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A PROTEOMIC ANALYSIS OF CORYDORAS STERBAI SECRETIONS AND TISSUES 

 

 

Abstract 

 

 

By Erik P. Wictor 

 

University of the Pacific 

2020 

 

 

Defensive mechanisms vary widely in the animal kingdom ranging from physical 

defenses like spines to chemical defenses such as toxins.  Toxins in these secretions and tissues 

can fluctuate from enzymes to lipids to uncharacterized chemicals.  Next generation -omics 

technology and mass spectrometry are extremely important in analyzing these samples because 

of their ability to distinguish minute amounts of toxic substance within a complicated sample.  

The goal of this experiment was to look at secretions and tissues from Corydoras sterbai.  All 

samples in this study were proteolyzed using a mixture of Trypsin and Lys-C, fractionated, and 

run through nanoLC-MS/MS analysis using an Orbitrap Fusion™ Tribrid™ mass spectrometer.  

Using guanidine hydrochloride as a denaturant, a total of 420 database peptide matches were 

discovered in the secretions and up to 777 database peptide matches among the tissues.  Proteins 

of interest found in both the secretion and in the hypothesized gland include members of the 

prostaglandin synthesis pathway, phospholipases, and peroxiredoxins.  It is theorized that C. 

sterbai uses its serrated rays in addition to these proteins to defend themselves from would be 

predators. 
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CHAPTER 1: INTRODUCTION 

 

Living long enough to be able to reproduce is considered the most important goal of an 

organism.  Thus, organisms not at the top of the food chain have had to develop defenses to 

make sure that they don’t become predated upon.  These defenses come in a variety of forms 

such as teeth, claws, spines, coloration, and toxins.  Up to this point, a vast percentage of all 

studied venoms have come from terrestrial organisms due to ease of capture of the organisms1.  

Aquatic organisms face the unique challenge that their secretions can be washed away in a 

stream or ocean.  This has led to the incorrect line of thinking that there are a vastly greater 

numbers of toxic organisms on land versus water.   

Catfish 

Of some 33,100 species of fish that have been described, just over 3,000 of them are 

catfish2,3.  These fish range in size from one centimeter to over two meters in length and have 

defense mechanisms that make them hard to catch and potentially impossible to eat; such 

mechanisms include toxins, sharp spines, and/or slimy secretions.  Corydoras sterbai, as seen in 

Figure 1, is a fish whose maximum length is approximately seven centimeters on average 

standard length.  that utilizes both sharp spines and what is thought to be a toxin4.  Spines for this 

species are located on all but the caudal fin, as seen in Figure 2, while the secretion appears to 

come out just behind the pectoral fins due to a small opening.  These small fish are typically 

found in Bolivia and central Brazil in streams and rivers where the water is soft and slightly 

acidic, with low levels of nitrates5. The river where they are most commonly found is the Rio 

Gauporé, which is found along the border between Brazil and Bolivia5.  In nature, these fish 

travel in schools of six or more, so aquarium enthusiasts should have a minimum of six or more 

in the tank to make the fish are as comfortable as possible5. 
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Figure 1. C. sterbai in a normal tank environment. 

 

 

Figure 2. External anatomical labeling of C. sterbai.   

 

 

Dorsal fin 

Pectoral spine 
Pectoral fin 

Dorsal spine 
Caudal fin 
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Anatomy and Physiology of C. sterbai 

Corydoras Defenses 

All species in the Corydoras genus contain two thick sets of bony plates found along the 

side of the fish that give it protection along with several spines that it has on their body4.  The 

armored plates are a passive mechanism of defense.  The spines can be found on the leading edge 

of all fins, except the caudal fin (tail), in each pectoral fin, in the adipose tissue on their body, 

and the largest in front of their dorsal fin5.  The poison is thought to be found in a gland next to 

barbs on the pectoral spine and is thought to flow down the spine, allowing the poison to 

potentially be absorbed into the predator through physical damage from the spines and or gills.  

The spines and toxin are a more active method of defense.  The toxin appears to come out of an 

opening that is found just under the pectoral fin on either side of the fish. 

Morphology and Identification of C. sterbai 

Looking at the morphology of C. sterbai it is often confused with several other species of 

the same genus.  One distinguishing feature are their yellow-gold pectoral fins.  These brightly 

colored fins are a classic example of aposematic coloration for predators.  They also have a 

dome-shaped head with white spots.  This species has also been seen in an albino form5.  

Corydoras haraldschultzi is the exact opposite with light skin and dark spots, making it easy to 

confuse the two of them.  In observing the fish, it is common to see C. sterbai swimming up to 

the surface and taking in a gulp or two of air.  This allows the fish to have two methods of 

oxygen absorption.  The lining of the digestive system of C. sterbai is highly vascularized which 

allows for the uptake of oxygen through the blood as well as through the gills which can be 

particularly useful if a stream starts to dry up2.  The various physiological differences between 

the nine lineages of Corydoras can be found below in Figure 3. 
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Figure 3. A representation of the nine lineages of Corydoras based upon Supplemental Figure 1 

from Alexandrou et.  al 2011.  C. sterbai is found in Lineage 9. 

 

Proteomics Overview 

Proteomics at its core is a study of one or more proteins or peptides found in a sample.  

At the start, these proteins or peptides may have some structure, so they must be denatured.  

Denaturation is extremely important to make sure that the protease(s) used in the experiment has 

or have unfettered contact with all active sites.  After proteolysis, only peptides should be left; 

intact proteins can prevent LC-MS analysis.  Liquid chromatography coupled with mass 

spectrometry (LC-MS) is the next step in the project.  LC-MS is an incredibly powerful tool that 

utilizes chromatography columns typically made of C18 chains to bind and then methodically 

elute as the gradient changes throughout the run.  In this experiment, a tandem mass 

spectrometer was used which has the capability to first find the mass of all peptides in the sample 

based upon their time of flight and then it can fragment them into their amino acid components.  

