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Photoelectron Photoion Coincidence (PEPICO) spectroscopy is a robust tool for 

elucidating complex unimolecular dissociation mechanisms and for determining thermochemical 

and kinetic data of gas-phase ion dissociations with high accuracy.  In this work, the dissociative 

photoionization of two sets of isomeric systems were analyzed with PEPICO: 1) C7H7
+
 ions of 

toluene (Tol) and 1,3,5-cycloheptatriene (CHT), and 2) two butyl alcohol isomers, 1-butanol and 

isobutanol.  Threshold dissociative photoionization data on these four molecules of interest were 

collected on the imaging PEPICO apparatus at the VUV beamline of the Swiss Light Source.  

Data analysis was aided by ab initio calculations and Rice-Ramsperger-Kassel-Marcus (RRKM) 

statistical rate theory was employed to model the complex dissociation pathways of each system.  

Finally, thermochemical, reaction mechanism, and dissociation kinetics data were extracted from 

the modeled data and are reported here. 

In the first project, the dissociation of energy-selected 1,3,5-cycloheptatriene (CHT) and 

toluene (Tol) cations was investigated by imaging photoelectron photoion coincidence 

spectroscopy.  In the measured energy ranges of 10.30−11.75 eV for CHT and 11.45−12.55 eV 

for Tol, only the hydrogen atom loss channels open up, leading to C7H7
+
 from both molecular 

ions, which are both metastable at the H-loss threshold.  Our quantum chemical calculations 

showed that these ions can interconvert below their dissociation thresholds.  Therefore, we 
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constructed a single statistical model to describe both systems simultaneously.  We determined 

0 K appearance energies (E0) for the tropylium and benzyl fragment ions from CHT to be 9.520 

± 0.060 eV and 9.738 ± 0.082 eV, and from Tol to be 10.978 ± 0.063 eV and 11.196 ± 0.080 eV, 

respectively.  Using the experimentally determined benzyl ion appearance energy, its 0 K heat of 

formation was calculated to be 937.9 ± 7.7 kJ mol
–1

.  On the basis of this value and the recently 

determined benzyl ionization energy, we point out discrepancies concerning the benzyl radical 

thermochemistry. 

For the second project, the fragmentation processes of two internal energy-selected 

C4H10O
+•

 cations, 1-butanol and isobutanol, were investigated.  For both isomers, the first 

dissociation channel leads to the formation of C4H8
+•

 ions (m/z = 56) by a water loss.  Using 

statistical energy distribution and rate models, which include isomerization of the molecular ions, 

the 0 K appearance energies (E0) were determined to be 10.347 ± 0.015 eV and 10.566 ± 0.050 

eV, for 1-butanol and isobutanol, respectively.  The second dissociation channel, the formation 

of CH3OH2
+
, quickly overtakes the water-loss channel in isobutanol, with an E0 of 10.612 ± 

0.020 eV, but appears only as a minor channel in 1-butanol with an E0 of 10.738 ± 0.080 eV. The 

methanol-loss channel, forming propylene ion, opens up at E0 = 10.942 ± 0.040 eV and 10.723 ± 

0.020 eV in 1-butanol and isobutanol, respectively.  The next two fragmentation pathways 

correspond to a complementary pair of C3H7
+
 through the loss of CH2OH, and CH2OH

+
 through 

the loss of C3H7.  From both isomers, C3H7
+
 is the isopropyl ion, which is readily formed in 

isobutanol via a simple bond cleavage at E0 = 10.970 ± 0.050 eV and its pair, CH2OH
+
, at E0 = 

11.11 ± 0.20 eV.  However, there is an internal hydrogen shift necessary in 1-butanol and, 

therefore, the complementary ions appear at the same E0 of 11.104 ± 0.030 eV, which most 
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likely corresponds to their common transition state.  Finally, C3H5
+
, a product of sequential 

dissociation from m/z = 56, appears above 11.6 eV as a minor channel for both isomers.  
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CHAPTER 1: INTRODUCTION 

 

 Photoelectron Photoion Coincidence Spectroscopy (PEPICO) is a robust tool to elucidate 

complex dissociation mechanisms and to determine thermochemical and kinetics data with high 

accuracy by inducing the unimolecular dissociation of gas phase cations.  Although decades of 

research, both experimental and theoretical, has provided some understanding of the dissociation 

mechanism of both the butanol and C7H8 isomer systems,
1-8

 insights into their respective 

fragmentation processes still remain elusive. Recent improvements to statistical thermodynamics 

modeling and game-changing instrumental upgrades to the PEPICO technique, spearheaded by 

our research group – including improvements to electron and ion optics and the use of a high 

intensity synchrotron light source – has motived us to revisit these projects and offer additional 

insight.  As such, this thesis is divided into two main projects: 1) the dissociative photoionization 

of toluene (Tol) and 1,3,5-cycloheptatriene (CHT), and 2) a comparison of the dissociative 

photoionization of 1-butanol and isobutanol. 

 For the first project, hydrogen abstraction from gaseous 1,3,5-cycloheptatriene (CHT) 

and toluene (Tol) cations (C7H8
+
 isomers) leads to the formation of two almost isoenergetic 

C7H7
+
 isomers: benzyl (Bz

+
) and tropylium (Tr

+
).  The driving forces guiding the reactive flux to 

the benzyl or the tropylium cation and their rearrangement reaction holds unanswered questions 

even after 60 years of research.
9-16

  The iPEPICO setup allows for accurate energy selection of 

the photoions.  This experimental data (the fractional ion abundance plotted as a function of the 

photon energy) is customarily represented in the breakdown diagram, which then modeled 

together with the dissociation rate information extracted from the time-of-flight (TOF) mass 

spectra, using statistical rate theories. Our goal was to use careful modeling of energy 
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distributions and dissociation rates to construct a single statistical model which describes 

hydrogen abstraction from both CHT and Tol cations.  We uncovered evidence for the coexisting 

H-loss channels and explored the isomerization processes as well as large kinetic and 

competitive shifts. 

The aim of the second project presented here is to advance our understanding of 

statistical rate and energy distribution theories, and to determine highly accurate experimental 

thermodynamic data on neutral and ionic species related to combustion and atmospheric 

processes.  Alcohols are the most prominent biofuels to date, with ethanol already being used as 

a fuel additive.  Butanol isomers, and 1-butanol in particular, have better mixing with common 

fuels, and better compatibility with traditional engines.  Hence, the second project involves the 

study of fragmentation processes of two internal energy selected C4H10O
+
 cations, 1-butanol and 

isobutanol.  

Interestingly, both butanol isomer cations produce six fragment ions with same mass-to-

charge ratios (m/z), but widely different branching ratios, by numerous parallel and consecutive 

dissociation channels in a narrow, 3 eV photon energy range.  Although many of these species 

and elementary reactions involved have been fairly well characterized, thermochemical input 

parameters are one of the major sources of uncertainty in the combustion models. Hence, to 

understand the reaction mechanisms and to obtain reliable energetics data, the breakdown 

diagrams of 1-butanol and isobutanol cations were modeled using statistical energy distributions 

and rate theory.  The interpretation and analysis of these fairly complex dissociation mechanisms 

were aided by high-level quantum chemical calculations. The accurate determination of 

energetics data of these small oxygenated species supports the ever-increasing need to improve 

the accuracy of predictive combustion models.  
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CHAPTER 2: THEORY AND TECHNIQUES 

 

2.1. Photoelectron Photoion Coincidence Spectroscopy (PEPICO) 

2.1.1. Background and Applications 

Photoelectron photoion coincidence spectroscopy is the combination of photoionization 

mass spectrometry (PIMS) and photoelectron spectroscopy (PES).  Monochromatic vacuum 

ultraviolet (VUV) light is used to irradiate a sample in gas phase that, if the absorbed photon had 

sufficient energy, causes the ejection of an electron: 

AB + hυ → AB
+
 + e

–
 → A

+
 + B + e

–
 (1) 

where AB is a neutral molecule, hυ represents the absorbed photon, AB
+
 is the formed ion, and 

e
–
 is the ejected electron.

17
  Then, if AB

+
 has enough internal energy, it might dissociate into a 

fragment ion A
+
 and a neutral leaving group B.  The photoions are mass analyzed in a time-of-

flight (TOF) mass analyzer, where the start signal is provided by the electron (vide infra).  In the 

early years of PEPICO, a monochromatic VUV light source was used to ionize a neutral sample 

(e.g. He, Ne), but later light sources were implemented that provided a broadband VUV light. 

The most common type was the hydrogen gas discharge lamp connected to a VUV 

monochromator to filter out the unwanted wavelengths.
18-20

  With this setup, dissociation 

reactions of the photoion as a function of its internal energy can be studied by varying the photon 

energy.  To know the exact internal energy of the formed ion, the kinetic energy of the 

corresponding electron must be determined.  The energetics of an ionization process can be 

given as: 

Ei = hυ + Ethermal + KEe- + KEi – AIE (2) 
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where Ei is the internal energy of the ion, hυ is the photon energy, Ethermal is the thermal energy of 

the neutral molecule, KEe- and KEi are the kinetic energies of the electron and the ion, 

respectively, and AIE is the adiabatic ionization energy.  Because of momentum conservation, 

KEi is close to zero and can be omitted from the equation.  Threshold PEPICO (TPEPICO) is a 

technique where only the zero kinetic energy electrons are considered.
21-28

  Therefore, the energy 

of the photon is entirely partitioned into the internal energy of the ion and equation (2) above can 

be simplified for TPEPICO as: 

Ei = hυ + Ethermal – AIE     (3) 

The AIE is known, hυ is controlled by the monochromator, the thermal energy of the neutral can 

be modeled (knowing the sample temperature) and, therefore, the internal energy of the ion is 

well-defined. 

As mentioned earlier, the photoions in a PEPICO experiment are mass analyzed in a 

Wiley-McLaren time-of-flight setup and the undissociated molecular ion AB
+
 (see Eq. 2) and 

fragment ion A
+
 are separated by their time-of-flight. If the dissociation is slow, then 

unimolecular rate constants can also be extracted from the mass spectra by fitting the quasi-

exponential shape of the metastable fragment ion peak. The fractional abundances of the ions as 

a function of photon energy is plotted in a breakdown diagram to derive 0 K appearance energies 

(E0) of the fragment ions.  The 0 K heat of formation of the neutral molecule, the fragment ion, 

and the neutral fragment is connected through a thermochemical cycle with E0 where: 

E0 = ΔfH
º
0 K[A

+
] + ΔfH

º
0 K[B] – ΔfH

º
0 K[AB]    (4) 

If the 0 K heats of formation of two species are known, then the ΔfH°0 K of the third can be 

calculated utilizing the experimental E0.  The PEPICO technique can also be employed to 

investigate both sequential and parallel dissociations.
29
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Experiments presented herein on the dissociative photoionization of toluene, 1,3,5-

cycloheptatriene, 1-butanol, and isobutanol were carried out on the imaging PEPICO instrument 

at the Swiss Light Source of Paul Scherrer Intitut in Switzerland. 

 

2.1.2. Imaging PEPICO Apparatus at the Swiss Light Source 

As it has been mentioned in the previous section, a tunable VUV light source with high 

photon flux is necessary for TPEPICO measurements in order to ionize and fragment neutral 

molecules.  Briefly, tunable synchrotron radiation is produced when electrons moving at close to 

the speed of light are forced to change trajectory by a bending magnet, wiggler, or undulator.  

Unlike bending magnets, wigglers and undulators are periodic structures of alternating dipole 

magnets, so electrons traveling through them are forced to oscillate.  Every oscillation produces 

VUV radiation, therefore wigglers and undulators provide more intense light in a narrow energy 

range.
30

 Bending magnets generate a broad spectrum of wavelengths, therefore a grazing-

incidence grating monochromator is used at the VUV beamline of the Swiss Light Source to 

filter out unwanted photon energies.  Gratings with 300, 600, and 1200 mm
–1

 line density can be 

selected, depending on the energy resolution and the photon intensity required.  Measurements 

can be carried out in the 5–21 eV photon energy range with a photon flux of 10
12
–10

14 
s
–1

.  Ideal 

resolving power using the 600 mm
–1

 grating is ΔE/E ≈ 10
–4

, corresponding to 1 meV resolution 

at 10 eV.  The ionization rate therefore easily surpasses the commonly used hydrogen discharge 

lamp, at which point the coincidence data acquisition normally would be impossible due to the 

high count rates.
31

 Utilizing a multiple-start/multiple-stop data acquisition scheme (see Chapter 

2.1.4.) ionization event rates of over 100 kHz can be recorded with correlating all electron and 

ion signals.  Electron counts and positions and ion counts are recorded with a time to digital 
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converter card in triggerless mode, allowing the multiple-start/multiple-stop acquisition 

scheme.
32

 

The collimated synchrotron radiation beam is focused onto a vertical slit in the 0.8 m 

long gas filter, located 26 m from the light source, which has eight differentially pumped 

chambers.  To filter out higher harmonics a low-pressure mixture of noble gases can be 

introduced to the sixth chamber of the gas filter.  Typically, a 3:1 ratio of Ne:Ar or pure Neon is 

used at around 10 mbar pressure below 15.759 eV or below 21.565 eV photon energies, 

respectively.  If a measurement is done under 10 eV, a MgF2 window can be inserted in front of 

the gas filter that absorbs nearly all light above 11 eV.  The photon energy is calibrated using the 

first and second order Ar 11 s‘ – 14 s‘ autoionization lines.
33

 

Samples can be introduced into the spectrometer via an effusive inlet or through a 

molecular beam.  For samples with low volatility, a heated inlet may be used.  The gas phase 

sample is intersected and ionized by the monochromatic VUV synchrotron radiation.  

Photoelectrons and photoions are accelerated to opposite directions with a constant 40–120 V 

cm
–1

 electric field.  The electron flight tube is 265 mm long with a 20 mm wide opening to 

velocity map image the beam at a Roentdek DLD40 position sensitive delay-line detector.
34-36

 

The kinetic energy resolution is better than 1 meV at threshold.  Upon ionization, photoions first 

enter a 5.5 cm long first extraction region, then a 1 cm long second acceleration region, then a 55 

cm long drift region before space-focused onto a Jordan TOF C-726 microchannel plate detector. 

 

2.1.3. The “hot electron” problem 

Historically, PEPICO has suffered from the so-called ―hot electron‖ contamination.  This 

term is used for energetic electrons that have a non-zero kinetic energy.  If electron initial 
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velocity vectors are in the direction of the detector, then ―hot‖ electrons are detected together 

with the threshold electrons.  Therefore, by partitioning some of the available photon energy into 

the photoelectron instead, an ion will have less internal energy and may not dissociate at photon 

energies where, in theory, it would have enough energy to do so.  Therefore, the relative 

abundance of an ion approaches zero more gradually and at a higher than expected photon 

energy.  This phenomenon is also referred to as the hot electron tail in a breakdown diagram. 

