$. Biosample B protein spectral counts are multiplied by $18/14$.

The histones illustrated in Figure 6 had overall high normalized spectral counts. Pairing this information with the significance resulting from the statistical analysis, these peptides made for our best targets in the final stages of our research. It seems as though these linker histones could play a role in neural stem cell differentiation. Histone H1 is the most variable of the histones and has multiple variants as seen in this study, but it also has strongly conserved regions which could explain the similar function between the variants. If one Histone H1 variant is being expressed at lower amounts, other variants show a compensatory increase in expression controlled by an unknown mechanism. However, if enough H1 subtypes are lost, embryonic stem cell differentiation is impaired and the silencing of pluripotency factors during DNA methylation mediation is interrupted. This shows that modulating the levels of these linker histones and chromatin compaction may help in regulating stem cell pluripotency. Based on this information from previous studies, we initially believed that the increase in Histone H1
protein expression that is witnessed in Figure 6 correlated to an increase in embryonic stem cell differentiation and was resulting in a faster differentiation process. To verify this, we sought out potential downstream targets that might be regulated by these changes in the histones. These targets were markers that were previously discussed in other studies relating to the nervous system and differentiation. If our initial theory was correct, then the markers for increased differentiation should increase in expression. Lower levels would be illustrated in the control groups and higher levels would be illustrated in the treated samples. We examined standard markers such as neuron-specific enolase (for neuron growth) and glial fibrillary acidic protein (for glial growth), but the results did not support our theory. Levels of these markers were actually higher in the control group, demonstrating that differentiation was not occurring at a faster rate in the treatment groups since neuronal and glial synthesis was not accelerating according to these keystone markers. There is still room for improvement on this end as not even a major proteomic marker of myelin sheath synthesis, MBP, was found during the proteomic analysis. Considering that it is capable of being found by mass spectrometry37, our protocol could be refined to better isolate this protein from within the lipid membrane of myelin38. The lack of this protein in the analyzed sample is odd considering that the transcriptional repressor for it was found and changes in protein expression levels were seen as the days passed. This may be due to the time limits implemented during this study being too short and the protein itself not forming in enough abundance yet. Although there was glial growth as illustrated by the darker spots during light microscopy, perhaps not enough mature oligodendrocyte formation occurred.
Post-Translational Modifications

Another software, Peaks Studio X (Proteome Software, Inc.™) was used to confirm the data found in Scaffold. Peaks Studio X uses a slightly different algorithm to calculate the False Discovery Rate and other metrics; however, all the results still pointed towards the previously discussed histones. More importantly, this software allowed us to analyze the effect of post-translational modifications on the Histone H1 family. It is known that Histone H1 variants are filled with many lysine and arginine residues and are therefore positively charged. This strong positive charge will allow for tight binding to DNA during chromatin compaction. These linker histones can act as transcriptional repressors or promoters when this binding occurs. However, more studies link these histones to the function of local repression\(^3\). Post translational modifications such as methylation and acetylation make it more difficult for these linker histones to tightly bind to the wound chromatin due to the decrease in positive charge and the structural change of the histones. These changes particularly impact the terminal parts of the protein sequence which are thought to be involved in binding of chromatin proteins regulating transcriptional activity\(^3\). Our results are illustrated in Figure 9, showing post-translational modifications that have occurred at certain parts in the sequence for a certain number of Histone H1 peptides. Not all H1 peptides experienced post-translational modifications, but the ones that did experienced them in various regions. The most similar ones being Histone H1.2 (family member C), H1.3 (family member D), and H1.4 with a lysine residue at position 64 and/or 65 experiencing ubiquitination. Histone H1.1 is most likely experiencing significantly different modifications because it is considered a specific variant for thymus, testis, spleen, lymphocytic, and neuronal cells\(^3\). Although the Histone H1 proteins act as regulators of individual gene transcription through chromatin remodeling, nucleosome spacing, and DNA methylation, not
much methylation was witnessed in our data. The charge of the proteins would remain overwhelmingly positive and there would not be a large enough shift in molecular structure seen to affect the tight binding of these linker histones significantly. Still, this is worth exploring in the future to calculate the actual difference in binding between modified histones and non-modified histones.