Fragmentation is especially critical because then the amino acid sequence can be compared to a 

database using software to rebuild the fragmented peptide.  Any matches in the database to any 

peptides help to either discover or confirm what was in the original sample.  With this 
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information, scientists can then help to map out interaction networks and or perform other 

experiments.  This workflow is best explained by Figure 4. 

 

Figure 4. An overview of a proteomic workflow.  Scientists begin with material in form the form of 

tissues, cells, or other material containing protein and end up with information that can be used in further 

studies. 

 

Experimental Overview 

The purpose of this thesis is to discover the components of the secretion that C. sterbai 

produces with the eventual hope is to analyze the secreted substances from more individuals of 

each of the nine lineages of Corydoras6.  In time, this would give greater insight to how this 

genus has evolved their defensive mechanisms.  In this experiment it is important to note that the 

cloudy secretions, tank water, and body tissues will be analyzed using proteomic techniques.  

The cloudy secretions and tank water were analyzed first as it was hypothesized that the fish 

would secrete a toxin that would match any of the other well characterized toxins found in 

aquatic species.  After several attempts using different methods to analyze the secretions from 
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the fish and the tank water they were kept in, a careful dissection of one fish was done and six 

different types of tissues were collected.  These tissues were ground up and then analyzed using 

the same methods and techniques as the secretions and tank water mentioned above. 
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CHAPTER 2: REVIEW OF THE LITERATURE 

 

An Overview of Venoms and Toxins 

Based upon previous research, organismal toxins can be proteinaceous in nature and 

cause a myriad of effects such as bleeding, inflammation, and pain7.  This is because most 

organisms’ toxins contain two or more bioactive compound groups such as neurotoxins, 

cytotoxins, and hemotoxins.  The first step is to define a toxin.  A toxin is a peptide, protein, or 

other molecule that can create an immune response in the target.  Toxins are further dissected 

into two groups, venoms or poisons.  As defined by Mebs (2002), a venomous animal must 

produce the venom using cells or in at least one gland, have a mechanism or excretion or 

extrusion of the venom, and have an apparatus to wound the prey or predator.  A poison is also a 

toxin, but instead the target must absorb it in some fashion, such as through the skin, gut, or by 

inhalation through the lungs. 

Neurotoxins 

Neurotoxins destroy and/or inhibit the components of the nervous system on a molecular 

level.  One way this occurs is by inhibiting the release of the neurotransmitter acetylcholine 

through destruction of SNARE proteins9.  This can lead to muscle tetany and nervous system 

signaling impairment10.  Another way neurotoxins can affect nerves is by binding to receptors11.   

Fasciculins.  The first subgroup of neurotoxins is fasciculins, commonly found in green 

mamba snake venom, but can also be found in other species of mamba10.  This subgroup of 

toxins causes intense muscle fasciculation or twitching by binding to the neuromuscular 

junctions and inhibiting, degrading, and or causing the acetylcholine to be hydrolyzed10.  Intense 

muscle fasciculation can cause an organism to become paralyzed as all its muscles will flex, 
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rendering the prey helpless. 

α-Neurotoxins.  Another member of this group is the α-neurotoxin.  This type of 

neurotoxin is similar to the fasculinins, but instead of affecting the neurotransmitter 

acetylcholine, it competitively binds to acetylcholine’s receptor12.  This can lead to suffocation 

as well as a heart attack as autonomic nervous signaling is disrupted.  This toxin is found in two 

snake families, Elapidae and Hydrophiidae. 

Tetrodotoxins.  Tetrodotoxins (TTX) are a group of neurotoxins that have been found in 

numerous taxa across the phylogenetic kingdom.  This particular kind of neurotoxin blocks the 

fast voltage-gated sodium channels in the neuromuscular and pulmonary systems eventually 

leading to death13.  It is considered one of the most toxic substances in the world and is 

approximately 10,000 more time poisonous than cyanide13. 

Batrachotoxins.  Batrachotoxins (BTX) are neurotoxins found only in beetles, birds, and 

frogs.  They bind to similar channels like TTX and prevents depolarization of the fast voltage-

gated sodium channels14.  There are several forms of this toxic steroidal alkaloid with varying 

levels of toxicity14. 

Dendrotoxins.  Dendrotoxins contain anywhere from 57 to 60 amino acids and are 

crosslinked by three disulfide bridges11.  This collection of toxins deals with the voltage-gated 

potassium channel in neurons15.  By binding to these receptors, this group of toxins affects the 

membrane resting potential of neurons and also they can bind to the Node of Ranvier in motor 

neurons, affecting cellular signaling15.  These toxins have only been found in mamba snakes. 

Cytotoxins 

Another group of toxins that is commonly found in nature are cytotoxins.  Cytotoxins are 

described as, “Substances that are toxic to cells; they may be involved in immunity or contained 
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in venoms.”16  These toxins can perform a variety of dangerous effects such as necrosis, 

apoptosis, and or a shutdown of mitosis.   

Phospholipases.  Pholspholipases (PLAs) are categorized into four main categories: 

secreted (sPLA2), cytosolic (cPLA2s), calcium-independent (iPLA2s), and platelet activating 

factor (PAF) acetyl hydrolase/oxidized lipid lipoprotein associated (Lp)PLA2s
17.  They 

specifically bind to the phospholipid bilayer in cellular membranes and then hydrolyze the fatty 

acid at the sn-2 position of the membrane phospholipid17.  This chemically turns the 

phospholipid bilayer into a lysophospholipid, which lyses the newly unstable cell membrane18.  

It should be noted that specifically PLA2 is a major component of both old and new world snake 

venoms and that human pancreatic PLA2 is similar to PLA2 in old world snake venoms17. 

Hemotoxins.  The next subgroup contains hemotoxins.  These toxins destroy red blood 

cells and can also cause intense clotting in the victim, leading to rapid death.  The presence of a 

positive charge on one of the loops in the structure of these toxins enables them to have an 

affinity for red blood cells19.  Individuals referring to these kinds of toxins usually refer to the 

ones found in viper venom, but due to the wide definition of hemotoxin, a number of organisms 

all over the world can cause these issues20. 