There have been several attempts to reduce and/or eliminate the contribution of hot 

electrons.  Tsai et al.
37

 used a Wiley-McLaren TOF setup to extract electrons from the ionization 

region in a pulsed fashion at 3 MHz frequency and 1 V extraction field.  The electron detector 

was set to accept only a narrow range of signals that corresponded to electrons with zero kinetic 

energy.  This approach also eliminates hot electrons with in-plane kinetic momentum.  The 

technique is not in use anymore as (1) it made it difficult to extract kinetic information from the 

data, and (2) it required to obtain a randomly triggered ion TOF spectrum to eliminate the 

contribution from false coincidences, making data acquisitions complicated.  King et al.
38

 used a 

different approach and put a cylindrical cage around the ionization region which was responsible 

for extracting electrons with a weak penetrating field.  Electrons with about 3 meV or less kinetic 

energy were extracted and focused onto the exit hole of the cylinder, while hot electrons drifted 

to the walls.  Unfortunately, only using a weak field caused the broadening of the TOF peaks, 

hence significantly reducing the mass resolution of the spectrometer. 

Both of the aforementioned techniques used low electric fields to extract only near zero 

kinetic energy electrons.  Chandler and Houston
39

 developed a versatile ion imaging technique in 

a form of velocity map imaging (VMI).  They utilized a simple aperture lens to disperse charged 

particles with all energies by their velocity perpendicular to the axis of extraction.  These 
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particles were focused onto and detected on imaging plates.  Particles with similar kinetic energy 

were detected as rings around the center spot.  The radii of these rings are proportional to the 

initial velocities perpendicular to the extraction axis.  Baer and Li
40

 were the first ones to 

implement VMI in a PEPICO spectrometer.  Although hot electrons are greatly reduced by this 

technique they are not eliminated completely as electrons with a kinetic energy vector parallel 

with the extraction axis will be detected in the center spot along with the near zero kinetic energy 

electrons.  Sztáray and Baer
41

 resolved this issue by using multichannel plate detectors with two 

separate anodes.  One anode is responsible for collecting only hot electrons (ring), whereas the 

other anode detected both threshold electrons and hot electrons (center).  Subtracting the former 

from the latter, while scaling for differences in area, a pure threshold spectrum can be obtained.  

In the modern implementation, the use of imaging detectors allows the user to select the size and 

position of the center and ring to be optimized for best resolution.  In practice, this method works 

because all hot electrons (above a certain kinetic energy) contribute to a small portion of the 

center signal, resulting in a close to uniform unstructured hot electron signal over the entire 

detector, even near the center where the threshold electron signal is.  By sampling the hot 

electron signal around the center, the contamination can be subtracted from the center while 

accounting for the difference in the center and ring areas with factor F: 

      (5) 

where r1 and r2 are the radii of the center and the ring, respectively.  Since the electron count rate 

is far from infinite, the calculated F factor is just an approximation and usually needs to be 

slightly adjusted to completely account for the total hot electron contamination. 
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2.1.4. Coincidence Statistics 

As discussed in the previous chapter, every ionization event in PEPICO creates an 

electron and an ion, unless there is unwanted electron emission from the surface of the 

instrument caused by photons.  Depending on the photon energy, photoelectron yield, and the 

electron resolution, the threshold electron collection efficiency can be anything between 0.01 and 

100%.  The electron and ion signals can be defined by the total ionization rate, N, assuming that 

the collected electrons and ions are from the identical volume in the ionization region: 

          ( )                      ( ) 

where e and i are the collection efficiencies for the electrons and the ions, respectively.  The 

number coincidences, Nc, can be expressed in two ways: (1) using the ion rate, Ni, and electron 

collection efficiency:        ; or (2) using the electron rate, Ne, and ion efficiency:    

    .  From these equations the electron and ion collection efficiencies can be given in terms of 

observed count rates: 

   
  
  
    ( )               

  
  
    ( ) 

Above threshold energies imaging plates or microchannel plate detectors (MCP) can be used to 

determine the electron collection efficiency.  Determining e and i are valuable for diagnostic 

purposes and are used to optimize the performance of the spectrometer. 

Electron and ion collection efficiencies are negatively impacted by coincidence statistics 

due to the presence of false coincidences.  If the ionization rate is low, then events are well 

separated.
42

 Therefore, using a single-start/single-stop (SS) detection scheme is sufficient where 

the detection of an electron provides the start signal for the TOF measurement and the detection 

of its ion is the stop signal.  With increasing ionization rates, more and more events will overlap.  
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Therefore, true coincidence events are missed when a false ion stops the time measurement 

before the true event can be detected.  A single-start/multi-stop (SM) configuration reacts to one 

start signal but detects multiple stop signals within a user selected time-frame.  However, the 

main drawback of this approach that new start signals are lost within the set time window, which 

introduces artifacts into the ratio of coincidences and the false coincidence background.  

Therefore, this approach is not ideal with sources providing high ionization rates such as 

synchrotron radiation.  Multi-start/multi-stop (MM) coincidence detection correlates all electron 

and ion signals, which are time stamped relative to a master clock.
32

 False coincidences provide 

a flat background (with random noise on top of this) throughout the entire TOF spectra, whereas 

true coincidences appear as peaks on top of the background. 

The signal-to-noise ratio (S/N) from the false coincidence background for a coincidence 

peak with a peak width of w can be given as: 

     (10) 

where r is the fractional intensity of the peak, and  is the collection time.  The signal-to-noise 

ratio for true coincidences is defined as: 

                (11) 

It is evident from the equations above that the false coincidence contribution as noise to a 

coincidence peak is independent of N, whereas for a true coincidence peak the S/N ratio increases 

with the square root of N.  Hence, it is wise to work with high photon fluxes.  Having narrow 

peak widths, long collection times, and high electron and ion collection efficiencies will also 

boost the signal-to-noise ratio. 
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2.2. Combustion Reaction Followed by PEPICO 

Herein, a brief overview is provided on the Combustion Reactions Followed by PEPICO 

(CRF-PEPICO) instrument.  This project was a complex collaboration between multiple research 

groups located in the United States and Europe.  Our research group led in designing and 

building the instrument, but a handful other scientists contributed to individual parts of the 

project.  As part of my dissertation work, I took part in the construction and testing of the 

prototype CRF-PEPICO instrument at the VUV beamline of the Swiss Light Source in 

Switzerland.  I built the ion and electron optics and installed it in the vacuum chamber.  Together 

with other research groups and the beamline personnel, we put together the rest of the 

components to test the apparatus and, eventually, conduct our first experiments.  First, these 

testing included energizing the ion–electron optics for the first time and optimizing the voltages 

to maximize electron and ion collection efficiencies as well as the energy and spatial resolutions.  

Then, we performed the first kinetic experiments with a flow tube reactor and laser in place, 

outlined in more details below.  Although none of the projects in this dissertation were run on the 

CRF-PEPICO instrument, I have spent a significant amount of time on building, calibrating, and 

using this prototype over the span of several beamtimes. 

As discussed earlier in this chapter, PEPICO is the combination of PIMS and PES.  PIMS 

with tunable VUV radiation is extensively used to investigate reactive intermediates relevant in 

atmospheric and combustion chemistry at the Chemical Dynamics Beamline of the Advance 

Light Source (ALS).
43-48

 PIMS is a universal analytical technique, which is sensitive and 

selective in a large dynamic range (~10
5
).  It is a powerful tool for rapid resolution of a mixture 

of neutral species first by ion mass-to-charge (m/z) ratio using mass spectra, and second by 

photoionization (PI) spectrum within each m/z channel.  The onset and shape of the PI spectrum 
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is a spectral fingerprint used to distinguish different neutral isomers observed at the same parent 

m/z ratio.  However, a more detailed spectral fingerprint can be measured with photoelectron 

spectroscopy, in which for each neutral species, the photoelectron intensity vs.  electron binding 

energy yields the photoelectron (PE) spectrum.  In contrast to the step-like thresholds that may 

be present in a PI spectrum, each quantum state of the photoion creates a peak in the 

photoelectron spectrum.  Even similar isomers often yield distinct vibrational progressions.  The 

lack of mass selection, however, renders it useless in analyzing complex mixtures as the resulting 

photoelectron spectrum is the sum of every neutral spectrum.  

Since PEPICO analyzes and detects both the photoelectron and the photoion, it can 

record a photoelectron spectrum in which the photoelectrons were detected in coincidence with a 

certain photoion, essentially ion-mass slicing the otherwise much too complex photoelectron 

spectrum of a complex mixture.  To test this idea, just before I joined, our research group carried 

out proof-of-concept experiments using the existing iPEPICO setup to analyze two separate 

static mixtures.  One of them was 2-butyne and 1,3-butadiene, and the other one contained an 

additional four C5H8 isomers (1-pentyne; 1,4-pentadiene; cyclopentane; isoprene).  Both TPES 

and mass selected TPES (ms-TPES) were plotted and are shown in Figure 1.  The former 

contains the total threshold photoelectron signal regardless of the neutral molecule source, 

whereas the latter is selected for a specific ion time-of-flight window. 
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Figure 1. Threshold photoelectron spectrum of 2-butyne and 1,3-butadiene mixture and the 

individual components. The PI curves of the latter compound and the mixture is also shown for 

comparison (upper). Total and mass selected TPES are shown along with the TPES of four 

individual components (lower). 

 

The top figure of Figure 1 shows the TPES and ms-TPES along with the PI curves of the first 

mixture containing ~95% 1,3-butadiene and ~5% 2-butyne.  Although the PI spectrum (solid 

black line) detects the presence of 2-butyne in the mixture, its identification is more definitive 

with TPES.  The bottom figure shows the TPES and ms-TPES for the more complex mixture. 
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The mass selection allows the separation of m/z = 68 and 54 signals, where the two m/z = 54 ions 

can be easily identified.  The first peak in the ms-TPES of m/z = 68 isomers is from isoprene, 

which is closely followed by cyclopentane, only separated from the second peak of isoprene by 

40 meV.  The first peak of 1,4-pentadiene appears around 9.6 eV, then the strong first peak of 1-

pentyne is detected at 10.08 eV.  Based on these proof-of-concept experiments it is evident that 

the ms-TPES contains information superior to the thresholds observed in PI spectra for multi-

component mixtures.  Therefore, PEPICO could be employed to study reactive intermediates 

important in atmospheric and combustion chemistry and the prototype CRF-PEPICO experiment 

was built in collaboration between our group, the Swiss Light Source, and Sandia National 

Laboratory, for the SLS VUV beamline. 

To understand the motivation behind building this new prototype instrument, first we 

need to recall what a good analytical technique is.  The ideal analytical experiment is: 

 universal: applicable to a broad spectrum of samples 

 sensitive: detects intermediates with short lifetimes and/or concentrations 

 selective: able to clearly identify similar species 

 multiplexed: accomplishes every goal above simultaneously. 

Of these criteria, PEPICO obviously fulfills most: any small molecule can be photoionized 

(universal), combining mass spectrometry and photoelectron spectroscopy offers unparalleled 

selectivity and, due to the continuous nature of coincidence detection, all species are detected at 

the same time (multiplexed).  However, the sensitivity of PEPICO needed to be addressed. 

As we discussed in previous chapters, PEPICO has overcome some major challenges in 

the past decades.  One of the latest ones were the issue of signal paralysis at high count rates, 

which enabled its use with synchrotron radiation sources.  False coincidences create a constant 
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background in the TOF mass spectrum at high ionization rates with random noise around the 

average background value.  Although the average false coincidence background can be 

subtracted from the spectrum, the random noise on this background still obscures minor peaks 

and limits the dynamic range to ~10
3
.  This poses a major issue in the detection of species in 

trace amounts.  To solve this, ion deflection is used by applying a periodically changing electric 

field.  The electric field is user controlled and is therefore known, so the detection position of an 

ion can be predicted at every nanosecond.  The measured and predicted ion impact positions only 

agree for true coincidences, which allow the almost complete removal of false coincidences from 

the data set.  Consequently, the dynamic range is also increased by 2-3 orders of magnitude.  

When cold argon clusters are ionized, false coincidence suppression allows the observation of 

species up to Ar9
+
, while Ar4

+
 is the largest observable cluster under traditional operation (Figure 

2). 

 

 

Figure 2. False-coincidence suppressed time-of-flight coincidence spectrum of the larger argon 

oligomer ions. 
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Eliminating false coincidences breaks down the major barrier to utilizing PEPICO as a sensitive 

and versatile analytical technique, offering photoelectron spectral fingerprints of even very minor 

and transient components of a time-evolving, reactive mixture. 

The CRF-PEPICO design considerations included (1) tight ion focusing with a mass 

resolving power of at least 400–500, (2) high electron KE resolution and high multiplexing, (3) 

high sensitivity, and (4) to keep most of the existing setup.  The sample introduction happens 

through a side-sampled, quartz flow tube reactor inlet, which, to achieve high sensitivity, is 

placed as close to the ionization spot as possible.  Therefore, the ion and electron optics were 

designed to contain the flow tube.  In order to maximize the adaptability of the ion and electron 

optics, 12 individually controlled electrode plates are used on the electron side and 14 on the ion 

side.  Therefore, the length of the extraction and acceleration regions can be varied without the 

need to vent the instrument.  Every plate has a 24 mm inner and 90 mm outer diameter with 0.5 

mm thickness.  The spacing between plates is 6.25 mm except for the last seven plates of the ion 

side, where it is increased to 9.00 mm.  The total length of the optics is 75.5 and 105.7 mm on 

the electron and ion sides, respectively.  The first plates on both sides were cut by 26 mm from 

their edge to house the flow tube.  The electron flight tube is a 62 mm I.D. -metal cylinder that 

is field free.  The ion flight tube has a 60 mm I.D. that holds the ion deflector used for false 

coincidence rejection.  The electron and ion detectors are located at 750 and 1000 mm from the 

ionization point. 
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Figure 3. Section view of the CRF-PEPICO along the center line of the electrode plates with 

calculated equipotential lines. 

 

The quartz flow tube is 57.4 cm long with 1.05 cm inner and 1.27 cm outer diameter.  

The gas flow is controlled by mass flow controllers and is mixed at the entrance of the flow tube 

in a glass yoke attachment.  There is a 200–400 m pinhole at the halfway point along the tube, 

which allows side-sampling and to control the pressure.  The gas mixture reaches the ionization 

region through the pinhole, while the pressure in the instrument is kept below 6 x 10
–6

 mbar 

without the need of differential pumping.  In early experiments a 20 Hz pulsed Nd-YAG laser 

beam was guided through the flow tube at 355 or 266 nm to create free radicals, which was 

replaced by a newer 10 Hz laser with higher pulse energy.  The flow rate in the tube is sufficient 

to completely replace the gas mixture with a fresh sample between laser shots.  The pressure 

inside the tube is kept low to avoid bimolecular reactions and the inside of the tube is coated with 

halocarbon wax to minimize radical loss on the wall.  The distance between the pinhole and the 

ionization point is variable between 17–25 mm. 