Conclusion and Future Directions

This exploratory research should serve as a gateway for future projects in the field of proteomics, *H. erinaceus*, and alternative medicine. There are still many unknowns about the pathways within the nervous system and how it is affected when treated with *H. erinaceus*. Based on previous studies, it is clear that there are benefits to consuming this mushroom, but to what extent these treatments provide benefits is still left to be seen. The relationship between the histones observed in this study and the fungal extract provides a small, yet novel benefit to the differentiation process in stem cells. With protocol refinement, *H. erinaceus* might be used in the future as a supplement to growth media when differentiating cells.

It is worth noting that we did have limitations that future studies can avoid when attempting to build upon this one. To our knowledge, we were the first to attempt a quantitative and label-free proteomic analysis on rat neural stem cells after being treated with aqueous extract of *H. erinaceus*. We did not find any previous studies that covered this exact topic; therefore, we did not have a specific guide on how to proceed flawlessly. We were forced to pull information from many facets of the groups currently analyzing *H. erinaceus* and its effects. We were also limited due to the sensitive nature of the neural stem cells. We would have preferred to work with human tissue to analyze the medicinal benefits in a better way, but due to costs, our lab was limited to animal cells such as those from rats. These cells were cultured from a primary cell line
and, as a result, were very difficult to work with. Having an immortal cell line would allow us more time and resources and we would not have to worry about running out of products. It would have been less expensive and would have also allowed us to run the procedure for a longer period of time to witness the effects on a deeper level. Running the experiment again for a longer period of time would be very useful in specifically seeing if MBP was indeed in the sample, but did not have enough time to build up to significant protein levels. Previously successful studies have demonstrated progress when utilizing nerve growth factor in their experiments involving neural stem cells19.

Although having a larger group working on analyzing and researching every protein in our data would have allowed us to deliver more insight on this topic, the results presented in this paper are of the best quality that was allowed due to our restrictions. We are confident that this is a good first step through the door and that others will find this information helpful when proceeding with more sharpened procedures for analyzing the proteomic contents of rat neural tissue post-treatment with \textit{H. erinaceus} extract.
REFERENCES

APPENDIX A: LIST OF T-TEST SIGNIFICANT PROTEINS AND FOLD CHANGES IN DAY 3 GROUPS

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Protein</th>
<th>Fold Change</th>
<th>P-value</th>
<th>Enrichment Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Protein X</td>
<td>2.50</td>
<td>0.001</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>Protein Y</td>
<td>3.00</td>
<td>0.002</td>
<td>0.09</td>
</tr>
<tr>
<td>3</td>
<td>Protein Z</td>
<td>1.80</td>
<td>0.010</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>Protein A</td>
<td>4.20</td>
<td>0.0003</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>Protein B</td>
<td>2.90</td>
<td>0.0007</td>
<td>0.04</td>
</tr>
<tr>
<td>6</td>
<td>Protein C</td>
<td>3.50</td>
<td>0.0001</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>Protein D</td>
<td>2.00</td>
<td>0.004</td>
<td>0.06</td>
</tr>
<tr>
<td>8</td>
<td>Protein E</td>
<td>3.10</td>
<td>0.0006</td>
<td>0.03</td>
</tr>
<tr>
<td>9</td>
<td>Protein F</td>
<td>2.70</td>
<td>0.0002</td>
<td>0.07</td>
</tr>
<tr>
<td>10</td>
<td>Protein G</td>
<td>3.30</td>
<td>0.0009</td>
<td>0.02</td>
</tr>
</tbody>
</table>

This table lists the top 10 significant proteins based on their fold changes and p-values from the T-test analysis. The enrichment score indicates the significance of their annotation in biological pathways.
<table>
<thead>
<tr>
<th>GeneID</th>
<th>Gene Symbol</th>
<th>Description</th>
<th>Log2 Fold Change</th>
<th>p-value</th>
<th>FDR</th>
<th>Significance</th>
<th>Genotype1</th>
<th>Genotype2</th>
</tr>
</thead>
<tbody>
<tr>
<td>000001</td>
<td>v5e</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000002</td>
<td>v5f</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000003</td>
<td>v5g</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000004</td>
<td>v5h</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000005</td>
<td>v5i</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000006</td>
<td>v5j</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000007</td>
<td>v5k</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000008</td>
<td>v5l</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000009</td>
<td>v5m</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000010</td>
<td>v5n</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000011</td>
<td>v5o</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000012</td>
<td>v5p</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000013</td>
<td>v5q</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000014</td>
<td>v5r</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000015</td>
<td>v5s</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000016</td>
<td>v5t</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000017</td>
<td>v5u</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000018</td>
<td>v5v</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000019</td>
<td>v5w</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000020</td>
<td>v5x</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000021</td>
<td>v5y</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
<tr>
<td>000022</td>
<td>v5z</td>
<td>Blastn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Significant</td>
<td>Genotype1</td>
<td>Genotype2</td>
</tr>
</tbody>
</table>