Overview of Toxin Delivery Systems 

Toxin delivery systems are complex and varied across numerous taxa.  Organisms that 

have fangs contain common structures such as the compressor muscle, venom reservoir, primary 

venom duct, secondary venom duct, venom canal, and fang, spine, or stinger21,22.  Toxins can 

also be found in saliva.  Taxonomic groups such as Solenodontiae, Desmodontiae, and 

Chiroptera all contain organisms that produce venoms at different levels using modified salivary 

glands23.  Common examples of the previously named families are the Cuban solenodon, 
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vampire bat, and bats in general.  Other common structures that are used in envenomation 

include both stingers or hollow spines; these structures are found in scorpions and venomous 

fish, respectively1,24.  In fact, spines themselves have evolved 11 different times within 

acanthomorphs and twice within catfish1.  Spines in fish can be found close to the operculum, 

dorsal ray, and or in the caudal region1.  Toxins can also be found on the epithelium of 

organisms.  This is common to amphibians such as toads, frogs, and salamanders25.  Studying the 

method of delivery is vital to finding out where the toxin is found in or on an organism.  This not 

only helps to classify delivery systems but also helps when trying to remove the toxin from the 

organism to study it. 

Glandular secretions. 

Exocrine secretion mechanisms.  Multicellular glands are glands that secrete a substance 

onto an epithelial surface use a specialized duct26.  Examples of glands that do this are: sweat, 

salivary, mammary, and mucous glands26.  These gland examples and more utilize three main 

types of secretion, merocrine, apocrine, and or holocrine26.   

Merocrine secretion.  Merocrine secretion is a method by which a cell moves the 

secretory product into a secretory cell27.  From there, the secretory product is released into a 

hollow gland lumen and then the product drains from the lumen to the surface27. 

Apocrine secretion.  Cells going through apocrine secretion pinch off part of their cellular 

membrane to be removed from the cell28.  Mammary glands in mammals employ this method of 

secretion28.  Thus, proteins that are normally found in the cytoplasm would be found along with 

the hypothetical toxin.  Also nuclear proteins have been found as part of the secretion by other 

researchers28. 

Holocrine secretions.  Holocrine secretion involves the rupture of a mature cell’s 
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membrane to secrete the product out of the cell and into the environment29.  With this 

cataclysmic event, all protein products and other chemicals normally expressed in the cell should 

be found29.  Using histological evidence, it appears that most fish venom glands use this method 

of secretion1.  To analyze the proteins in these secretions, a powerful machine is needed. 

Mass Spectrometry 

Another key component of proteomics research that is being used today is the mass 

spectrometer.  The definition of spectrometry as a scientific tool is: the measurement of 

electromagnetic radiation as a means of obtaining information about physical systems and their 

components30.  The type of machine that will be used in this thesis research is an Orbitrap 

Fusion™ Tribrid™ Mass Spectrometer produced by Thermo-Fisher Scientific™.  The sample is 

placed and kept chilled in a tray until it is ready for sampling.  When ready, it is forced through 

narrow tubing at an extremely high pressure against a column31.  The column contains 

spherically or asymmetrically shaped particles to help fractionate the proteins in solution, as 

different peptides will react in different ways when hitting the shaped particles31.  The column 

used for this experiment contains a C18 resin that helps to bind peptides while removing 

contaminates such as salts and other solutes that can interfere with peptide analysis.  The sample 

range works from one picogram all the way to thirty nanograms32.  This research was done using 

the Electrospray Ionization (ESI) attachment.  ESI can ionize numerous small peptides without 

destroying the larger parent protein33.  By ionizing small parts of the larger molecule this can 

further the analytical powers of the mass spectrometer, especially if the mass spectrometer has a 

maximum size limit close to that of the sample33.  Ionizing small peptides from the parent protein 

is beneficial to reconstructing the original amino acid sequence and can help to determine which 

peptides ionize more efficiently.  Peptides then move into the Orbitrap™ for further analysis. 



22 

The Orbitrap™ works by attracting charged ions from  the ESI attachment as they are 

injected into the chamber34.  In order to make sure that the ions make it into the chamber, the 

voltage first has to be slightly lowered34.  The ions then form an almost circular harmonic orbit 

around the inner electrode which is determined by their charge to mass ratio34.  Once the desired 

orbital diameter has been achieved, then the analyzation of the ions can begin using Fourier 

transformations to determine the masses of the ions, which helps determine their compositions 

and to separate them for further analysis using different appendages34. 

After ionizing peptides into the gas phase, they must be systematically broken up into 

amino acids.  Dissociation or the breaking of peptides into amino acids is performed using a 

method called Higher-Energy Collision Dissociation (HCD).  Peptides then collide with nitrogen 

gas at high speeds inside the collision trap before they go into the Orbitrap™ to determine 

individual amino acid weight35.  The weight of the individual amino acids is then summed and 

compared to the previously recorded mass of the peptide to check for accuracy.  Data from the 

mass spectrometer can then be used in bioinformatic analysis with various software programs. 
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CHAPTER 3: METHODOLOGY 

 

Fish Keeping 

Eight Corydoras sterbai, 5.0 - 7.0 cm standard length, were purchased from a local Petco 

in Stockton, CA for research purposes.  They were fed both flake food and live blood worms 

twice a week.  All fish were housed in ten-gallon tanks that received 50-60% water changes 

weekly, with half deionized water and half tap water.  Commercial dechlorinator (SeaChem 

Prime) was added to the tank water after it was changed to bind chlorines and other chemicals 

normally found in tap water.  Tanks were kept at 27°C to simulate normal environmental 

conditions for the species. 