To test the capabilities of the CRF-PEPICO instrument, argon was introduced through a 

molecular beam and intersected by the synchrotron radiation at 16 eV.  The mass resolving 

power was measured to be 780 and the ion spot on the detector had a 0.7–0.8 mm FWHM. 
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Figure 4. Argon TOF mass spectrum (top) and ion image using the molecular beam inlet (bottom 

left). The cross section of the ion spot shows typical FWHMs (bottom right). 

 

  

Figure 5. On the left: aerial view of the CRF-PEPICO setup at the SLS. The ion flight tube 

points up, the synchrotron beam enters from the left and the Nd-YAG laser in on the table on the 

right. On the right: CRF-PEPICO experimental setup. The µ-metal shielding cylinder around the 

charged particle optics colored in green and the flow tube in blue. 
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Aerial view of the setup on the left in Figure 5 shows the 1 m long ion flight tube pointing up, 

the synchrotron beam entering from the left and the Nd-YAG laser on the table on the right.  The 

isometric view of the CRF-PEPICO experimental setup including the gas filter can be seen on 

the right.  The colored chamber is part of the original iPEPICO setup.  As it was mentioned 

before, the CRF-PEPICO experiment consists of a quartz flow tube, where a Nd-YAG laser 

photolytically generated radicals react with target molecules.  A small portion of the gas-mixture 

exists the tube through a pinhole half-way down the tube and the plume of gases is intersected by 

the synchrotron photon beam in the center of the ionization region, creating photoelectrons and 

photoions that are analyzed in a double-imaging PEPICO scheme. 

 The first CRF-PEPICO experiments started in October, 2014 and the first successful 

flow-tube PEPICO data was recorded in March, 2015.  In the first successful kinetic time 

resolved PEPICO experiments, CH2I radical formation and its reaction with molecular oxygen 

were studied with the CRF-PEPICO setup.  In short, the reaction was initiated by photolysis of 

CH2I2 at 355 nm, producing CH2I radicals and I atoms using argon as a buffer gas.  Decay of the 

CH2I radical as function of O2 concentration was monitored at 9.19 eV in time-resolved 

measurements (Figure 6). 
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Figure 6. TOF mass spectra of the photolytically generated CH2I
•
 can be seen on the left. On the 

right is the first time-resolved PEPICO signal showing the depletion of the CH2I
•
 radical with 

2.430 × 10
14

 cm
–3

 O2. 

 

Since its successful test, the CRF-PEPICO setup has been used to measure the TPES of 

the propargyl, CH2I, and CH3OO radicals and to investigate the reaction kinetics of iodomethyl 

radical,
49

 allyl radical,
50

 and methyl peroxy radical
51

 with molecular oxygen. 

 

2.3. PEPICO Data Analysis 

As briefly discussed in previous chapters, ionic bond dissociation energies can be 

extracted from experimental PEPICO measurements but that requires detailed modeling of the 

dissociation processes.  In the following section, we will explore the necessity of modeling, as 

well as present the underlying theories and their applications to the PEPICO experiments. 

 

2.3.1. Measuring Unimolecular Reactions 

The low pressure inside the PEPICO chamber (3–5   10
–6

 torr) provides approximately 5 

to 10 m long mean free path for a small molecule with a diameter of about 5 Å at room 

temperature.  The length of the acceleration region and the flight tube combined is significantly 

shorter (about 0.5 m), therefore only unimolecular reactions can take place between 
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photoionization and detection.  In this case, a single ion can either isomerize into another ion or 

dissociate into two or more products.  Unimolecular reactions are often first-order reactions, 

meaning the reaction proceeds at a rate that depends linearly on one reactant concentration.  In 

the case of a unimolecular decay, where the reaction species (A) dissociates into products (P), the 

change in concentration of A over time can be given by the following equation: 

     (12) 

or in integral form: 

     (13) 

where [A]0 is the initial concentration of the reaction species A, [A] is the concentration at a given 

time (t), and k is the unimolecular rate constant.  The temperature dependence of the rate 

constant can be measured in the canonical ensemble.
52

 The internal energy distribution of the 

canonical ensemble, P(E,T), connects the canonical rate constant, k(T), to the microcanonical 

rate constant, k(E) by the following equation: 

     (14) 

In this equation, E0 is the activation energy showing that no reaction can occur till the internal 

energy exceeds this threshold value.  E0 corresponds to the dissociation bond energy for 

barrierless dissociation reactions, whereas it is the barrier height for reactions with real barriers.  

In TPEPICO measurements, the energy distribution of the parent ions formed upon ionization 

cannot be described with a single temperature value.  Furthermore, energy distribution amongst 

the products of the photodissociation has to be considered for both parallel and consecutive 

reactions.  Therefore, the internal energy distribution of the reactant has to be defined along with 
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the microcanonical rate constant at every photon energy.  In the case of a fast dissociation, E0 

corresponds to the energy, where the abundance of the parent ion reaches zero or near the onsets 

of parallel dissociations.  In many cases the first appearance of a product shifts to higher photon 

energies because the time for the parent ion to fully dissociate is larger than the time-frame of the 

experiment.  The excess energy required to observe dissociation is called kinetic shift.
53-54

 For 

this reason, PEPICO is not suitable to determine rate constants below 10
3
 s

–1
.
55-56

 Another 

phenomenon, called thermal shift, also had to be taken into account during the modeling process 

in the early days of PEPICO data analysis.
53,57

 The non-zero thermal energy of the sample caused 

the observed appearance energy to shift to lower value.  The elimination of the hot electron 

contamination from the threshold signal coincidentally solved the issue of thermal shift.  In the 

case of competing parallel dissociation channels, an increased E0 for the slower dissociation 

channel may be present due to a competitive shift from the lower energy channel.
58

 By fitting the 

measured part of the k(E) to the unimolecular rate theory and then extrapolating it over several 

orders of magnitude, E0 can be determined correctly and accurately. 

 

2.3.2. Rice-Ramsperger-Kassel-Marcus (RRKM) Theory 

The purpose of a kinetic model is to describe the energy dependence of the rate constant 

with a minimal number of well-defined parameters that, ideally, can be measured 

experimentally.  Since solving the time-dependent Schrödinger equation is close to impossible 

for even the smallest systems, some assumptions had to be made.  Hinshelwood
52

 was amongst 

the first to successfully explain the observed first-order kinetics of many unimolecular reactions. 

He proposed a mechanism that consists of a second-order bimolecular collisional activation step, 

followed by a rate-determining unimolecular step. 
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→   

Hinshelwood described a system where A molecule consist of s number of equivalent harmonic 

oscillators with an energy of hυ.  The number of ways to distribute a given number of quanta, n, 

among the s oscillators [i.e. the number of degenerate states at (n + ½)hυ energy]: 

     (15) 

The Boltzmann distribution can be used to calculate the fraction of species in state n: 

     (16) 

where k is the Boltzmann constant, and T is the temperature. 

In this model, energy change between harmonic oscillators is forbidden, therefore it is 

transferred only by collisions.  Because the collisions promote equilibrium, the probability of 

forming a state n in a collision is given by the Boltzmann distribution.  The total rate of 

activation is described by the collision frequency (Z) and the critical energy (E0): 

    (17) 

The flaw in the model is that the unimolecular step fails to consider that a unimolecular reaction 

specifically involves one particular form of molecular motion.  Rice, Ramsperger,
59-60

 and 

Kassel
61

 recognized that the shortcoming of Hinshelwood-mechanism can be addressed when a 

minimum amount of energy is localized in specific modes of molecular motion in order for the 
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unimolecular step to take place.  They introduced a new step to the mechanism, where the 

generally excited molecule is converted into an ―activated complex‖ before forming the 

products.  This conversion became the rate determining step. 

   
   
→    

  

→   

RRK theory assumes that energy can flow freely from one vibrational mode to another within the 

molecule, which is a reasonable assumption, since molecular vibrations are highly anharmonic at 

high energies and therefore are coupled.  The probability,   
 , of locating at least m quanta out of 

n in the dissociation mode is 

    (18) 

If the quantum numbers involved are very large (n – m >> s), then using E = nhυ and E0 = mhυ, 

the equation above can be written as 

      (19) 

where    
  is the probability of locating the minimum energy E0 in the dissociation mode out of 

the total energy of E.  If the vibrational energy is distributed statistically then the rate constant 

can be given as 

      (20) 

The RRK theory matches well with experimental observations showing that the rate constant 

rapidly decreases as the molecule becomes more complex but it is incapable of providing 

accurate rate constants.  This is due to the fact that in most cases n – m is not significantly larger 

than s.
62
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RRK theory was corrected by Marcus and Rice
63

 (1951) and later by Rosenstock, 

Wahrhaftig, and Eyring
64

 (1952).  They realized that the vibrational and rotational degrees of 

freedom need to be explicitly treated.  The new theory is now known in the literature as RRKM 

or QET (Quasi-Equilibrium Theory).  The phase space of a molecule with m degrees of freedom 

can be described by the motion of m momentum (p) and m positions (q).  The dimensionality of 

the phase space of a microcanonical system is 2m–1.  If the energy of the molecule, E, is greater 

than the minimum energy of the unimolecular reaction, E0, then reactants and products are 

connected by a critical surface (transition state) with a dimensionality of 2m–2.  Once the 

trajectory of the system passes through the critical surface it cannot return.  For reactions with 

distinct energy maximum along the reaction coordinate, the critical surface is usually located at 

the saddle point.  Let‘s assume that the reaction coordinate is perpendicular to the critical surface 

and that the phase space is populated statistically.  By labeling the momentum and position 

coordinates of the critical surface as p
‡
 and q

‡
, respectively, the ratio of molecules near the 

critical region to the total molecules can be expressed as: 

   (21) 

where  t  is the translational energy associated with momentum p
‡
 in the reaction coordinate.  

The rate of the reaction is the time derivative of the number of molecules near the critical 

surface.  Using the reduced mass of the separating fragments, ‡, we have dq
‡
/dt = p

‡
/‡, and d t  

= p
‡
dp

‡
/‡: 

  (22) 
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By dividing the equation above with the total number of molecules (N) we get the rate constant. 

The integration in the numerator equals to ‡(E –  t  – E0)h
n–1

, whereas the denominator is 

(E)h
n
, where  is the density of states.  Therefore, the rate constant can be given as a function of 

kinetic energy along the reaction coordinate and the energy of the system: 

     (23) 

The symmetry factor () is used to take the symmetry of the phase space into account. 

Integration over  t  provides the microcanonical rate constant: 

      (24) 

where N
‡
 is the sum of states at the transition state. 

RRKM theory is based on three major assumptions that in part contradict each other.  

First, the intramolecular vibrational redistribution
65

 (IVR) among different quantum states of the 

vibrationally excited molecule must be faster than the reaction.  On the other hand, it was 

assumed that the reaction coordinate is separated from the other coordinates, which means that 

there is no energy change between these on the time scale of the experiment.  The vibrational 

number and density of states is calculated using the harmonic oscillator model, which by nature 

does not permit IVR.  Second, it assumes the existence of a critical surface which divides the 

reactants from the products, while being a one-time crossing.  Trajectory simulations on small 

molecules showed that this assumption is often not valid.
66

 However, the relative size of the 

phase space compared to the critical surface is rapidly increasing with larger molecular sizes, 

which means that this assumption probably holds for large molecules.
67

 Third, assuming the 

separation of dp
‡
 and dq

‡
 from the other coordinates based on the fact that they are perpendicular 
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to the rest.  In cases where the vibrational modes can be treated as independent modes, e.g. 

reactions with distinct saddle points and at low energies, this assumption is valid. 

Despite the aforementioned assumptions RRKM theory can be used to successfully 

model the kinetics of unimolecular reactions.  One significant advantage of the RRKM model to 

trajectory simulations is that it requires less prior knowledge on the system of interest but still 

capable of providing reliable results. 

 

2.3.3. Simplified Statistical Adiabatic Channel Model (SSACM) 

SSACM
68-69

 is a variation of the Phase Space Theory (PST),
70-72

 which treats the 

transitional modes as free rotors.  PST, and therefore SSACM as well, are limited to reactions 

that either do not involve a transition state or said transition state is very loose.  The consequence 

of this limitation is that the potential energy surface of the reaction is not important in 

determining the unimolecular rate constant.  PST has a strict restriction on the conservation of 

angular momentum and energy and assumes that the decomposition of the activated complex 

depends on the phase space available to each product.  The equation of unimolecular rate 

constant shows some resemblance to the RRKM equation but noticeably missing the concept of 

the transition state.  Another interesting difference is that although both equations contain 

densities of states but in PST it is refers to the initial molecule and products, not the transition 

state.  If the true E0 is implemented, PST tends to overestimate the reaction rates at high energies 

as it contains only a single variable, the E0.  SSACM introduces an additional adjustable energy 

dependent function, which prevents the rate constant to rise too rapidly as the internal energy is 

increasing.  This is called rigidity factor, which reflects the anisotropy of the potential and, in 

addition, the subtle interplay between the anisotropic and attractive properties of the potential.
73
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The formula of the rigidity factor is dependent on the dissociation.  If the dissociation involves 

mostly valence forces at short ranges therefore being strongly anisotropic, and relatively weak 

ion-induced dipole forces at long ranges, so being nearly isotropic, it is formulated as 

      (25) 

This changing anisotropy character is generally associated with ionic fragmentation.  In the case, 

e.g. dissociation of an ion and a permanent dipole this latter term is anisotropic, therefore the 

rigidity factor has to be modified. 

     (26) 

In both cases c is the fitting parameter, which shows the relative importance of the 

aforementioned long range forces comparatively to the short range ones.  Despite the inclusion 

of the rigidity factor, SSACM eventually overestimates the rate constant at high energies but 

nevertheless it provides a useful upper limit to it. 

 

2.3.4. Experimental Breakdown Diagram 

TPEPICO measurement data are a collection of TOF spectra at varying photon energies. 

Integrating peaks in those spectra provide breakdown curves, which are fractional ion 

abundances plotted versus the photon energy.  As the photon energy increases, the energy 

distribution is shifted to higher energies, thereby leading to more dissociation.  Finally, when the 

photon energy equals the appearance energy of the fragment ion, E0, the whole distribution is 

above the dissociation limit, and the ratio of the parent ion goes to zero. 
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TOF spectra are also used to gain direct kinetic information.  Asymmetric fragment ion 

peaks are indicative of slow dissociations, where the rate constants are in the range of 10
3
 s
–1

 < 

k(E) < 10
7
 s

–1
.  Conditions, such as threshold ionization cross sections, sample pressure, and 

photon intensity have no effect on the breakdown diagram, making it superior over a 

photoelectron spectrum (PES) or a photoionization efficiency (PIE) curve.  The process of 

modeling a breakdown diagram is summarized in Figure 7. 