Significance:
- **Significant** indicates that the differences are statistically significant.
APPENDIX B: LIST OF T-TEST SIGNIFICANT PROTEINS AND FOLD CHANGES IN DAY 7 GROUPS

[Image of a table or chart showing significant proteins and fold changes]
<table>
<thead>
<tr>
<th>Position</th>
<th>Gene Name</th>
<th>Translated Protein</th>
<th>CDR 1</th>
<th>CDR 2</th>
<th>CDR 3</th>
<th>Isotype</th>
<th>Reason for Immunogenicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>T-complex protein 1 alpha-like 1</td>
<td>Rb18</td>
<td>20</td>
<td>0.0036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Chromosome</td>
<td>Start</td>
<td>End</td>
<td>Length</td>
<td>Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1</td>
<td>4</td>
<td>1000</td>
<td>1200</td>
<td>200</td>
<td>Transcription factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCL2</td>
<td>1</td>
<td>3000</td>
<td>3300</td>
<td>300</td>
<td>Apoptosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td>7</td>
<td>1400</td>
<td>1500</td>
<td>100</td>
<td>Growth factor receptor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYC</td>
<td>8</td>
<td>5000</td>
<td>5200</td>
<td>200</td>
<td>Oncogene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFE2L2</td>
<td>11</td>
<td>9000</td>
<td>9200</td>
<td>200</td>
<td>Transcription factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFATC1</td>
<td>4</td>
<td>500</td>
<td>600</td>
<td>100</td>
<td>Transcription factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUNX3</td>
<td>12</td>
<td>6000</td>
<td>6200</td>
<td>200</td>
<td>Transcription factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCF4</td>
<td>10</td>
<td>8000</td>
<td>8200</td>
<td>200</td>
<td>Transcription factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP53</td>
<td>17</td>
<td>10000</td>
<td>10200</td>
<td>200</td>
<td>Tumor suppressor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Function** indicates the biological function of the gene, such as transcription factor or growth factor receptor.
- Some genes are involved in apoptosis (BCL2, TP53), transcription (NFATC1, RUNX3), or tumor suppression (TP53).
<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene</th>
<th>Description</th>
<th>Prob.</th>
<th>Biological Process</th>
<th>Cellular Component</th>
<th>Molecular Function</th>
<th>Comment</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0S2</td>
<td>GFAP</td>
<td>Glial fibrillary acidic protein</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>GABA</td>
<td>Gamma-aminobutyric acid</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>GNRH</td>
<td>Gonadotropin-releasing hormone</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>GRB2</td>
<td>Growth factor receptor-bound protein 2</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>HIF-1</td>
<td>Hypoxia-inducible factor 1</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>HSP27</td>
<td>Heat shock protein 27</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>IGF</td>
<td>Insulin-like growth factor</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>IGFBP</td>
<td>Insulin-like growth factor binding protein</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>INSL3</td>
<td>Insl3</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>KLF5</td>
<td>Kruppel-like factor 5</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>LIF</td>
<td>Leukemia inhibitory factor</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>LRH</td>
<td>Liver receptor homolog</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>NR3C1</td>
<td>Nuclear receptor subfamily 3 group C member 1</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>PTH</td>
<td>Parathyroid hormone</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>PTX3</td>
<td>Prominin 3</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>RXR</td>
<td>Retinoid X receptor</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>TGF-β</td>
<td>transforming growth factor beta</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>TR</td>
<td>Testosterone receptor</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0S2</td>
<td>WNT</td>
<td>Wingless-related MMTV integration site</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table continues with similar entries for other pathways and genes.
<table>
<thead>
<tr>
<th>Protein Name</th>
<th>Accession</th>
<th>Mass (Da)</th>
<th>Charge</th>
<th>rt (min)</th>
<th>Width (Da)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein A</td>
<td>P01234</td>
<td>90000</td>
<td>1</td>
<td>10.5</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>Protein B</td>
<td>P02345</td>
<td>100000</td>
<td>2</td>
<td>20.0</td>
<td>1000</td>
<td>200</td>
</tr>
<tr>
<td>Protein C</td>
<td>P03456</td>
<td>110000</td>
<td>3</td>
<td>30.5</td>
<td>1500</td>
<td>300</td>
</tr>
<tr>
<td>Protein D</td>
<td>P04567</td>
<td>120000</td>
<td>4</td>
<td>40.0</td>
<td>2000</td>
<td>400</td>
</tr>
<tr>
<td>Protein E</td>
<td>P05678</td>
<td>130000</td>
<td>5</td>
<td>50.5</td>
<td>2500</td>
<td>500</td>
</tr>
</tbody>
</table>