Sample Preparation 

Sample Collection  

At the time of collection, 300 mL of fish water were taken out and divided equally among 

two sandwich-sized Ziploc® plastic bags.  Five fish were then taken and placed in one bag at 

RT, to be stressed out.  To stress the fish out, the bag was sealed and agitated by hand for up to 

15 minutes so that the fish were not simply sitting there.  After the fish showed clear signs of 

stress such as loss of muscular equilibrium, little to no movement, and or rapid breathing, they 

were removed and immediately placed back into their home tank water to recover.  When the 

water also became cloudy, the fish were immediately taken out as well.  Every time samples 

were collected all fish made a full recovery within ten minutes except one fish that died after 

being placed back in its home tank for recovery.  The other bag was kept at RT during the 

stressing of the fish to serve as a control.   
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Lyophilization 

The total volume was removed from each bag and equally divided into several conical 

tubes where they were immediately frozen using liquid nitrogen.  They were then placed on a 

FreeZone 12 Liter Cascade Console Freeze Dry System and lyophilized to complete dryness.  

Dried samples were stored in -80°C freezers.  Each one of the conical tubes from both the control 

and stressed sample had MQ H2O washed down the sides of the tube to make sure all dried 

powder was collected.  Then, all tubes were pooled into another fresh tube to be lyophilized 

again to dryness.  Samples were reconstituted with 2mL Milli-Q water, briefly vortexed, and 

aliquoted. 

Protein quantitation.  All protein aliquots were subjected to a CB-X assay (G-

Biosciences) to solubilize, clean up, and determine protein concentration.  The kit was used 

according to manufacturer’s instructions.  The spectrophotometer used was a NanoDrop 2000c 

(ThermoFisher Scientific).  All standards and unknowns were measured at 595 nm according to 

CB-X assay protocols and in a one milliliter cuvette. 

SDS-PAGE 

Reconstituted samples of both secretions and control varying in volume from 10 to 25 µL 

were diluted 1:1 with 2x Laemmli Sample Buffer (BIO-RAD).  All reconstituted samples of 

secretion contained the same concentration of protein.  ß-mercaptoethanol (BME) was also 

added to a final volume of 5% (v/v) to the Laemmli Sample Buffer to make sure disulfide bonds 

were reduced.  The samples were boiled at 95°C for 10 minutes and then centrifuged at 5,000 

rpm for one minute to pellet any undissolved proteins.  The supernatant was run on both 7.5% 

Precast Mini-PROTEAN TGX Protein gels and 4%-20% Mini-PROTEAN TGX Precast Protein 

gels for 100 V for 75 to 90 minutes.  Gels were stained with the Silver Stain Plus Kit (BIO-RAD) 
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according to manufacturer’s protocol and imaged on a ChemiDoc XRS+ Imaging System (BIO-

RAD).  Clearly defined bands were cut out and stored at -80°C until destaining and in-gel 

digestion. 

Sample Digestion, Desalting, and Peptide Recovery 

Trypsin/Lys-C In-solution Digestion 

Solubilizing the protein that was found in the secretions proved to be extremely difficult 

as well and took a couple of approaches to finally solubilize.  For in-solution digestion, 

solubilization was performed using 8M guanidine hydrochloride with 10 mM dithiothreitol along 

with boiling at 95°C for both control and stress samples.  Proteins were checked and briefly 

vortexed every 15 minutes.  After 45 minutes all proteins were solubilized.  After solubilization 

and reduction, proteins were alkylated using 200 mM iodoacetamide in 0.4 M Tris-Base buffered 

to a pH of 7.8 for an hour in the dark at RT.  A quenching reaction using 200 mM 1,4-

Dithiothreitol (DTT) in 0.4 M Tris-Base buffered to a pH of 7.8 for 45 minutes at RT was then 

performed to make sure alkylation was stopped.  Both the control and stress sample were diluted 

to a volume of 1 mL to dilute the 8M guanidine hydrochloride to prevent Trypsin and Lys-C 

denaturation.  Digestion was done using a Rapid Digestion-Trypsin/Lys-C Kit (Promega) 

according to manufacturer’s instructions.  A thermomixer was not available, so a Hybaid 

Hybridization Oven was used instead to mix the sample as it was heated.  The reaction was 

stopped after 12 to 16 hours by adding glacial acetic acid to the digest solution until the pH was 

below 6.  Each sample was lyophilized down to a volume of approximately 2 µL and stored at -

80°C until the next step. 
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In-gel Digestion 

Gel slices were thawed to RT and then were destained using ProteoSilver Destainer A 

and B (SigmaAldrich) as directed by the manufacturer.  After destaining, the gel slices were 

washed twice with DI water, each time for five minutes.  Then the slices were covered in a 

mixture of 25 mM NH4HCO3 and 50% Acetonitrile (ACN).  The supernatant was removed and 

then the pieces were dried for 15 minutes to complete dryness using a Speed Vac (Thermo 

Scientific) using the medium heat setting.  Reduction was performed using 10 mM DTT in 25 

mM NH4HCO3.  Alkylation was performed using 55 mM Iodoacetamide (IAA) in 25 mM 

NH4HCO3 at 56° C for 1 hour.  All gel slices were digested with Trypsin Gold (Promega) for a 

minimum of four hours at 37° C.  The supernatant was removed and then the gel slices were 

twice covered with a solution of 50% ACN/5% Trifluoroacetic acid (TFA) for an hour to further 

extract peptides.  The initial supernatant and the next two supernatants for each slice of gel were 

combined separately in tubes and then dried using a Speed Vac (Thermo Scientific).  Desalting 

and peptide recovery were done using a Pierce C18 Tip (Thermo Scientific) according to 

manufacturer’s instructions for each slice.  Each peptide elution volume was then lyophilized 

down to a volume of approximately 2 µL and stored at -80°C until the next step. 

High pH Desalting and Fractionation 

Originally, Pierce C18 Tips (Thermo Scientific) were used to bind digested peptides 

before ESI MS/MS.  This technique yielded fewer worthy results than the future techniques, so it 

was omitted.  Post-digestion, in-solution fragments were run through a Pierce High pH 

Fractionation Spin Column to make sure all peptides in solution were identified.  The protocol 

was followed according to manufacturer specifications.  The sample volume from the in-solution 

digest was over 1 mL, so several spin cycles were needed to make sure that the total sample 
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volume was bound to the column, after column conditioning.  When the protocol was finished, 

elution fractions one and five, two and six, three and seven, and four and eight, were pooled to 

reduce runtime on the mass spectrometer and to reduce machine variability.  After samples were 

pooled, they were lyophilized and then resuspended in 30µL 0.1% Formic acid in water.  Before 

running the samples through the ESI, each sample was tested for the proper concentration of 0.15 

µg/µL using the CB-X assay mentioned above. 