 

Figure 7. Block diagram of the PEPICO modeling process. 
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The energy resolution in a TPEPICO experiment is significantly narrower than the 

thermal energy distribution of the molecular ion produced in the photoionization process. 

Therefore, it is imperative to interpret the measured decay rates in terms of k(E) distribution.  

The Boltzmann formula can be used to calculate the thermal energy distribution of a neutral 

sample at a given temperature: 

     (27) 

where P(E) is the energy distribution, ρ(E) is the ro-vibrational density of states, kB is the 

Boltzmann constant.  The energy distribution of a neutral molecule is transposed onto the ion 

manifold, and if the internal energy is larger than the dissociation energy, dissociation of the ion 

will happen.  The energy distribution of the parent ion can be obtained by the internal energy of 

the neutral molecule, the photon energy, and the adiabatic ionization energy.  In the case of fast 

dissociations, fragmentation of the parent ion occurs in the ionization region and therefore, the 

shape of breakdown curves represents the integrated thermal energy distribution.  On the other 

hand, the time requirement for a parent ion to fully dissociate is practically infinite for slow 

dissociations just above the threshold energy.  Thus, it causes a shift (kinetic shift; see Chapter 

2.3.1) in the breakdown diagram towards higher photon energies.
53-54,74

 The amplitude of this 

effect can be calculated by knowing the dissociation rate.  Sequential dissociations require the 

knowledge of the energy distribution of the first fragment ion and its neutral fragment.
75

 Klots‘ 

equation is used to calculate how much energy the leaving atom takes away from the fragment 

ion at a virtual temperature in a canonical formalism.
76-77

 Microcanonical formalism can also be 

used to calculate the excess energy distribution between the fragment ion and the neutral 
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fragment in the energy distribution function using densities of states of the translational degrees 

of freedom and that of the fragment ion: 

   (28) 

where p(Ei, E – E0) is the probability of the fragment ion to retain Ei energy from the total excess 

energy of E – E0,     and     are the densities of states of the fragment ion and the translational 

degrees of freedom, respectively. 

The source of the adiabatic ionization energy can be either photoelectron spectroscopic 

measurements or quantum chemical calculations and is used in the calculation of the internal 

energy of the parent ion upon ionization.  In the modeling process, the bond dissociation energies 

(BDE) and vibrational frequencies are optimized to achieve the best possible fit of the 

breakdown diagram or, for slow dissociations, the TOF distributions as well.  Dissociation 

processes that include tunneling (not discussed in this work) or isomerization of the parent ion 

(see Chapter 2.3.6) require the optimization of the reverse barrier height and critical frequency, 

or the reverse barrier height, isomer stabilization energy, and isomer TS frequencies, 

respectively.  Depending on the leaving neutral fragment two, four, or five of the lowest 

vibrational frequencies are optimized for a spherically symmetric, a linear, or a nonlinear loss, 

respectively, as these turn into product translational and rotational modes.  The fractional 

abundance of the parent ion can be given as: 

   (29) 
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where Pi is the normalized internal energy distribution of the ion as a function of internal energy 

at a given photon energy and Pn is the internal energy distribution of the neutral molecule.  This 

latter term can be calculated by the Boltzmann formula: 

     (30) 

where ρn is the density of states of the neutral molecule at energy E.  The second integral above 

is zero, when the photon energy is equal to E0, meaning that the entire distribution is above the 

dissociation limit.  Therefore, the photon energy where the parent ion abundance reaches zero is 

the 0 K appearance energy but it was found that modeling the breakdown diagram provide a 

more reliable result. 

On the other hand, slow dissociations result in a kinetic shift and therefore an extra term 

had to be included which accounts for the probability that the ion will not dissociate within the 

time frame of the experiment: 

  (31) 

where k(E) is the RRKM rate constant and τmax is the maximum time of flight within which a 

dissociating ion is detected as a fragment ion.  The added term broadens and shifts the 

breakdown diagram to higher energies.  Consequently, kinetic shifts are accounted for 

quantitatively as time-of-flight peak shapes yield absolute dissociation rates.  It is noteworthy 

that by definition E0 is referenced to the ground state neutral molecule, hence, it is the sum of the 

adiabatic ionization energy (AIE) and the bond dissociation energy (BDE).  Therefore, the error 

of the AIE has a significantly less effect on E0 than on BDE values.
78

 

The error of the model is evaluated by a two-variable function.  Its first part is to compare 

the experimental BD to the modeled one, whereas the second is to describe the differences in the 
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TOF distributions.  Zero means there is a perfect match between the experimental and the 

modeled data.  Every parameter is adjusted iteratively with a downhill simplex algorithm.
79

 

 

2.3.5. Isomerization of the Molecular Ion 

There are many cases where the molecular ion undergoes reversible isomerization prior 

to dissociation.  The product ions can be formed from either the parent ion or from its isomer. 

The branching ratios and rate constants can be modeled with any number of parallel channels 

within the RRKM theory. 

 

Figure 8. Isomerization of A
+
 molecular ion to B

+
 and their fragmentation to C1

+
…Cn

+
 and 

D1
+
…Dn

+
 ions, respectively. 

 

For a hypothetical system shown on Figure 8, where A
+
 molecular ion reversibly isomerizes to 

B
+
, and A

+
 dissociates to (C1

+
…Cn

+
) and B

+
 to (D1

+
…Dn

+
), the kinetics of the 

isomerization/dissociation reactions can be described with a set of differential equations: 

   (32) 

   (33) 

      (34) 
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      (35) 

The analytical solutions of these equations are programmed into the modeling code: 

   (36) 

   (37) 

 

  (38) 

 

 (39) 

    (40) 

   (41) 

  (42) 

 

In summary, in the case of two molecular ion isomer structures, each fragment ion is 

formed with two apparent rate constants, kfast and kslow, which can manifest themselves in the 

TOF spectra as double-exponential asymmetric daughter ion peaks.  Therefore, such features in 

the experimental TOF spectra indicate that isomerization might be at play. 

 

2.4. Quantum Chemical Calculations 

As it was discussed in the previous section, quantum chemical calculations play an 

important role in the modeling procedure.  Density Functional Theory (DFT), specifically 

B3LYP hybrid functional, is most commonly used in the Sztáray group.  It provides vibrational 

frequencies and rotational constants for the RRKM model.  For large molecules, especially for 
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organometallic compounds this computational level is the most realistic to use as the size of the 

molecules hinder the explicit treatment of the electron correlations. 

Bond dissociation energies for systems with a relatively low number of heavy atoms can 

be accurately determined using composite methods such as G4, CBS-QB3/APNO, and W1U, or 

with Coupled Cluster (CC) methods.  Generally, high accuracy can be obtained from highly 

correlated methods with large basis sets.  Composite methods were developed in order to 

decrease the computational cost while keeping a relatively high accuracy.  They employ various 

approximations in estimating the electron correlation energy and the energy from translation, 

rotation, and vibrations.  In addition, composite methods contain empirical expressions that aim 

to correct for non-considered correlation effects.  The aforementioned G4 and CBS methods are 

capable of calculating energies within 2–4 kJ mol
–1

 but the maximum error can reach even 20 kJ 

mol
–1

.
80

 The Wn methods were developed by Martin et al.
81

 and aimed to reach 1 kJ mol
–1

 

accuracy by including relativistic corrections. 

Describing the potential energy surface (PES) is important to unveil dissociation 

mechanisms and possible dissociation products.  The thermochemical limit, which is the 

minimum energy of a product ion and neutral fragment to form, is used to rule out dissociation 

pathways that are higher in energy than the experimentally observed ones.  Transition state (TS) 

structures were located using relaxed potential energy scans along the bond breaking 

coordinates.  The local maximum on the PES was optimized as a transition state.  In the cases, 

where the TS is hard to find, Synchronous Transit-Guided Quasi-Newton (STQN) method can be 

used.  It searches for a saddle point along the PES between the reactant and the product ions.  In 

the mode, called QST2, only a reactant and product ion structures are provided, whereas with 

QST3 a guess TS structure is given.  Upon finding a transition state, intrinsic reaction coordinate 
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(IRC) calculation is done to confirm that the TS is in fact the local maximum connecting the 

reactant with the product on the PES.  Detailed description on the performed calculations is 

given in the appropriate chapters of each project. 
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CHAPTER 3: RESULTS AND DISCUSSION 

 

3.1. Toluene and 1,3,5-Cycloheptatriene 

3.1.1. Background 

Due to their ubiquity in the mass spectra of aromatic compounds, the decomposition of 

gaseous C7H8
+
 ions is one of the most widely studied ion reactions.  These investigations were 

carried out by techniques including, but not limited to, collisional activation,
82-83

 

photoionization,
3,84-85

 ion cyclotron resonance mass spectrometry,
2,86-87

 infrared 

spectroscopy,
16,88

 and photoelectron photoion coincidence spectroscopy.
10,89-90

 Hydrogen 

abstraction from C7H8
+•

 ions leads to the formation of C7H7
+
 cations with more than 30 different 

possible isomeric structures, with benzyl (Bz
+
), tropylium (Tr

+
), and tolyl (Tl

+
) being the most 

important ones among them.  One of these, Tr
+
, has received special attention since Hückel 

predicted it to be a stable seven-membered ring with high aromaticity in 1931.
91

 Two decades 

later, Doering and Knox
92

 proved this by synthesizing cylocheptatrienyl bromide, which was 

stable both as solid and in solution.  Since then, Tr
+
 has become one of the seminal textbook 

examples for aromaticity, and has been extensively discussed, including the ionization of its 

neutral tropyl radical form, which presents an intriguing example of Jahn–Teller coupling.
93-95

 

However, while the rearrangement reaction between the almost isoenergetic Tr
+
 and Bz

+
 has 

been the subject of several experimental and theoretical works, the driving forces guiding the 

reactive flux to one or the other in dissociation processes remain somewhat elusive and, even 

after 60 years,
4,96-102

 the benzylium/tropylium ion dichotomy continues to motivate new 

experimental studies.
16,88,103
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Hydrogen atom loss from the toluene molecular ion was originally thought of as simple 

bond cleavage resulting in the formation of the benzyl ion.  However, studies with 
13

C and 

deuterium labeling
104-107

 were not consistent with this simple mechanism.  Hydrogen radical loss 

from the C6H5CD3
+•

 molecular ion indicated a statistical D:H ratio of approximately 3:5, i.e., the 

equivalence of all eight hydrogen atoms.  The same was observed in the successive acetylene 

elimination from C7H7
+
 ions and their deuterated equivalents, as well. 

To account for this observation, Rylander et al.
104

 claimed that the hydrogen-loss product 

of the toluene molecular ion has to be symmetrical, for which the tropylium ion is a good 

candidate.  In order to lose the original locational identity of the hydrogens, rearrangements have 

to happen before or during fragmentation.  The proposed mechanism included an irreversible 

isomerization step from the toluene molecular ion (Tol
+•

) to the 1,3,5-cycloheptatriene (CHT
+•

) 

ion, ruling out the benzyl ion H-loss product.  Numerous publications about several C7H8
+•

 

isomers
1,108-111

 supported Rylander et al.‘s theory and all shared a common element: the CHT
+•

 

molecular ion as central intermediate.  Meyerson and Rylander
105

 provided additional support to 

this hypothesis by a 
13

C labeling study on toluene. 

Historically, the irreversible isomerization of the toluene molecular ion to CHT
+•

 was so 

widely accepted that when Meyer and Harrison
112

 found that, in some cases, a methyl hydrogen-

loss is favored, it was explained as an effect of the incomplete randomization of the hydrogen 

atoms in the CHT
+•

 molecular ion, but without questioning the general validity of the CHT-

centered mechanism. 

As advanced mass spectrometric techniques, such as ion–molecule reactions
2
 and 

collisional activation became available,
113-115

 it was revealed that not all Tol
+•

 molecular ions go 

through ring expansion to form CHT
+•

 (Scheme 1), but Bz
+
 can also be formed from energetic 
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Tol
+•

 ions by a simple C–H bond cleavage, which may be followed by isomerization to produce 

the energetically more stable Tr
+
 if the internal energy of the Bz

+
 product ion is sufficient to 

overcome the isomerization barrier.  Furthermore, a high-energy H-loss reverse barrier in CHT
+•

 

to the more stable product Tr
+
 was proposed to render the thermochemical limit to form either 

fragment ion nearly equal.
97,99

 We will show that said reverse barrier still lies considerably below 

the Bz
+
 formation threshold, but, combined with kinetic effects, the argument that the two 

channels should be competing with each other still holds.  Furthermore, it also implies that 

CHT
+•

 may also yield both H-loss fragment isomers, which we will examine later in this paper. 

 

 

Scheme 1. General scheme for the formation of Bz
+
 and Tr

+
 cations from CHT

+•
 and Tol

+•
. The 

structures of intermediates and transition states are shown in Figures 11 and 12. 

 

To determine the relative yield of Bz
+
 and Tr

+
 under various conditions barring their 

direct isomerization, ion–molecule reactions were found to be especially effective, because only 

Bz
+
 reacts by methylene transfer with, e.g., toluene or ethylbenzene, to form benzene and C8H9

+
, 

or C9H11
+
, respectively.  However, experimental results showed some inconsistences, mainly 
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because of the low energy difference and low activation barrier for isomerization between these 

two isomers.
99-102,116

  

Imaging photoelectron photoion coincidence spectroscopy (iPEPICO) coupled with 

synchrotron radiation is a powerful tool to elucidate complex dissociation mechanisms and 

determine highly accurate photoionization onsets of gas phase ions.
18,117-118

 The iPEPICO setup 

allows for accurate energy selection of the photoions and it can also be used to directly measure 

dissociation rates within the range of 10
3
 s
–1

 < k < 10
7
 s
–1

.
32,119

 The fractional ion abundances are 

customarily plotted in the breakdown diagram as a function of photon energy and are then 

modeled, together with the dissociation rate information extracted from time-of-flight mass 

spectra, using statistical rate theories.  This approach was used to explore complex dissociation 

mechanisms, including isomerization processes as well as large kinetic and competitive 

shifts.
117,120-123

 PEPICO does not offer isomer selective identification of isobaric fragment ions in 

the absence of diverging sequential fragmentation processes, which complicates the study of 

cycloheptatriene and toluene, since both are expected to yield Bz
+
 and Tr

+
 close to threshold. 

However, by recording high-resolution breakdown diagrams for CHT
+•

 and Tol
+•

, we hope to 

uncover evidence for the co-existing H-loss channels, and our goal is to construct a single 

statistical model to describe both systems simultaneously and, thereby, determine accurate 

appearance energies for the Bz
+
 and Tr

+
 fragment ions from both precursors. 