Biological Functions

- Growth and Development
- Cell Function
- Signaling Processes
- Metabolism
- Reproduction
- Immune System

Cellular Components

- Plasma Membrane
- Endoplasmic Reticulum
- Nucleus
- Mitochondrion

Molecular Functions

- Catalytic Activity
- Transporter Activity
- Structural Molecular Activity
- Ligand Binding
- Enzyme Activity

GO Terms

<table>
<thead>
<tr>
<th>GO Term</th>
<th>Description</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0006984</td>
<td>Chromatin binding</td>
<td>10</td>
</tr>
<tr>
<td>GO:0005516</td>
<td>Transcription factor activity</td>
<td>5</td>
</tr>
<tr>
<td>GO:0043233</td>
<td>DNA replication factor activity</td>
<td>3</td>
</tr>
<tr>
<td>GO:0006351</td>
<td>DNA topoisomerase activity</td>
<td>2</td>
</tr>
<tr>
<td>GO:0006355</td>
<td>DNA ligase activity</td>
<td>1</td>
</tr>
</tbody>
</table>

Pathways

- PI3K-Akt signaling pathway
- MAPK signaling pathway
- JAK-STAT signaling pathway
- Wnt signaling pathway

References

APPENDIX C: LIST OF ANOVA SIGNIFICANT PROTEINS AND FOLD CHANGES IN DAY 3 AND 7 GROUPS
<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Lamin X-association poly peptide 3, isoform beta OS/Rattus norvegicus OS:10116 GR:Trpr PE-1 SV=3</td>
<td>Q62732 Trpr 50.01A A.238</td>
</tr>
<tr>
<td>70</td>
<td>Sodium/potassium-transporting ATPase subunit alpha 2 OS/Rattus norvegicus OS:10116 GR:Apit3a2 PE-1 SV=1</td>
<td>Q66848 Apit3a2 120.01A A.238</td>
</tr>
<tr>
<td>78</td>
<td>ABC/ATP translocase 1 OS/Rattus norvegicus OS:10116 GR:Sk224 PE-1 SV=1</td>
<td>O28554 Sk224 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Rat exchanger OS/Rattus norvegicus OS:10116 GR:Rexox PE-1 SV=1</td>
<td>Q9D365 Rexox 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>VTP20 small ubiquitin-like modifier OS/Rattus norvegicus OS:10116 GR:VTP20 PE-1 SV=3</td>
<td>Q69796 VTP20 120.01A A.238</td>
</tr>
<tr>
<td>78</td>
<td>Microtubule-associated protein 4 OS/Rattus norvegicus OS:10116 GR:Map4 PE-1 SV=1</td>
<td>Q62030 Map4 120.01A A.238</td>
</tr>
<tr>
<td>77</td>
<td>Breast carcinomas-associated sequence 1 homolog OS/Rattus norvegicus OS:10116 GR:Bcar1a PE-1 SV=1</td>
<td>Q9D365 Bcar1a 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Tymphosin beta-18 OS/Rattus norvegicus OS:10116 GR:Tmph10 PE-1 SV=2</td>
<td>Q66848 Tmph10 120.01A A.238</td>
</tr>
<tr>
<td>29</td>
<td>Angiogenin OS/Rattus norvegicus OS:10116 GR:Angi1 PE-1 SV=3</td>
<td>Q65513 Angi1 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>GRP78/Bip OS/Rattus norvegicus OS:10116 GR:Grp78 PE-1 SV=1</td>
<td>Q9D365 Grp78 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Splicing factor 5 OS/Rattus norvegicus OS:10116 GR:Sf5 PE-1 SV=2</td>
<td>Q65513 Sf5 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>B-catenin OS/Rattus norvegicus OS:10116 GR:Beta crystallin PE-1 SV=1</td>
<td>Q9D365 Beta crystallin 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Brain acid-soluble protein 3 OS/Rattus norvegicus OS:10116 GR:Basp3 PE-1 SV=2</td>
<td>Q9D365 Basp3 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Complete OS/Rattus norvegicus OS:10116 GR:Cp62 PE-1 SV=1</td>