Dissection 

One C. sterbai was placed in a solution of 0.6 g/L of Benzocaine and sodium bicarbonate 

that was chilled to 4° C for a minimum of 15 minutes until all signs of vitality had stopped.  The 

fish was then cut from the ventral side, posterior to the operculum, and then stopped until just 

about eye-level.  Another incision was made the along ventral surface towards the tail for 

approximately 1.5 cm.  A third cut was made starting at the end of the second cut and was made 

dorsally along the plates up to the level of the first cut, so that the flap of the plates could be 

pulled back.  Tissue was taken from the flap of plates proximal to the opening found ventral and 

posterior to the pelvic fin.  One pelvic fin was also removed from the fish to check the protein 

composition, as well as a snipping of the dorsal fin and tissue were also taken but not analyzed.  

A piece of scale was also taken for analysis.  All tissues were immediately placed into 1.5 mL 

tubes, frozen with liquid nitrogen, and stored in a -80°C freezer.  Figure below displays the cuts 

that were made to the fish. 
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Figure 5. General external anatomy of a fish.  The red line on the fish was drawn to represent the flap of 

that was removed on both sides of the fish to expose what is hypothesized to be the toxin gland. 

 

Tissue Homogenization 

Post-dissection, samples were kept on ice before homogenization using a Bullet Blender 

Storm 24.  Each tissue sample was put into a RINO tube filled with zirconium oxide coated steel 

balls with diameters from 0.9 to 2.0 millimeters.  A ratio of 2:1:1 was used when comparing 

volumes of denaturing solution, sample, and homogenization beads.  The denaturing solution 

used was 8 M guanidine hydrochloride with 10 mM DTT as a reducing agent.  Samples were run 

on a power setting of 12 for two minutes, twice, with one minute of resting on ice in between to 

cool them down.  Homogenized samples were then run through in-solution digestion and 

fractionation before MS/MS analysis. 

Peptide Analysis 

 



29 

Chromatography 

Each digested sample was subject to a method similar to Larracas et al.  Differences 

from the method include HCD fragmentation instead of CID and the Orbitrap™ was used at both 

the MS1 and MS2 level to analyze peptide fragments and HCD collision results.  Additionally, 

Solvents A and B were the same as36.  Solvent B was used for the following times and 

concentrations: 2% for 0 to 5 minutes, 2% to 22% for 5 to 75 minutes, 22% to 38% for 75 to 100 

minutes, 38% to 95% for 100 to 105 minutes, 95% for 105 to 110 minutes, 95% to 2% from 110 

to 115 minutes, and 2% from 115 to 140 minutes.  Each gradient run took 140 minutes using the 

same C18 column. 

Mass Spectrometry 

Mass spectrometry analysis was performed using an Orbitrap™ Tribrid™ mass 

spectrometer with an Easy-Spray ion source (Thermo Fisher Scientific) using similar methods 

to36.  Differences included using a maximum inject time of 50 milliseconds with a quadrupole 

isolation window of 200-1400 m/z.  At the MS2 level a stepped energy collision was used with an 

HCD collision energy of 28% and a ± HCD collision energy of 3.  Also, the maximum injection 

time was 150 milliseconds with the first mass at 100 m/z. 

Database Construction and Proteomic Sequence Analysis 

Protein and proteome sequences were downloaded from UniProt, T3DB, and 

CRAPome37–39.  Sequences downloaded from Uniprot included data from both Swiss-Prot and 

TrEMBL.  The databases downloaded on their respective dates are as follows: E.  coli K12 on 

August 8th, 2017, D.  rario on December 18th, 2017, prostaglandin on January 11th, 2018, and 

Siluriformes on August 16th, 2017.  The entire T3DB database was downloaded on August 16th, 

2017.  Downloaded protein and proteome sequences were concatenated into one FASTA 
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database file to which peptide fragments were compared.  Proteomic sequence analyses were 

performed using PEAKS Studio Version 8.5 (Bioinformatic Solutions Inc.).  Database searches 

were performed using the following criterion: Parent Mass Error Tolerance of 2.5 ppm, 

Fragment Mass Error Tolerance of 0.02 Da, Precursor Mass Search Type: Monoisotopic, 

Enzyme: Trypsin and Lys-C, Max Missed Cleavages: 3, Non-specific Cleavage: 1, Fixed 

Modifications: Carbamidomethylation, Variable Modifications: Oxidation (M), Acetylation (N-

terminus), Deamidation (NQ), Sodium adduct, Max variable PTM per peptide: 3, Searched 

Entry: 102737, FDR Estimation: Enabled, and De Novo Dependencies: 9.  To filter out low 

quality peptides, a 1% FDR was used.  In matching the peptides to the database, a base -10logP 

score of 20 was required along with a minimum of two unique peptides matching back to the 

same protein in the database to definitively say that a hit was confirmed. 
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CHAPTER 4: RESULTS 

 

Because other organismal groups of venoms have been much more extensively studied, 

there are over 2000 venomous fishes that require extensive analyses to determine if they contain 

any bioactive peptides1.  This study was done to identify any proteins in the secretion produced 

by Corydoras sterbai as well as tissues in the body. 

Sample Collection 

During sample collection C. sterbai always appeared to behave normally until the fifth 

minute.  Sometimes as early as the fifth minute and then quickly after, individuals would appear 

to be stressed and the water would turn cloudy instantaneously as seen in Figure 6. 

 

 

Figure 6. C. sterbai releasing hypothesized toxin.  (Photo credit Ian Fuller) 

 

As soon as the water turned cloudy, each fish struggled to maintain their vertical orientation 

and would slowly turn horizontal while starting to breathe at a much more rapid rate.  All fish 

were immediately removed as soon as the water turned cloudy, to prevent death.  Each time, all 
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fish were immediately returned to back to their tank and all fish always made a recovery except 

one adult that died. 