 

3.1.2. Experimental and Theoretical Details 

The experiments have been carried out on the iPEPICO endstation
119

 at the Vacuum 

Ultraviolet (VUV) beamline
124

 of the Swiss Light Source.  Toluene and 1,3,5-cycloheptatriene 

were purchased from Sigma–Aldrich and used without further purification.  Samples were 
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introduced into the ionization chamber through an effusive inlet at room temperature and were 

intersected with the monochromatic radiation of the synchrotron beamline.  Photoelectrons were 

extracted using a continuous 80 V cm
–1

 electric field and were velocity map imaged onto a 

delay-line Roentdek DLD40 imaging detector.  Threshold electrons are detected at the center of 

the detector, while kinetic energy (―hot‖) electrons are only focused there if they have no off-axis 

momentum component.  Therefore, this contribution of hot electrons can be subtracted from the 

center signal, based on the signal in a ring area around the center spot, thereby yielding only 

coincidences with threshold photoelectrons.
41

 The detection of the electrons provides the start 

signal for the time-of-flight analysis of the coincident photoions, in a multiple-start/multiple-stop 

coincidence data acquisition scheme.
32

 

The photoions are extracted toward a two-stage Wiley–McLaren
125

 time-of-flight mass 

spectrometer (TOF-MS) and are space focused onto a non-imaging multichannel plate (MCP) 

detector.  Due to the low extraction field and the long extraction region, they have a relatively 

long residence time (on the order of microseconds) in the first acceleration region.  If the time it 

takes for the ion to dissociate is comparable to the time spent in this region, the time of flight of 

the fragment ions produced in the acceleration region will be longer than the nominal daughter 

ion TOF.  This means that, if the mass difference between the molecular and fragment ions is 

significantly larger than the mass resolution of the instrument, the daughter ion peak will exhibit 

a broad, quasi-exponential shape towards higher m/z ratios, indicative of the dissociation rate 

constant.
29,117

 This way, dissociation rates of 10
3
–10

7
 s
–1

 can be measured and the modeled rates 

are then fitted to these experimental data points, quantifying the kinetic shift and aiding the 

reliable extrapolation to the dissociation threshold.  For the case of hydrogen loss from C7H8
+
, 

however, the small mass difference between the molecular ion and the fragment ion is 
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commensurate with the instrumental peak width, which obscures the pseudo-exponential shape. 

Yet even in such cases, the rate information can still be extracted based on the slight shift of the 

apparently symmetric fragment ion TOF peak center as a function of photon energy.
118,126

 It was 

shown that this approach is suitable to extract accurate reaction rates when the asymmetric peak 

shapes are not clearly observable or the signal levels are low.
118,126-127

 However, as the parent 

and H-loss peaks were not baseline separated in our case, we fitted the TOF distributions using 

three Gaussians and determined the shift in the daughter ion peak center based on this fit (see 

later). 

 

3.1.3. Ab Initio Calculations 

Quantum chemical calculations were performed using the Gaussian 09 suite of 

programs.
128

 We used density functional theory to explore the potential energy surface and 

unveil the dissociation and isomerization pathways of C7H8
+•

 ions.  Stationary points on the 

potential energy surface (PES) were located for toluene and 1,3,5-cycloheptatriene neutrals, 

parent and fragment ions as well as along the reaction coordinates at the B3LYP/6-311++G(d,p) 

level of theory.  Approximate transition state (TS) structures were located and reaction paths 

were obtained by constrained optimizations (in which bond lengths were scanned), as well as by 

STQN calculations.
129-130

 Normal mode analysis confirmed the nature of stationary points as TS 

structures or minima.  We also carried out intrinsic reaction coordinate (IRC) calculations to 

check that the transition states connect the respective minima.  The energies of the stationary 

points that likely play a role in the dissociation processes were refined by G4
131

 and CBS-

APNO
132

 composite methods and also by CBS-QB3
133-134

 and W1U
81

 for accurate energetics. 

We would like to note that the second, QCISD/6-311G(d,p) geometry optimization step in CBS-
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APNO, as implemented in Gaussian 09, always searches for a minimum, but uses the density 

functional force constant matrix in the first iteration.  Thus, if the DFT and QCISD transition 

state geometries are similar, the QCISD optimization may also converge to the transition state, as 

was the case in all transition state calculations reported herein.  This fortunate outcome allows us 

to report CBS-APNO transition state energies, as well.  Harmonic vibrational frequencies, 

rotational constants, and zero-point energies of the optimized geometries were extracted and 

used in the RRKM model of dissociative photoionization. 

 

3.1.4. Breakdown Diagram and TOF Distribution Modeling 

The standard tools of statistical thermodynamics and rate theories were used to calculate 

the thermal internal energy distribution of the neutral sample (which is transposed to the ionic 

manifold and convoluted with instrument resolution functions) and the dissociation rate 

constants of the molecular ions.  The dissociation rates were calculated using the rigid activated 

complex Rice–Ramsperger–Kassel–Marcus (rac-RRKM) theory.
117,135

 The unimolecular rate 

constants, k(E), are calculated by equation (24) described in Chapter 2.3.2. on the RRKM theory. 

The densities and sums of states are calculated using harmonic vibrational frequencies by the 

Beyer–Swinehart direct count algorithm.
136

 In the toluene neutral and cation, the contribution of 

the methyl internal rotation to the density of states was approximated as a Pitzer rotor.
137

 

 

3.1.5. PEPICO Experiments 

Time-of-flight mass spectra of internal energy selected Tol
+•

 [1] and CHT
+•

 [7] molecular 

ions were collected in the 11.45–12.55 and 10.30–11.75 eV photon energy ranges, respectively, 

in which dissociative photoionization leads to hydrogen-loss fragment ions. 
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As explained above, the low electric field in the long extraction region is essential to 

obtain unimolecular rate information, revealed, in our case, by the shifting fragment ion peak 

centers for H-loss at m/z = 91.  As a matter of fact, the parent and fragment ion peaks in the time-

of-flight mass spectra are not baseline separated for [M]
+•

 (m/z = 92) and [M – 1]
+
 (m/z = 91) 

therefore, we applied peak fitting (Figure 9) to extract the experimental ion fractional 

abundances and the fragment ion peak center shift as a function of photon energy, to construct 

the breakdown diagrams and obtain the rate information at the same time (Figure 10). 

 

 

Figure 9. Sample threshold photoionization TOF spectra of CHT (left) and Tol (right). Open 

circles are experimentally measured ion abundances. Three Gaussian peaks were fitted to the 

TOF distributions to extract experimental ion fractional abundances are shown in green, blue, 

and purple for [M–H]
+
, [M]

+
, and [M+1]

+
 peaks, respectively. The sum of these Gaussians is 

shown in red. 

 

Three Gaussian functions were fitted to each TOF mass spectrum: one for the H-loss, one 

for the molecular ion, and one for the 
13

C isotope peak of the molecular ion.  Neglecting the 
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double 
13

C isotopologues at +2 amu, the peak area of the fitted peaks was used to calculate the 

fractional ion abundances according to the following equations: 

 Atotal = A91 + A92 + A93 = (AP + AD)(1 + Bisot) (43) 

 A91 = AD (44) 

 A92 = AP + AD Bisot (45) 

 A93 = AP Bisot (46) 

where Atotal is the sum of the areas of the integrated peaks of m/z = 91, 92 and 93, A91, A92, A93 

respectively; and Bisot is the isotope abundance ratio (n.b., not percentage) between the 
12

C7 and 

the 
12

C6
13

C isotopologues.  AP and AD stand for the all-
12

C part of the parent and daughter ion 

signals, respectively.  Because only a hydrogen loss occurs, the peak at m/z = 92 encompasses 

both the all-
12

C molecular ion and the 
13

C peak of m/z = 91.  Since the theoretical ratio of the 
13

C 

peak (Bisot) is the same 7.6% for both ions, we can calculate Bisot for every photon energy after 

combining and rearranging the equations above: 

(A92 – A91 Bisot) Bisot  = A93    (47) 

The physically meaningful root of this quadratic equation for Bisot was used to validate the fitting 

procedure, which yielded the fractional abundances, plotted in the breakdown diagram, and the 

shifting centers of gravity of the H-loss peak, indicative of the dissociation rate constant, as a 

function of photon energy. 
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(a) 

 

(b) 

 

Figure 10. 1,3,5-cycloheptatriene (a) and toluene (b) breakdown diagrams and H-loss peak 

center shifts. Open circles are experimental data; solid lines are the best fit modeling of the data. 

Green and purple dashed lines show the contribution of the Tr
+
 and Bz

+
 ions to the overall m/z = 

91 signal, respectively. 
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3.1.6. Potential Energy Surfaces 

 

Figure 11. Potential energy surface of the isomerization and dissociative ionization pathways of 

1,3,5-cycloheptatriene and toluene cations with the G4 (blue) and CBS-APNO (green) energies 

at 0 K. The TS geometries are marked with a double dagger, and all energies are relative to the 

Tol
+•

 molecular ion. 

 

The potential energy surface (PES) connecting the two molecular ions with each other 

and with the H-loss fragment ions was explored to obtain a starting point for the statistical model 

(Figure 11).  The calculated relative energies and structures are in good agreement with and 

confirm the previously reported isomerization pathway by Bullins et al.
100

 and Choe.
116

 

However, the TS found uniquely by Bullins et al. for direct H loss from Tol
+•

 to Bz
+
 could not be 

located and it was probably an artifact at the HF/6-31G(d,p) and B3LYP/6-311++G(2d) levels of 

theory they used.  On the other hand, Choe used the G3 composite method, with respect to which 

the present results only represent a minor improvement.  The isomerization of Tol
+•

 [1] to form 
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CHT
+•

 [7] was studied first, which is the first isomerization step connecting the toluene cation to 

the most stable, Tr
+
 fragment ion.  The mechanism for (Tol 

   

→  ) Tol
+•

 [1] → CHT
+•

 [7] → Tr
+
 

[9] + H begins with a H-migration from the CH3-carbon via a tight TS [2]
‡
 at 1.66 eV relative to 

the Tol
+•

 [1] and leads to the first intermediate [3] at 1.49 eV.  Two more lower lying saddle 

points, [4]
‡
 and [6]

‡
, were located on the potential energy surface along with one intermediate 

structure, [5], leading to ring expansion and CHT
+•

 [7] formation at 0.80 eV. 

The last step in the formation of the Tr
+
 [9] cation is H-loss from CHT

+•
 [7], which, as 

reported in the literature,
12,97,100,116

 does not occur at the thermochemical threshold, due to a 

reverse barrier.  An orbiting transition state [8]
‡
 was found by scanning a C–H bond length in the 

methylene group at 2.16 eV, 0.5 eV above the TS [2]
‡
 leading to ring expansion from Tol

+•
 [1]. 

We explored an alternative H-loss possibility in CHT
+•

: the C–H bond located next to the 

methylene carbon was stretched, which resulted in a dissociation without a saddle point 

producing the high-energy 1-cycloheptatrienyl cation [13], shown in Figure 11 at 4.58 eV.  The 

Tol
+•

 [1] molecular ion may also lose a hydrogen atom directly from the aromatic ring or from 

the methyl carbon without first isomerizing to CHT
+•

.  Scanning the C–H bond length in the 

methyl group yields a purely attractive potential energy curve, i.e., indicates a dissociation 

without a reverse barrier to form benzyl ion, Bz
+
 [10], at 2.30 eV relative to the toluene 

molecular ion.  One example of a H-loss from the aromatic ring is also shown in Figure 11.  The 

C–H bond length in the meta position can be broken at 4.05 eV to yield the m-tolyl ion [11] 

without a saddle point.  The other two isomers, ortho and para can be formed at 3.99 and 4.13 

eV, respectively.  These processes are beyond our experimental energy range and are not 

considered in the statistical model. 
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Figure 12. Potential energy surface (PES) of the isomerization pathway between Bz
+
 and Tr

+
 

ions with G4 (blue) and CBS-APNO (green) energies at 0 K. Transition states are marked with a 

double dagger. All energies are relative to the Tol
+•

 molecular and only G4 energies are listed. 

 

The above-mentioned 1-cycloheptatrienyl cation [13] is also implicated in the 

isomerization pathways connecting Bz
+
 [10] and Tr

+
 [9], as shown in Figure 12.  Even the lower 

energy transition state [12]
‡
 connecting [13] to one of the fragment ions (Bz

+
 [10]) is at 4.77 eV, 

while the transition state [14a]
‡
 towards the other fragment ion (Tr

+
 [9]) is even higher at 

5.14 eV, both relative to Tol
+•

 [1].  Since this saddle point, which is higher than our experimental 

energy range, would have to be overcome to allow for the interconversion of the two isomers, we 

conclude that the Bz
+
 ↔ Tr

+
 interconversion is not implicated under our experimental 

conditions.  Therefore, the isomeric identity of the H-loss fragment ions should be preserved in 

the photon energy range of our experiment.  Note, however, that in the absence of isomer 
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specific sequential dissociation processes, the experimental data would not be affected by Bz
+
 ↔ 

Tr
+
 interconversion. 

 

3.1.7. Statistical Model of Dissociative Ionization 

The transition state connecting the C7H8
+
 isomers lies at a lower energy than the barrier 

to any decomposition channel.  Therefore, the parent ion isomers may interconvert prior to 

fragmentation.  However, there is a close-lying decay channel accessible from each of the C7H8
+•

 

isomers CHT
+•

 and Tol
+•

, namely the two, almost isoenergetic H-loss channels yielding Bz
+
 and 

Tr
+
.  The loose H-loss transition states and the relatively tight and only slightly less energetic 

isomerization transition state result in potentially slow interconversion at the dissociation 

threshold, and fragmentation may compete efficiently with isomerization.  Based on the 

computational results above, we propose a simplified mechanism, shown in Figure 17, with the 

aim to construct a single statistical model to fit both the cycloheptatriene and the toluene 

experimental data simultaneously.  The fitting parameters are marked blue in Figure 17, 

indicating energies and, for the transition states, the scaling of the transitional normal modes to 

fit the RRKM rate curves to the measured ones.  Since the dissociation of the Tol
+•

 [1] molecular 

ion takes place without a saddle point, the harmonic vibrational frequencies obtained at a 

constrained-optimized geometry at 5.0 Å C–H bond length were used to calculate the transition 

state density of states, as starting point for the statistical model.  The Tol
+•
–CHT

+•
 isomerization 

number of states function and the reverse barrier height in Tr
+
 production were taken from 

calculations of [2]
‡
 and not fitted.  The density of states of the parent ions were calculated in the 

harmonic approximation based on computed frequencies, with the exception of the methyl 

rotational contribution in the toluene cation.  This has a calculated harmonic vibrational 
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frequency of 39 cm
–1

 and a rotational barrier of only 0.9 meV, at the B3LYP/6-311++G(d,p) 

level of theory and was approximated as a Pitzer rotor.
135

 The thermal energy distribution of the 

precursor neutrals was also calculated within the harmonic vibrational approximation, with the 

exception of the methyl internal rotation in the toluene neutral, which was treated as a Pitzer 

rotor (harmonic frequency of 22 cm
–1

, rotational barrier of 2.7 meV).  As discussed elsewhere,
117

 

the parent ion internal energy distribution is calculated from the neutral precursor‘s thermal 

energy distribution, the photon energy, the ionization energy, and the ion optics parameters.  It 

should be noted that neither CHT
+•

, nor Tol
+•

 breakdown curves could be modeled satisfactorily 

assuming only a single dissociation to Tr
+
 and Bz

+
, respectively (Figures 13 and 14). 