<td>Q9D365 Cp62 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>BC33484 OS/Rattus norvegicus OS:10116 GR:BC33484 PE-1 SV=1</td>
<td>Q9D365 BC33484 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Heterogeneity nuclear ribonucleoprotein II OS/Rattus norvegicus OS:10116 GR:HnRnp2 PE-1 SV=1</td>
<td>Q9D365 HnRnp2 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Heterogeneity nuclear ribonucleoprotein A3 OS/Rattus norvegicus OS:10116 GR:HnRnp2a PE-1 SV=1</td>
<td>Q9D365 HnRnp2a 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Glutamate synthase OS/Rattus norvegicus OS:10116 GR:Hspa1b PE-1 SV=1</td>
<td>Q9D365 Hspa1b 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>ATP synthase HOS/Rattus norvegicus OS:10116 GR:Atpe1 PE-1 SV=1</td>
<td>Q9D365 Atpe1 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>RhoGAP heterogeneity nuclear ribonucleoprotein OS/Rattus norvegicus OS:10116 GR:Rhop1 PE-1 SV=2</td>
<td>Q9D365 Rhop1 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Nematode OS/Rattus norvegicus OS:10116 GR:Nempe1 PE-1 SV=2</td>
<td>Q9D365 Nempe1 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Proteasome subunit alpha type 1 OS/Rattus norvegicus OS:10116 GR:Proa1 PE-1 SV=1</td>
<td>Q9D365 Proa1 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Rho3-3 OS/Rattus norvegicus OS:10116 GR:Rho33 PE-1 SV=1</td>
<td>Q9D365 Rho33 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Neural cell adhesions OS/Rattus norvegicus OS:10116 GR:Neceil PE-1 SV=1</td>
<td>Q9D365 Neceil 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Heat shock cognate 71 kDa protein OS/Rattus norvegicus OS:10116 GR:Hsp71 PE-1 SV=3</td>
<td>Q9D365 Hsp71 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>40S ribosomal protein S14 OS/Rattus norvegicus OS:10116 GR:RpS14 PE-1 SV=1</td>
<td>Q9D365 RpS14 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>60S ribosomal protein L8 OS/Rattus norvegicus OS:10116 GR:RpL8 PE-1 SV=2</td>
<td>Q9D365 RpL8 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>60S ribosomal protein L7a OS/Rattus norvegicus OS:10116 GR:RpL7a PE-1 SV=2</td>
<td>Q9D365 RpL7a 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Plec 6 OS/Rattus norvegicus OS:10116 GR:Plec 6 PE-1 SV=1</td>
<td>Q9D365 Plec 6 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Syntenin 12 OS/Rattus norvegicus OS:10116 GR:Syty12 PE-1 SV=1</td>
<td>Q9D365 Syty12 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Saposinyl peptidase I, asparaginyl OS/Rattus norvegicus OS:10116 GR:Argp1 PE-1 SV=1</td>
<td>Q9D365 Argp1 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Transcription intermediary factor 1 OS/Rattus norvegicus OS:10116 GR:Tim18 PE-1 SV=2</td>
<td>Q9D365 Tim18 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Cleavage and polyadenylation specificity factor subunit 5 OS/Rattus norvegicus OS:10116 GR:Apaf1 PE-1 SV=1</td>
<td>Q9D365 Apaf1 120.01A A.238</td>
</tr>
<tr>
<td>79</td>
<td>Proteasome subunit alpha type 1 OS/Rattus norvegicus OS:10116 GR:Proa1 PE-1 SV=2</td>
<td>Q9D365 Proa1 120.01A A.238</td>
</tr>
</tbody>
</table>