SDS-PAGE Analysis 

Figure 7 is an SDS-PAGE gel was run with both reconstituted venom samples and tank 

water samples.  Gel slices were cut out at the following sizes: 150 kDa, 75 kDa, and 37 kDa, as 

those bands were the most visible.  All proteins were digested in-gel with Trypsin Gold 

(Promega).  Additionally, there seemed to be a faint band around 50 kDA, but this band was 

deemed too faint for analysis as seen in Figure 8.   

 

Figure 7. SDS-PAGE of hypothesized C. sterbai venom. Lane one contains protein standards.  The sizes 

of the protein standards are as follows, 10, 15, 20, 25, 37, 50, 75, 100, 150, and 250 kDa.  Reconstituted 

venom samples are found in in lanes two through five and lyophilized fish water in lanes seven through 

ten.  Lane six had sample buffer to prevent any bleed over or contamination between lanes. 
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Figure 8. A subset of the SDS-PAGE gel in Figure 7. Each arrow above is pointing to a band that was 

considered for analysis.  However only the 150 to 250 kDa band, the 75 kDa band, and 37 kDa bands 

were cut out and had their proteins analyzed. 

 

 

Each of the three bands cut out had their proteins digested with trypsin and were analyzed as 

mentioned above.  The twelve proteins from the 150 to 250 kDa band are listed in Table 1.  Only 

two proteins were found in each of the two other bands that were analyzed and are listed below 

in Table 2 and Table 3. 
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Table 1 

The Top 12 Most Confident Protein Database Matches from the 150 to 250 kDa Band as seen in 

Figure 8 
 

Location of Protein in Cell #Unique Average Mass (kDa) Description 

Membrane/Blood 9 37.7 Ig alpha-1 chain C region 

Nucleus/Cytoskeleton 8 41.8 

Bactin2 protein OS=Danio 

rerio  

GN=actb2 PE=2 SV=1 

Endoplasmic Reticulum 2 69.6 

Prostaglandin-endoperoxide 

synthase 1 

OS=Astyanax mexicanus 

PE=4 SV=1 

Cytoplasm 5 68.8 

Phospholipase A2, group 

IVAb 

(cytosolic, calcium-dependent) 

OS=Danio rerio GN=pla2g4ab 

PE=4 SV=1 

Membrane/Endoplasmic Reticulum 2 56.2 

Reticulon OS=Danio rerio 

GN=rtn4b 

PE=2 SV=1 

Cytoplasm 3 21.9 

Peroxiredoxin 2 OS=Danio 

rerio 

GN=prdx2 PE=1 SV=1 

Endoplasmic Reticulum 3 10.3 

Receptor expression-

enhancing protein 

(Fragment) OS=Ictalurus 

punctatus 

PE=2 SV=1 

Nucleus 2 9.9 

Ubiquitin B OS=Danio rerio 

GN=ubb 

PE=4 SV=1 

Cytoplasm 3 77.0 

Arachidonate 12-lipoxygenase 

OS=Danio rerio GN=alox12 

PE=1 SV=1 

Mitochondria/Nucleus/Membrane 2 49.9 

Adenylyl cyclase-associated 

protein 

OS=Ictalurus punctatus 

GN=CAP1  

PE=2 SV=1 
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Table 2 

The Only Two Protein Database Matches from the 37 kDa Band as seen in Figure 8 
 

Location of Protein in Cell #Unique Average Mass (kDa) Description 

Cytoskeleton 3 41.8 
Actin, cytoplasmic 1 OS=Danio rerio 
GN=actba PE=2 SV=2 

Nucleus/Membrane 2 50.1 
Elongation factor 1-alpha OS=Danio 
rerio GN=eef1a1l1 PE=2 SV=1 

 

 

 

Table 3 

The Two 75 kDa Band Database Matches from Table 4 
 

Location of Protein in Cell #Unique 

Average 
Mass 
(kDa) 

Description 

Cytoskeleton 4 41.7 Actin, 
cytoplasmic 
1 

Cytoplasm/Exocytosed 2 16.0 Hemoglobin 
subunit 
beta 

 

 

Table 4 

Methods of Preparation of Peptides from the Same Sample Used in This Experiment and How 

They Improved Over Time 
 

Origin of Peptides 
PEAKS DB 
Matches 

PEAKS SPIDER 
Matches 

8M Urea Attempt 1 Control 1 1 

8M Urea Attempt 1 Toxin 1 1 

8M Urea Attempt 2 Control 1 1 

8M Urea Attempt 2 Toxin 1 1 

37 kDA In-Gel Band 7 19 

75 kDA In-Gel Band 7 9 

150 to 250 kDA In-Gel Band 23 38 

8M Gdn HCl Attempt 3 
Control 2 3 

8M Gdn HCl Attempt 3 Toxin 420 751 
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In addition to having many more protein database hits for the water samples with the 

secretions in them as seen in Table 4 above, the reconstituted venom chromatograms are vastly 

different from the control water chromatograms.  Each of the control chromatograms in Figure 9, 

Figure 10, Figure 11, and Figure 12 barely show any peptides compared the chromatograms from 

the stressed samples. 

 

Figure 9. The two chromatograms above are both grouped fractions one and five.  The top chromatogram 

is from the stressed samples while the bottom is from the control samples. 
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Figure 10. The two chromatograms above are both grouped fractions two and six.  The top chromatogram 

is from the stressed samples while the bottom is from the control samples. 

 

Figure 11. The two chromatograms above are both grouped fractions three and seven.  The top 

chromatogram is from the stressed samples while the bottom is from the control samples. 
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Figure 12. The two chromatograms above are both grouped fractions four and eight.  The top 

chromatogram is from the stressed samples while the bottom is from the control samples. 