 

 

Figure 13. Breakdown diagram and H-loss peak center shifts of CHT in the 10.30 to 11.75 eV 

photon energy range, showing the single-well model that excludes the isomerization pathway. 

Closed polygons represent experimental data, while the lines show the best fit of the data with 

RRKM theory. 

 

The obtained appearance energy of Tr
+
 is E0 = 9.91 eV, which is significantly higher than the G4 

calculated value of 9.60 eV and the double-well model result of 9.520 eV.  Furthermore, the 

reaction rates could not be reproduced as shown by the H-loss peak center shifts at low-to-mid 

photon energies. 
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Figure 14. Breakdown diagram and H-loss peak center shifts of Tol in the 11.45 to 12.55 eV 

photon energy range, showing the single-well model. Closed polygons are experimental data, 

while the lines show the best fit of the data with RRKM theory. 

 

Contrary to CHT
+•

, the obtained appearance energy of Bz
+
 at E0 = 10.91 eV is significantly lower 

than the G4 calculated value of 11.15 eV and the double-well result of 11.196 eV.  Furthermore, 

the optimized activation entropy in the single-well model is unphysically high at 206.7 J mol
–1

 

K
–1

 at 600 K.  To prove that the double-well model is indeed necessary to model both CHT and 

Tol breakdown curves, we employed the SSACM approximation (Figures 15 and 16). 

 

 

Figure 15. Breakdown diagram and H-loss peak center shifts of CHT in the 10.30 to 11.75 eV 

photon energy range, showing the single-well model that excludes the isomerization pathway. 

Closed polygons are experimental data, while the lines show the best fit of the data with 

Simplified Statistical Adiabatic Channel Model (SSACM) approximation. 
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Similarly to the RRKM model of CHT, the obtained appearance energy is significantly higher at 

E0 = 9.95 eV than the G4 calculated value of 9.60 eV and the double-well model result of 9.520 

eV. 

 

 

Figure 16. Breakdown diagram and H-loss peak center shifts of Tol in the 11.45 to 12.55 eV 

photon energy range, showing the single-well model that excludes the isomerization pathway. 

Closed polygons are experimental data, while the lines show the best fit of the data with 

Simplified Statistical Adiabatic Channel Model (SSACM) approximation. 

 

The obtained appearance energy of Bz
+
 at E0 = 10.96 eV is lower than the G4 calculated value of 

11.15 eV and the double-well result of 11.196 eV.  Also, the optimized activation entropy in the 

single-well model is unphysically high at 198.5 J mol
–1

 K
–1

 at 600 K. 

CHT undergoes large geometry change upon ionization, because the non-planar ring 

turns into a planar C2v geometry.  This makes it difficult to identify the origin transition in the 

photoelectron spectrum, hence, the adiabatic ionization energy of CHT.  Traeger and 

McLoughlin reported 8.29 ± 0.01 eV as the upper limit to it using PIMS.
3
 Later, Schwell et al. 

obtained 8.20 ± 0.05 eV by PEPICO.
4
 To decide between these values, the AIE of CHT was 

calculated by G3, G4, CBS-QB3, CBS-APNO, and W1U composite methods as 8.240, 8.234, 

8.185, 8.183, and 8.188 eV, respectively.  The average value of 8.206 eV is in a good agreement 
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with the experimentally measured 8.20 ± 0.05 eV by Schwell et al.  Therefore, this experimental 

AIE was used to calculate the energy distribution of the CHT
+•

 molecular ion in the statistical 

model. 

 

 

Figure 17. Schematic energy diagram of the RRKM model. The reverse barrier for H loss from 

CHT
+•

 (in red) was kept constant at its G4-calculated value. The parameters in blue were 

optimized to achieve the best fit of both breakdown diagrams. Parameters in black were taken 

from literature. The neutral isomerization energy (green) was calculated in a thermochemical 

cycle, see text. 

 

The adiabatic ionization energy of Tol was reported to be 8.75 ± 0.05, 8.82 ± 0.01, 8.821 

± 0.010, and 8.8276 ± 0.0006 eV by Schwell et al.,
4
 Bombach et al.,

90
 Watanabe et al.,

138
 and Lu 

et al.,
139

 respectively and we used the most accurate Pulsed Field Ionization (PFI) value of 

8.8276 eV in the statistical model. 
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The rate equation (25) also contains a symmetry number (σ) to take into account the 

changing degeneracies when calculating densities and numbers of states, as described by Pollak 

and Pechukas.
140

 Due to the methyl internal rotation, we took σ = 3 for the hydrogen loss from 

toluene ion.  The symmetry number is 2 for the H-loss from the 1,3,5–cycloheptatriene ion, 

because of the C2v symmetry of the parent ion; i.e., both CH2 hydrogens can leave over a small 

reverse barrier to produce the tropylium ion.  For comparison, Bombach et al.
90

 used σ = 3 in 

their statistical model of toluene ions forming Bz
+
 and σ = 6 in case of Tr

+
 as product ion. 

However, the latter value is of no concern here as toluene does not directly form Tr
+
 in our 

RRKM model. 

The plotted breakdown diagrams of CHT and Tol and the shifting peak center of the H-

loss signal at m/z = 91 are shown in Figure 10, based on the Gaussian fits (Figure 9).  Based on 

the latest literature mechanisms and our quantum chemical calculations, the isomerization barrier 

[2]
‡
 between the molecular ions, [1] and [7], is slightly lower than the simple H-loss leading to 

[10] and the small barrier [8]
‡
 towards [9].

97,99-100
 Therefore, it is possible to form both the 

tropylium [9] and benzyl [10] ions already at the dissociation threshold and the isomerization 

between the molecular ions has to be incorporated into the statistical rate model.  Notably, the 

model in Figure 17 is too flexible to extract reliable estimates for all parameters based on the 

experimental results of one sample.  Therefore, the same statistical rate model was used to 

reproduce both the toluene and CHT breakdown diagrams and H-loss peak center positions 

simultaneously.  The following parameters were varied: the two dissociation energies (Tol
+•

 to 

Bz
+
 and CHT

+•
 to Tr

+
), the transitional vibrational frequencies for these same two barriers, as 

well as the isomerization energy difference between Tol and CHT and the isomerization TS 

height.  The vibrational frequencies, the reverse barrier height between the H-loss TS from CHT
+
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and the Tr
+
 thermochemical limit were fixed at the G4 calculated values.  That is, we 

simultaneously fitted six parameters in a single statistical model to reproduce the measured 

abundances and dissociation rates of both measurements.  The resulting appearance energies are 

shown in Figure 17, while the best fits to the breakdown curves and TOF peak positions are 

shown in Figure 10.  To determine reasonable error bars for these values within the statistical 

model, the appearance energies were scanned individually and the rest of the adjustable 

parameters relaxed until the model stopped reproducing the experimental data acceptably. 

 

Table 1. 

Summary of 0 K Appearance Energies (E0) of Tropylium and Benzyl Ions from CHT and Tol 

Precursors. 

Reactant 

 

Product 

Tr
+
 Bz

+
 

E0 (eV) E0 (eV) 

CHT 

 9.520 ± 0.060
a
  9.738 ± 0.082

a
 

 9.60
b
  9.74

b
 

 9.36 ± 0.020
c
  

unspecified: 10.3
g
, 10.4 ± 0.1

h
, 10.73

k
 

Tol 

 10.978 ± 0.063
a
  11.196 ± 0.080

a
 

 11.00
b
  11.15

b
 

 10.71 ±  0.03
c
  11.17 ± 0.10

d
  

 10.52 ± 0.07
d
  11.1 ± 0.1

f
  

unspecified: 11.43
g
, 11.8 ± 0.1

h
, 11.8

k
, 11.3 ± 0.2

m
 

a
Experimental values from this study. 

b
Based on our quantum chemical calculations, G4 

composite method. 
c
Traeger et al.

85 d
Bombach et al.

90
 

f
Lifshitz et al.

96-97
 

g
Schwell et al.

4
 

h
Meyerson and Rylander.

105
 
k
Hoffman.

141
 
m
Field et al.

142
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We determined the E0 of the Tr
+
 [9] fragment ion to be 9.520 ± 0.060 eV from CHT and 

10.978 ± 0.063 eV from Tol.  Traeger and McLoughlin
85

 measured the appearance energy of the 

C7H7
+
 ion from 1,3,5-cycloheptatriene to be 9.36 ± 0.02 eV and from toluene to be 10.71 ± 0.03 

eV using PIMS and concluded that in both cases the fragment ions at threshold have the 

tropylium structure.  They explained their significantly lower onsets, compared to other studies 

at that time, as the result of their increased detection sensitivity.  Bombach et al.
90

 have also 

reported a much lower value, 10.52 ± 0.07 eV from Tol using PEPICO.  These literature values 

appear to be too low, as shown by our self-consistent experimental (9.520 and 10.978 eV) and 

G4-calculated 0 K appearance energies (9.60 and 11.00 eV, respectively). 

The appearance energy of Bz
+
 [10] was determined to be 9.738 ± 0.082 eV from CHT 

and 11.196 ± 0.080 eV from Tol.  Both are in good agreement with the calculated values of 9.74 

and 11.15 eV, respectively (G4).  Because the latter value is also used in thermochemical 

computations (see later) which are in marked disagreement with previous literature values, we 

computed this onset energy also at the CBS-APNO and W1U levels of theory, which yielded 

11.18 and 11.13 eV, respectively, yielding an average ab initio value of 11.16 eV, well within 

the experimental error bars.  Bombach et al.
90

 used PEPICO to measure the E0 of Bz
+
 [10] to be 

11.17 ± 0.10 eV from Tol, which is in good agreement with our value.  An extensive study on 

the dissociative ionization of toluene was carried out by Lifshitz et al.,
96-97

 who gave the E0 of 

Bz
+
 [10] 11.1 ± 0.1 eV at 0 K in agreement with later studies

100
 and with our experiment. 

With the exception of the PEPICO study of toluene by Bombach et al.,
90

 which was 

based on RRKM modeling, previous studies relied on a prior assumptions to assign the fragment 

ion as Tr
+
 or Bz

+
 when determining the thresholds listed in Table 1.  Some forwent them, and 

reported the appearance energy of the H-loss fragment ion without proposing a fragment ion 
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structure: 10.3 and 11.43 eV by Schwell et al.,
4
 10.4 ± 0.1 and 11.8 ± 0.1 eV by Meyerson and 

Rylander,
105

 and 10.73 and 11.8 eV by Hoffman
141

 from CHT and Tol, respectively.  The 

discrepancies between different results may arise from the different timescales of the 

experiments combined with the large kinetic shifts as well as from the different sensitivity of the 

methods.
97

  

 Remarkably, the statistical model is more sensitive to the cation isomerization energy 

than to the appearance energies and Δ
+

isoE, was optimized to 0.83 ± 0.02 eV.  This ancillary 

model parameter is in good agreement with the G4 calculated value of 0.80 eV and it can also be 

used in a thermochemical cycle, together with the literature ionization energies, to obtain the 

neutral isomerization energy ΔisoE = 1.46 ± 0.05 eV.  The G4, CBS-APNO, W1U methods yield 

1.410, 1.477, 1.429 eV, respectively, i.e., 1.44 ± 0.07 eV on average for this value, confirming the 

modeling approach and its results. 

 

3.1.8. Thermochemistry 

Appearance energies correspond to the thermochemical limit in the absence of a reverse 

barrier along the dissociation coordinate.  Therefore, we can calculate the 0 K enthalpy of 

formation of the Bz
+
 [9] cation using the experimentally derived E0 in this work, 11.196 ± 0.080 

eV and the well-known ∆rH
o
0 K of toluene, 73.65 ± 0.37 kJ mol

–1
, and the hydrogen atom, 

216.034 kJ mol
–1

.
143

 The obtained value, 937.9 ± 7.7 kJ mol
–1

, is in good agreement with 935 ± 9 

kJ mol
–1

 reported by Bombach et al.
90

 from their toluene PEPICO study.  Baer and co-workers
144

 

reported 919 ± 5 kJ mol
–1

 at 0 K on the basis of a benzyl bromide experiment.  An extensive 

study on the thermochemistry of benzyl radicals and ions was published by Ellison et al.
145

 They 
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derived ∆fH
o
0 K = 925.9 ± 2.5 kJ mol

–1
 for the benzyl ion using AIEs, E0s, and C–H bond 

energies available at that time. 

The adiabatic ionization energy of the benzyl radical is well known.  Its threshold 

photoelectron spectrum was measured recently by Savee et al.,
146

 and an IE of 7.252(5) eV was 

reported.  Therefore, using this value and the derived ∆fH
o
0 K of the Bz

+
 [9] cation, the 0 K 

enthalpy of formation of the benzyl radical can be calculated as 238.1 ± 7.7 kJ mol
–1

.  We have 

to note that this value is outside of the range of 226.8 ± 1.9 kJ mol
–1

 taken from the Third 

Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion, which 

agrees with 225 ± 4 kJ mol
–1

 recommended by Tsang
147

 based on three different studies 

(converted from ∆rH
o
298 K = 207 ± 4 kJ mol

–1
; H

o
298 K – H

o
0 K =18.178).

148
 In both systems, a 

large kinetic shift of over 1.5 eV indicates that the dissociation is slow close to threshold. 

Although it cannot be ruled out definitely that the RRKM extrapolation is free of systematic 

errors, it is known to be more prone to overestimating the kinetic shift.
149

 Therefore, the 

discrepancy between our results and the literature benzyl radical heat of formation is unlikely 

due to the employed statistical model.  Furthermore, our experimental E0 is in good agreement 

with high-level composite method calculations, which is why we suggest that the literature 

benzyl radical heat of formation is probably in error. 

 

3.1.9. Conclusions 

The unimolecular dissociation of internal energy selected 1,3,5-cycloheptatriene and 

toluene cations was investigated by imaging photoelectron photoion coincidence spectroscopy 

using VUV synchrotron radiation.  In the studied energy ranges both molecules dissociate by a 

hydrogen atom loss that leads to the formation of C7H7
+
 ions.  Quantum chemical calculations 
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were used to map the potential energy surface connecting the CHT and Tol molecular ions.  It 

was shown that interconversion of the precursor ions happens below the dissociation threshold. 

Therefore, we modeled both breakdown diagrams simultaneously as a single system by 

optimizing the 0 K appearance energies, TS frequencies, isomerization barrier and isomer 

stabilization energies.  This first, comprehensive statistical dissociative photoionization model 

for cycloheptatriene and toluene yielded 0 K appearance energies for Tr
+
 of 9.520 ± 0.060 eV 

from CHT
+•

 [7] and 10.978 ± 0.063 eV from Tol
+•

 [1], and for Bz
+
 9.738 ± 0.082 eV from CHT

+•
 

[7] and 11.196 ± 0.080 eV from Tol
+•

 [1].  These values are confirmed by G4 calculations, and 

illustrate that simultaneous statistical analysis of the dissociative photoionization of the two 

compounds can be used to establish their interconnected isomerization–dissociation energy 

landscape.  The experimental E0 of benzyl ion was used to calculate its 0 K heat of formation to 

be 937.9 ± 7.7 kJ mol
–1

. 

 

3.2. 1-Butanol and 2-Methyl-Propanol 

3.2.1. Introduction 

Butanols, which can be derived from lignocellulosic materials, are among the most 

promising alternatives to ethanol as a biofuel or as fuel.  Although bioethanol is already widely 

used as a fuel additive in many countries, butanols, and 1-butanol in particular, have several 

advantages: lower water uptake, higher energy density, better mixing with common fuels, and 

better compatibility with traditional engines.
150

 With the exception of tert-butanol, all butanol 

isomers can be produced from renewable sources, making them ideal biofuels.
151

 

The various isomers of butanol have been the subject of many experimental studies with 

a focus on their viability as a fuel.  These include investigations of their chemistry at high 
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temperatures, relevant to combustion conditions, including species profile,
152-153

 laminar flame 

speed,
154-155

 and ignition delay times.
156-159

 These studies were carried out in jet stirred 

reactors,
160-161

 flames,
162-164

 and pyrolysis.
152-153,165

 Numerous kinetic models have been proposed 

to explain the combustion chemistry of butanol isomers and to fit experimental data for these 

systems.
159-161,165-166

 Although many of these species and elementary reactions involved have 

been fairly well characterized, thermochemical input parameters are one of the major source of 

uncertainty in combustion models.
167-169

 Unfortunately, the gas phase heats of formation of these 

butanol isomers remain poorly known.  For 1-butanol, NIST
170

 reports an averaged value –277 ± 

5 kJ mol
–1

 as the 298 K gas phase heat of formation.  None of the included 13 measurements are 

more recent than 1975 and most of these measurements were done on the 298 K heat of 

formation of 1-butanol in the liquid phase, which was subsequently converted to the gas phase by 

using the heat of vaporization reported by either Skinner and Snelson
7
 or Wadsö.

171
 The 298 K 

gas phase heat of formation of 1-butanol was reported in various other thermochemical 

databases: –274.9 ± 0.4 kJ mol
–1

 by Pedley et al.;
172

 –274.4 kJ mol
–1

 by Rosenstock et al.;
173

 and 

most recently (in 2006) as –274.6 kJ mol
–1

 by Yaws.
174

 However, none of these are based on new 

experimental data.  Isobutanol was less frequently studied and the most recent 298 K gas phase 

heat of formation is from 1975 by Connett,
175

 published as –283.8 ± 0.9 kJ mol
–1

.  This value 

was determined by using the measured heat of formation of liquid isobutanol by Skinner and 

Nelson.
7
 Rosenstock et al.

173
 reported this same value, and Pedley et al.

172
 reported –283.8 ± 0.8 

kJ mol
–1

. 

Photoelectron photoion coincidence (PEPICO) spectroscopy coupled with vacuum 

ultraviolet (VUV) synchrotron radiation enables the measurement of highly accurate 

thermochemical data of a wide variety of systems.
176-177

 In a PEPICO dissociative 
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photoionization experiment, the threshold photoionization signal corresponding to a given 

photoion m/z is recorded together with the kinetic energy analysis of the coincident 

photoelectrons.  Hence, a photoion mass-selected threshold photoelectron spectrum can be 

obtained, which is advantageous for mixtures.  Or, along another dimension of the experimental 

data, fractional ion abundances can also be plotted as a function of the photon energy in a so-

called breakdown diagram.  This latter can be modeled with statistical energy distributions and 

unimolecular rates to extract thermochemical information (fragment ion appearance energies). 

Our motivation with this study is to revisit the dissociative photoionization of 1-butanol and 

isobutanol isomers to quantitively understand the ionic dissociation processes. 

The dissociation mechanism of the butanol isomer cations and the possible fragment ions 

have been discussed at length in the literature.
5-6,8,178

 McAdoo and Hudson
5
 studied the 

dissociative photoionization H2O-loss channel of 1-butanol and its deuterated analogs, using 

photoionization mass spectrometry.  Deuterium labeled 1-butanol led to the loss of both HDO 

and D2O in varying amounts, based on the original position of the heavy hydrogen isotope.  For 

instance, the greatest percent of heavy water loss was observed when both the methyl and the 

hydroxyl group was labeled.  D2O elimination was still present when only the hydrogen atoms of 

the methyl group (CD3) were replaced with deuterium, evidence of the extensive hydrogen 

interchange within the molecular ion.  These results led McAdoo and Hundson
5
 to hypothesize 

that 1-butanol isomerizes through a hydrogen transfer into the ion-neutral complex 

CH2CH2CH2CH2OH2
+•

 at low energies, which could undergo a series of hydrogen transfer 

reactions.  Unfortunately, the direct transfer of hydrogen would require the existence of a 

CH3CHCHCH2OH3
+•

 ion, which was proven to be thermochemically unreasonable based on their 

ab initio calculations.  Alternatively, they noted that CH2CH2CH2CH2OH2
+•

 might isomerize 
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reversibly into a cyclobutane ion–water complex, essentially rendering all hydrogen atoms equal. 

This would also explain the experimentally observed hydrogen exchange. 

Shao et al.
8
 further studied this H2O-loss channel using photoelectron photoion 

coincidence spectroscopy (PEPICO).  In the 9.8–10.2 eV photon energy range only the water-

loss fragment ion, C4H8
+•

 (m/z = 56) was detected.  They theorized that a complex reaction 

mechanism must be involved, and that there are two products connected to this H2O-loss 

channel: the trans-2-butene ion, which is the most stable isomer of C4H8
+•

, and the 

methylcyclopropane ion.  The formation of both products involves a rearrangement of the 1-

butanol molecular ion to an ion-neutral complex between the 2-butene ion and water and the 

methylcyclopropane ion and water.  They could not determine the energy of these ion-neutral 

complexes, however theorized that the formation of the methylcyclopropane ion is a slow 

process, and the formation of the most stable C4H8
+•

 isomer is a fast process.  Due to the 

complexity of the dissociation mechanism, they could not analyze the slow rates in any 

quantitative manner.  The appearance energy (E0) of C4H8
+•

 was determined to be 10.18 ± 0.05 

eV.  This is in agreement with the electron impact value of 10.20 ± 0.05 eV by Bowen and 

Maccoll,
179

 and with the E0 of 10.19 ± 0.05 eV, determined by Xie et al.
178

 using photoionization 

mass spectrometry.  Two minor fragment ions were also observed by Xie et al.,
178

 but with only 

a small contribution to the total photoionization cross-section of 1-butanol.  The E0 of m/z = 42 

ion, C2H2O
+•

, was determined to be 11.10 ± 0.05 eV, and the E0 of m/z = 31, CH3O
+
, was 

determined as 11.30 ± 0.05 eV.  Both of these are in agreement with the values of 11.23 ± 0.1 eV 

by Lambdin et al.
180

 and 11.40 ± 0.06 eV by Selim and Helal,
181

 respectively. 

The dissociative photoionization mechanisms of isobutanol have also been extensively 

studied.
6,8,178

 Shao et al.
8
 found these to be even more complex than that of 1-butanol.  Four 
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major fragments were detected in the photon energy range of 9.6–12.4 eV, in agreement with the 

findings of Xie et al.,
178

 out of which the first two, m/z = 56 and m/z = 33, were slow dissociation 

processes.  The water loss channel, that is m/z = 56, C4H8
+•

, is weak and quickly overtaken by the 

other slow channel, the formation of CH3OH2
+
 (m/z = 33).  Shao et al.

8
 suggested that the water 

loss channel proceeds via the formation of a methylcyclopropane-water complex, which is the 

only contributor to this dissociation.  The appearance energy of the m/z = 56 ion was given as 

10.33 ± 0.03 eV.  In agreement with this, Xie et al.
178

 found that the C4H8
+
 has only a minor 

contribution to the absolute photoionization cross-section of isobutanol, and determined an E0 of 

10.32 ± 0.05 eV.  The m/z = 33 channel, CH3OH2
+
, is the major fragment in the study of both 

Xie et al.
178

 and Shao et al.
8
 with appearance energies of 10.36 ± 0.05 eV and 10.43 ± 0.03 eV, 

respectively.  The other two fragment ions detected are C3H6
+•

 (m/z = 42) and C3H7
+
 (m/z = 43). 

These are consistent with the loss of methanol and the loss of CH2OH, respectively.  The m/z = 

42 channel is the lower energy path, which requires a rearrangement of the molecular ion, but it 

is overtaken at higher energies by the C3H7
+
 channel, formed by direct C–C bond cleavage in the 

parent ion.  Appearance energies of C3H6
+•

 were determined to be 11.00 ± 0.03 eV and 10.81 ± 

0.05 eV, and of C3H7
+
 was found to be 11.28 ± 0.05 eV and 11.00 ± 0.05 eV, by Shao et al.

8
 and 

Xie et al.,
178

 respectively.  Although Xie et al.
178

 noted that their values are consistently lower 

than that of Shao et al.‘s,
8
 they gave no explanation on what may cause the discrepancy. 

In this study, we investigated the dissociative photoionization of two internal energy 

selected butanol isomer cations using imaging photoelectron photoion coincidence (iPEPICO) 

spectroscopy at the Swiss Light Source (SLS).  These two ionic species (1-butanol and 

isobutanol cations) dissociate into the same fragment ions but the relative abundance of these 

fragments differs widely between the two very similar species.  Hence, in addition to generating 
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new experimental thermochemical data or confirming existing thermochemistry, our analysis 

shall offer much insight into the dissociation mechanisms that may be qualitatively different 

between the two systems, despite their high similarity. 

 

 

3.2.2. Experimental and Theoretical Approach 

1-Butanol (99.7%) and 2-methyl-1-propanol (or isobutanol, 99.5%) were purchased from 

Sigma Aldrich and were used without further purification.  Both room temperature samples were 

introduced through an effusive inlet into the ionization chamber of the iPEPICO endstation
119

 at 

the VUV beamline
124

 of the Swiss Light Source.  The pressure of the experimental chamber was 

set to 1–3 x 10
–6

 mbar.  VUV synchrotron radiation was used to ionize the samples in a 2 x 2 mm 

interaction region with a photon energy resolution of 3–5 meV.  Photoions and photoelectrons 

were extracted in opposite directions from the ionization region, using a constant 120 V cm
–1

 

electric field.  Photoelectrons were velocity-map-imaged onto a Roentdek DLD40 position-

sensitive delay-line detector from which two regions were utilized.  First, threshold electrons 

were focused to the center of the detector, together with kinetic energy electrons with no off-axis 

momentum.  Second, hot electrons with an off-axis momentum were detected in an arbitrarily 

defined ring around the center spot.  Hot electron contribution to the threshold photoelectron 

signal was removed by subtracting the average signal counts in the ring region from that of the 

center signal using an appropriate scaling factor to account for differences in area.
41

 Photoions 

were mass analyzed by a two-stage Wiley-McLaren
125

 time-of-flight (TOF) mass spectrometer 

and were spaced-focused onto a Jordan TOF C-726 microchannel plate detector.  The start signal 

for the TOF analysis of the photoions is provided by detection of the corresponding 
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photoelectron in a multiple-start/multiple-stop coincidence data acquisition scheme.
32

 Ion 

residence times are on the order of microseconds due to the long extraction region with low 

extraction field.  If a molecular ion dissociates in this extraction region, the time-of-flight of the 

resulting fragment ion will be somewhere between the nominal TOF of the parent ion and the 

fragment ion and, therefore, the peak corresponding to a slowly dissociating ion will exhibit a 

broad, quasi-exponential shape toward higher m/z ratios, indicative of the unimolecular rate 

constant of dissociation.
29,117

 Dissociation rates of 10
3
 – 10

7
 s
–1

 can be measured and fit to the 

modeled rates, quantifying the kinetic shift
182

 and providing a reliable extrapolation to the 

dissociation threshold. 

 

3.2.3. Statistical Modeling 

The experimental breakdown diagram and the threshold TOF mass spectra with 

asymmetric ion peak shapes were modeled using rigid activated complex Rice–Ramsperger–

Kassel–Marcus (rac-RRKM) theory.
117,135

 These calculations were used to extract the 

experimental rate constants from the experimental time-of-flight data by fitting the calculated 

peak shapes to the quasi-exponential asymmetric fragment ion peaks.  For this purpose, we 

employed statistical thermodynamics and statistical rate theory to calculate the molecular ion‘s 

internal energy distribution from the thermal energy of the neutral sample, the dissociation rate 

constants of the dissociating ions, from which ion branching ratios and theoretical TOF spectra 

were calculated and compared to the experimental data.  The unimolecular rate constants, k(E), 

were extracted by equation (24) described in Chapter 2.3.2. on the RRKM theory.  The sums and 

densities of states were calculated using harmonic vibrational frequencies by the Beyer–

Swinehart direct count algorithm.
183
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There are many cases when the molecular ion undergoes reversible isomerization prior to 

dissociation.
19,184-190

 The product ions can be formed from either the parent ion or from its 

isomer.  Solutions of the rate equations for a two-well system (Figure 8) are provided in Chapter 

2.3.5.  In short, in the case of two molecular ion isomer structures, each fragment ion is formed 

with two apparent rate constants, kfast and kslow, which can manifest themselves in the TOF 

spectra as double-exponential asymmetric daughter ion peaks.  Therefore, such features in the 

experimental TOF spectra indicate that isomerization might be at play. 

3.2.4. Quantum Chemistry 

The analysis of the experimental data and the statistical modeling was aided by ab initio 

calculations, using the Gaussian 09 suite of programs.
128

 Rotational constants and harmonic 

vibrational frequencies at the B3LYP/6-311++G(d,p) level of theory were extracted to calculate 

the thermal energy distribution of the neutral precursor molecules, numbers and densities of 

states for the rate equation (1), and stationary point energies for examining the possible 

isomerization and dissociation pathways.
117

 Stationary points for the most likely dissociative 

photoionization pathways and ion rearrangements were refined using the G4 composite 

method.
131

 Transition state (TS) structures were located using constrained optimizations (for 

loose transition states with no saddle point) and synchronous transit-guided quasi-Newton 

calculations
129-130

 and verified using intrinsic reaction coordinate (IRC) calculations.  Further 

composite method calculations (CBS-QB3,
133-134

 CBS-APNO,
132

 and W1U
81

) have also been 

carried out on the ionization energy of 1-butanol and isobutanol. 