 

Dissection 

A dissection of C. sterbai was also performed during this experiment.  One C. sterbai 

was euthanized using a solution of 0.6 g/L solution of benzocaine buffered with sodium 

bicarbonate at 0.6 g/L.  Before the dissection, an opening posterior to the pectoral fin was 

documented as see in Figure 13.  Additionally, an oval-shaped dark object containing what are 

thought to be shiny globules of a hydrophobic substance was discovered just ventral to the 

pectoral spice as seen in Figure 14.  
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Figure 13. C. sterbai external anatomy. Here, C. sterbai has its pectoral fin snipped and lifted to expose 

an opening just behind the pectoral spine.  Arrow A points to the opening behind the pectoral fin on the 

outside of the fish and Arrow B is the pectoral spine that has been lifted to expose the opening. 

 

 

 

Figure 14. C. sterbai hypothesized venom gland. Close to the external ventral side of the fish and ventral 

to the pectoral spine is a compartment that looks like it contains small vesicles or granules. 

 

B 

A 
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Figure 15. C. sterbai internal tissue dissection. The internal view of tissue underneath the opening found 

proximal to the pectoral spine.  The red line denotes what is believed to be the gland containing the 

vesicles seen Figure 13 and Figure 14. 

 

 

 

 

 

 

 

 

Table 5 

The Number of Protein Database Matches Found for Each Tissue After MS/MS Analysis Using 

Proteomic Software 

 

Tissue Type Number of Proteins Found 

Armor Plating 519 

Connective Tissue 127 

Dorsal Ray 116 

Potential Toxin Gland 777 

Skeletal Muscle 487 

Pectoral Spine 127 
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After the dissection was performed, all tissues were ground up and analyzed for their 

protein composition at the time of death.  The potential toxin gland had by far the greatest 

number of protein matches to the database.  Proteins found in two or more of the tissues were 

removed from analysis in order to identify tissue-specific proteins and (hopefully) to better 

understand the unique processes in the gland.  Looking at biological processes that these proteins 

are found in, the top five results based on number of proteins involved in that process are as 

follows: small GTPase mediated signal transduction, protein folding, intracellular sequestering of 

iron ions, iron ion transport, and cellular iron homeostasis.  These proteins are unfortunately not 

unique to any process and are commonly found in most tissues throughout the body.  Small 

GTPase mediated signal transduction is found within the ribosome which is where protein 

folding occurs41.  Intracellular iron ions can pose a threat if they are not properly bound to 

proteins and solubilized42.  The iron containing protein found in this study was ferritin and its 

subunits which can be found not only within most cells in the body, but also in the blood as 

well42. 
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CHAPTER 5: DISCUSSION 

 

The goal of this experiment was to determine if C. sterbai secreted a toxic substance as a 

predation defense mechanism.  Toxin and venom research are incredibly important as they are 

and can be used in everyday research.  Using several different methods of protein preparation, 

separation, and mass spectrometry analysis we have come to several conclusions. 

After collecting the stressed water samples, C. sterbai does secrete a protein rich 

substance into the water.  This conclusion is backed up by the increased peptide abundance seen 

in the control and stressed chromatograms as well as the number of database protein matches that 

are seen in Table 2.  Figure 4 also displays the secretions coming out from the fish as it turns 

upside-down, clearly showing that has lost muscular equilibrium and is not behaving normally.  

The dark smears also found in the SDS-PAGE gels shows that much protein is found in the 

secretions as well. 

In-solution tryptic digests of the secretion were performed first before attempting in-gel 

tryptic digests of the same starting material.  Solubilization of the lyophilized proteins was 

attempted using 8M urea.  This technique failed to solubilize all proteins, leaving a precipitate.  

Solubilization was then attempted using 8M guanidine hydrochloride and 10mM dithiothreitol 

along with heating at 95° C and periodic vortexing36.  This new method completely dissolved 

proteins within 45 minutes.  Desalting and peptide recovery were done initially with Thermo 

Fisher C18 Tips for each of the attempts to solubilize peptides with 8M Urea.  This step was 

replaced with Pierce High-pH Fractionation Columns to reduce complexity in the sample when 

the solubilization step was replaced with 8M guanidine hydrochloride and 10 mM DTT.  

Samples were then pooled to reduce technical variability during runtime through our Orbitrap™ 
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Tribrid™ mass spectrometer.  Early attempts using 8M Urea as the part of the sample 

preparation provided very few database matches compared to the revised sample preparation 

seen in Table 2.  Database matches using the revised sample preparation had greater than 400 

protein matches for both the PEAKS DB and SPIDER search methods. 

Within the PEAKS DB results for the stressed water samples using the latest method of 

preparation, several prostaglandin producing enzymes are continually at the top of the list based 

on PEAKS’ confidence algorithms.  The stringent parameters used in this experiment ensure that 

these enzymes are in the sample.  Other organisms, such as the common honeybee, have high 

levels of prostaglandins in their venom43.  Prostaglandins themselves are known vasodilators, 

markers of inflammation, and inhibitors of platelet aggregation at very low concentrations.  This 

has led to the belief that C. sterbai could also secrete either high levels of prostaglandins into the 

environment as a protective mechanism or high levels of prostaglandin producing enzymes.  

Prostaglandins themselves are derived from long fatty-acid chains.  Being hydrophobic, these 

molecules could be in the water and could easily be absorbed through phospholipid membranes 

in predatory organisms.  If the prostaglandins are in the water, they could be absorbed through a 

phospholipid membrane.  Prostaglandins would have an immediate effect in signaling localized 

pain.  Absorption through the gills is documented with other chemicals such as the 

anesthetization method described above in this experiment. 

 In conjunction with prostaglandin producing enzymes, Phospholipase A2 (PLA2) was 

found in the secretion.  PLA2’s main function is to digest phospholipids which makes it 

extremely efficient at cutting eukaryotic cell membranes44.  PLA2 has been found in the venoms 

of numerous taxa44.  If prostaglandins are in this secretion, the inflammation that they signal 
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could bring extra blood to the site along to where the phospholipases are, causing even more 

damage to the predatory animal. 

 

Figure 16. The KEGG pathway analysis of arachidonic acid metabolism. This figure above illustrates the 

number of prostaglandin synthesizing enzymes in various pathways that were found in the sample. 

 

 Along with prostaglandin producing enzymes and PLA2, Peroxiredoxin 2, 4, and 6 were 

found in the lyophilized secretion.  Peroxiredoxins have been known to work in conjunction with 

PLA246.Peroxiredoxin 6 specifically is a bifunctional enzyme and can hydrolyze phospholipids 

using PLA244. 

Looking at the hypothesized non-toxic proteins that were found in the secretion, proteins 

from all parts of the cell are shown in Table 1, Table 2, and Table 3.  Previous research has 

shown that fish most likely secrete toxins using holocrine secretion secrete these proteins as well, 

which explains why nuclear and cytoplasmic proteins both were seen47. 
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After removing overlapping proteins found in the other six tissues, the remaining 309 

proteins remaining in the dissected hypothesized toxin gland were then input into the DAIVD 

Bioinformatics Resource 6.8. 

With the evidence in results and discussion, it is hypothesized that the several 

prostaglandins producing enzymes, phospholipases, and peroxiredoxins C. sterbai secretes, 

could work together.  This concoction would rapidly affect cellular membranes and could cause 

rapid edemas, swelling, and pain in the affected area(s).  This defensive mechanism seems to 

only be secreted under stressful conditions and likely is fast-acting as members of this genus 

quickly invert and appear lifeless during collection soon after the water turns cloudy. 

Preparing and separating proteins using the SDS-PAGE gels as seen above did not yield 

as many results as in-solution digestion due as bands were cut out instead of analyzing the whole 

secretion or ground up tissue.  Excising certain bands influenced the theoretical sizes of proteins 

that were studied versus using the High pH Fractionation Column to separate out all proteins 

allowed for many more proteins to be studied.  Because of the stringent parameters, the 75 kDa 

and 37 kDa bands only had two proteins each using the database search method in PEAKS 8.5.  

In the 150 to 250 kDa band there were many more protein matches, but only the top ten included 

some of the groups of hypothesized toxic proteins as mentioned above. 

 The sizes of the bands that were cut out in this study often did not contain proteins that 

were of that size.  As seen above, most of the lane was a smear indicating degradation of proteins 

or proteolysis could have happened before the sample could be frozen.  The dark stains at the top 

of the gel and poor overall resolution could be an indication of this issue47. 

If parts of proteins bonded together after they were proteolyzed with trypsin, it would 

give the illusion that the whole protein had migrated to that part of the gel.  An additional issue 
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was whether all the proteins in solution were completely denatured through heating while in 

loading buffer.  Some early on SDS-PAGE solubilization attempts contained precipitated 

proteins at the bottom after boiling and centrifugation indicating that not all proteins were 

denatured and solubilized before loading.  This could not have completely denatured all proteins.  

Actin and hemoglobin were two proteins that were found in bands close to their expected size. 

 Within this study, there were limitations that were imposed by both the techniques, 

machines, and software used.  Undoubtedly, peptide loss could have happened while preparing 

samples for the mass spectrometer.  The freezing and thawing of samples could create breakages 

in proteins while could then affect proteolysis48.  Additionally, peptide loss could have occurred 

during the binding of the column for fractionation as well as the grinding of the tissues as not all 

the tissue may have been ground up and some peptides may not have bound to the column.  

When using the quadrupole mass analyzer, the mass to charge ratio used destroyed peptides 

outside of the desired range preventing a fuller coverage with the database.  With the software 

used, PEAKS 8.5, the settings used were very stringent.  Both very small Parent Mass Error 

Tolerance and Fragment Mass Error Tolerances help to ensure that the peptides that were found 

were very accurate, but small variances could have prevented peptides from being accepted into 

the dataset.  Additionally, an ALC score of 95 percent was used, which is extremely strict on top 

of the -10logP value of at least 20.  All these stringent settings together made sure that our 

peptides were very real, but this also does remove other peptides that could have been real as 

well.  Lastly, the mass spectrometer used along with the software used was not able to tell us 

about the abundance of peptides found in samples.  This would have been extremely useful to 

help see if the levels of hypothesized toxic proteins found in the secretions and tissues were 
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much higher than what is found in other tissues, this could indicate that those proteins might be 

components of the toxin. 

 Further research could be conducted in a variety of areas.  One of the first steps would be 

to sequence the genome of C. sterbai this would allow for direct gene comparisons with known 

toxic or venomous organisms.  This first step would immediately categorize the species as toxic.  

After looking at the genome, a transcriptome of the tissues that were dissected also could have 

been done.  The transcriptome is much more useful with a previously sequenced genome.  

Furthermore, a sequenced genome and transcriptome would greatly benefit any future proteomic 

study on this species.  Predicted peptides from the genome could be assembled into a database 

and then compared to what was found in tissues and in secretions.  This could ensure that the 

mass spectrometer and PEAKS 8.5 software used in this experiment can more accurately match.  

More accurate peptides could then be compared to bioinformatic databases or to any uploaded 

database in PEAKS 8.5.  Finally, a quantification of the levels of proteins found in both the 

tissues and secretions would be extremely useful.  The quantification data could reveal if the 

levels of enzymes that make prostaglandins in what is believed to be the gland, to be much 

higher than that is what is found in all five of the other tissue samples.  Additionally, if the 

genomic data shows that C. sterbai does produce toxins that are like other organisms, the levels 

of those proteins could be studied as well.   

 In addition to sequencing nucleic material, an analysis of lipids in both the secretions and 

in the tissues could be done using the mass spectrometer used in this research.  Hopefully the 

physical number of prostaglandins could be measured and then compared to what is found in 

other venoms to see if the dosage could be enough to cause pain and inflammation in a predator.  
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The number of prostaglandins could also be compared to other tissues found in C. sterbai as well 

as other organisms to see if the levels are out of the ordinary. 

 Future research on this organism is extremely important as the number of aquatic toxic or 

venomous organisms is dwarfed by that or known terrestrial venomous organisms.  
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