 

3.2.5. Results and Discussion 
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3.2.5.1. Statistical modeling of the dissociative photoionization processes.  PEPICO time-of-

flight mass spectra of internal energy selected 1-butanol and isobutanol ions were collected in the 

10.0–13.2 eV photon energy range.  We found that the dissociative photoionization of 1-butanol 

and isobutanol both generate fragment ions with the following mass-to-charge ratios: m/z = 31, 

33, 41, 42, 43, and 56.  The most likely fragmentation processes leading to these ions are shown 

in Scheme 2. 

 
Scheme 2. General dissociation pathways of 1-butanol and isobutanol in the 10.0–13.2 eV photon 

energy range. 

 

3.2.5.2. 1-butanol.  Reported adiabatic ionization energies (AIE) of 1-butanol vary between 

9.95–10.10 eV, as listed in Table 2.  (Holmes and Lossing,
191

 Shao et al.,
8
 Cocksey et al.,

192
 

Watanabe et al.,
193

 Xie et al.
178

) Our PEPICO measurement, however, show significant 

dissociation already at 10.0 eV, which might imply that these literature values are overestimated.  

For reasons why this might indeed be the case, see the analogous section under isobutanol, vide 

infra.  Hence, we calculated a theoretical 1-butanol AIE at the G4,
131

 CBS-QB3,
133-134

 CBS-
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APNO,
132

 and W1U
81

 composite levels of theory (9.861, 9.863, 9.831, and 9.887 eV, 

respectively).  All these calculated values are in remarkably good agreement with each other but 

are lower than the literature values.  Therefore, their average of 9.86 eV most likely represents a 

reliable theoretical estimate for the 1-butanol AIE and we used this value to calculate the internal 

energy distribution of the 1-butanol molecular ion in the statistical model.  It is important to note 

here that since, in the PEPICO experiment, we directly measure the appearance energy of a 

fragment ion, variations in the AIE only indirectly affect the results from the statistical model. 
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Table 2. 

Summary of adiabatic ionization energies (AIE) and 0 K appearance energies (E0) for the two 

butanol isomer cations and their fragment ions. 

Species E0 (eV) 

Experimental
a
 

AIE or E0 (eV) 

Computed (G4)
a
 

AIE or E0 (eV) 

Literature 

1–C4H9OH [1] 

m/z = 74 

 
b
9.86 ± 0.05 

c
9.99  0.05 

d
10.09  0.02 
e
9.95  0.05 

CH3–c–C3H5
+•

 [3] 

CH2=CH–C2H5
+•

 [4]
 

m/z = 56 

10.347  0.015 

10.95  0.15 

10.42 c
10.18  0.05 

f
10.20  0.05 

e
10.19  0.05 

CH3–CH=CH2
+•

 [7]
 

m/z = 42 

10.942  0.040 10.87 e
11.10  0.05 
g
11.23  0.1 

CH3–OH2
+
 [8]

 

m/z = 33 

10.738  0.090 
j
10.51  

CH3–CH–CH3
+
 [9]

 

m/z = 43 

11.104  0.030 11.00 
j
10.99 

 

CH2OH
+
 [10]

 

m/z = 31 

11.104  0.030 
j
11.05 e

11.30  0.05 
h
11.40  0.06 

CH2=CH–CH2
+
 [11]

 

m/z = 41 

11.6 – 11.7 11.63  

i–C4H9OH [2] 

m/z = 74 

 
b
9.66 ± 0.05 

c
10.02  0.05 

d
10.09  0.02 
e
9.95  0.05 

CH3C(=CH2)CH3
+•

 [6]
 

m/z = 56 

10.566  0.050 10.50 c
10.33  0.03 

e
10.32  0.05 

CH3–CH=CH2
+•

 [7]
 

m/z = 42 

10.723  0.020 
j
10.77 c

11.00  0.03 
e
10.81  0.05 

CH3–OH2
+
 [8]

 

m/z = 33 

10.612  0.020 
j
10.62 c

10.43  0.03 
e
10.36  0.05 

CH3–CH–CH3
+
 [9]

 

m/z = 43 

10.970  0.050 11.09 c
11.28  0.05 

e
11.00  0.05 

CH2OH
+
 [10]

 

m/z = 31 

11.11  0.20 11.15  

CH2=CH–CH2
+
 [11]

 

m/z = 41 

11.6 – 11.9 11.73  

a
This work. 

b
Average computed AIE at the G4, CBS-QB3, CBS-APNO, and W1U levels. 

c
Shao 

et al.
8
 

d
Cocksey et al.

192
 

e
Xie et al.

178
 

f
Bowen and Maccoll.

179
 

g
Lambdin et al.

180
 

h
Selim and 

Helal.
181

 
j
G4-calculated thermochemical limit. 
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The experimental and modeled breakdown diagrams of 1-butanol are shown in Figure 18, 

along with selected PEPICO TOF spectra in Figure 19.  Below the photon energy of 10.8 eV, 

only the molecular ion, CH3CH2CH2CH2OH
+•

 (m/z = 74) [1], and the first fragment ion C4H8
+•

 

(m/z = 56, [3]), consistent with the loss of a water, were detected.  This is in line with earlier 

photoionization studies, which also observed a H2O-loss channel.  Based on the asymmetric 

fragment ion TOF peak shapes, shown in Figure 19, this dissociation pathway is ―slow‖ near 

threshold; that is, the molecular ions are metastable on the time scale of the experiment.  The m/z 

= 56 fragment ion can be formed via a hydrogen atom transfer to the OH group from one of the 

carbon atoms.  In order to determine which hydrogen transfer pathway is responsible for this 

dissociation channel, extensive quantum-chemical calculations (with G4 energies) were carried 

out.  These results are discussed in the Potential Energy Surface section (vide infra) and shown 

in Figure 22.  In short, our calculations show that the hydrogen transfer processes proceed 

through transition states 0.14 to 1.42 eV above the molecular ion (10.00 to 11.28 eV relative to 

the neutral precursor), leading to lower energy isomeric structures that feature more and more 

loosely attached ion
…

H2O moieties, consistent with earlier literature findings.
5-6

 The first step in 

the α-carbon hydrogen shift involves a transition state that is at 11.28 eV (relative to the neutral 

precursor), much too high to be relevant at threshold.  H-atom transfer from the -carbon 

features a similarly too high saddle point at 10.70 eV.  However, for a -carbon H-atom shift, the 

CH2OH moiety can first rotate closer to the -carbon and the hydrogen transfer happens through 

a transition state at 10.42 eV.  The subsequent loss of water produces the methylcyclopropane 

fragment ion with a calculated thermochemical limit of 9.87 eV.  The -carbon hydrogen shift 

and subsequent water-loss follows the well-known McLafferty rearrangement mechanism
194
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forming cyclobutane with an effective transition state 0.40 eV higher than the -carbon H-shift 

pathway. 

 

 
Figure 18. Breakdown diagram for 1-butanol in the 10.0–13.2 eV photon energy range. Polygons 

are experimentally measured ion abundances and the solid lines are the best-fit modeling of the 

data (see text). The dashed line shows the fractional abundance of the m/z = 41 ion, the 

consecutive dissociation of the m/z = 56 ion which was not separated out in the statistical model 

and, therefore, the green polygons and line stand for the sum of the m/z = 56 and 41 ions above 

11.6 eV photon energy. 
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Figure 19. Selected threshold photoionization TOF distributions of 1-butanol. Open circles are 

the experimentally measured PEPICO TOF spectra and lines are the best fit modeling of the data. 

 

To discuss the intricacies of the ionic dissociation mechanism, it is essential to 

understand the role of various isomeric structures.  As mentioned earlier, an asymmetric double 

(or triple) exponential fragment ion peak shape is a revealing sign that more than one isomeric 

structure plays an active role in the dissociation process.
19,117

 Furthermore, only using one parent 

ion structure in the statistical modeling did not result in an acceptable fit to the experimental rate 

curve (manifested in the asymmetric TOF distribution data).  Therefore, the statistical model 

includes the molecular ion reversibly isomerizing into a methylcyclopropane
…

water ion-neutral 

complex isomeric structure and with two transition states: a tight TS reversibly connecting the 1-

butanol molecular ion with the isomer structure and a loose TS serving as the exit channel into 

products.  In fitting the model‘s output to the experimental TOF distributions and breakdown 

curves, we optimized the barrier height leading to dissociation and the lowest five frequencies of 

the corresponding loose TS structure, and the height of both the forward and reverse 
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isomerization barriers.  The isomerization transition state frequencies were calculated at the 

B3LYP level and were kept unchanged in the model.  In the best fit of the data, the isomerization 

barrier height and the isomer stabilization energy (both relative to the molecular ion) were found 

to be at 0.44 eV and –0.19 eV, respectively.  With this model, the appearance energy of the 

water-loss m/z = 56 (methylcyclopropane) fragment ion (E0) was determined to be 10.347  

0.015 eV.  This is in reasonable agreement with the G4 value of 10.42 eV and suggests that the 

lowest-energy water-loss channel of 1-butanol leads to the formation of methylcyclopropane ion. 

This is also in line with the hypothesis of Shao et al.,
8
 who assumed the formation of two C4H8

+•
 

isomer cations: trans-2-butene and methylcyclopropane.  Although energetically trans-2-butene 

is the most stable C4H8
+
 isomer, our quantum chemical calculations revealed no low-energy 

pathways to it and the most probable C4H8
+•

 structure is methylcyclopropane. 

Beyond 11 eV, four additional parallel dissociation channels open up at approximately 

the same photon energy: C3H6
+•

 (m/z = 42, [7]) with a methanol-loss, CH3OH2
+
 (m/z = 33, [8]) 

from loss of C3H5, C3H7
+
 (m/z = 43, [9]) from loss of CH2OH, and CH2OH

+
 (m/z = 31, [10]) 

from C3H7-loss.  Two of these dissociation channels, m/z = 33 and 43, were not reported in 

earlier studies.  These four channels were modeled in parallel with the m/z = 56, using calculated 

frequencies for the loose transition states as starting points and fitting both the transitional TS 

frequencies and the appearance energies to the experimental breakdown curves. 

The formation of the C3H6
+•

 (m/z = 42, [7]) and the CH3OH2
+
 (m/z = 33, [8]) fragment 

ions once again require rearrangement of the 1-butanol cation prior to dissociation.  Based on our 

quantum chemical calculations, the most likely structure of C3H6
+•

 is CH3CHCH2
+•

, formed by a 

-carbon hydrogen transfer to the α-carbon followed by the loss of a CH3OH fragment.  The 

calculated transition state for this pathway lies at 10.87 eV, in reasonable agreement with the 
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experimentally derived appearance energy of 10.942  0.040 eV.  Xie et al.
178

 reported a slightly 

higher value, 11.10 ± 0.05 eV from their photoionization mass spectrometry measurement but, 

strangely, they identified the m/z = 42 ion as ketene, C2H2O
+•

.  They provided no explanation, 

however, on the formation of ketene ion from 1-butanol molecular ion, which would require a 

C2H8 loss – mayhap a couple of molecules with bovine gastrointestinal significance.  The 

formation of CH3OH2
+
 requires even more rearrangements.  According to our calculations, the β-

carbon hydrogen first transfers to the OH group, then the water and the methyl group forms the 

protonated methanol while the CH2CHCH2
•
 (allyl) fragment is lost.  The experimentally derived 

E0 is 10.738  0.090 eV, which could not be corroborated with a G4 transition state energy as 

optimizations of this TS structure have not converged. 

The next two fragmentation pathways correspond to a complementary pair: C3H7
+
 (m/z = 

43, [9]) through the loss of CH2OH, and CH2OH
+
 (m/z = 31, [10]) through the loss of C3H7.  If 

the appearance energies of these two channels correspond to their respective thermochemical 

limits, the difference in the E0 values has to be equal to the ionization energy difference of the 

two neutral fragments, i.e. C3H7 and CH2OH, for which the ATcT value is 0.110  0.007 eV. 

However, the experimental 0 K appearance energies are equal within error bars at 11.104 ± 0.030 

eV, suggesting that these reactions proceed through a common transition state, slightly above the 

thermochemical limits.  This is not surprising since there is a necessary H-shift in order to form 

the most stable C3H7 isomer neutral or ion, CH3CHCH3.  Calculated thermochemical limits of 

10.99 and 11.05 eV for the formation of the CH3CHCH3
+
 and CH2OH

+
 fragment ions, 

respectively, are indeed below the experimental onset.  We identified their common transition 

state at 11.00 eV, which is only slightly higher than the thermochemical threshold of the 

isopropyl ion.  Previously, Xie et al.
178

 measured a somewhat higher value, 11.30 ± 0.05 eV for 
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the appearance energy of the m/z = 31 ion, which they identified as CH3O
+
.  This is most likely 

another oversight as this structural isomer of CH2OH
+
 is 3.5 eV less stable, based on ATcT heat 

of formation values. 

Finally, a sixth channel opens up around 11.7 eV, consistent with C3H5
+
 (m/z = 41, [11]). 

Since the formation of this ion requires an overall loss of CH5O, it must be a product of 

sequential steps; conveniently, a methyl loss dissociation from the first fragment ion, C4H8
+•

 (m/z 

= 56).  Our PEPICO modeling code is equipped to handle complex dissociation schemes with 

two isomer ions, several parallel dissociation channels and consecutive dissociations from one of 

those.  However, according to theory, the situation is even more complicated here, due to the 

multiple possibilities on forming the m/z = 56 fragment ion (vide supra).
117

 Therefore, we were 

unable to determine a reliable experimental value for the appearance energy of the m/z = 41 ion 

and, instead, its experimental ion abundances were summed into its parent ion and they were 

modeled together as one channel.  Then, the high energy tail of this combined breakdown curve 

could not be reproduced with a single m/z = 56 channel, which finding is in line with the 

quantum-chemical calculations but complicates the picture of how the m/z = 41 fragment ion 

came about.  Therefore, a more complex model was built with two parallel C4H8
+•

 channels and 

this model provided an excellent fit to the combined m/z = 56 and m/z = 41 curve.  However 

since, according to the model, the contribution of the second H2O-loss pathway never amounts to 

more than 15%, the model is not very sensitive to this second m/z = 56 appearance energy, for 

which 10.95 ± 0.15 eV is our best estimate.  This value is not far from the calculated transition 

state energy of 10.70 eV leading to the formation of the 1-butene fragment ion and while, from 

the experimental data alone, it is not possible to firmly address the energetics of this second m/z 

= 56 channel, its existence is quite clear. 
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3.2.5.3. Isobutanol. The AIE of isobutanol was reported to be between 9.95 and 10.12 eV with 

typical uncertainties of 0.05 eV.
8,178-179,191-192

  Similarly to the case of 1-butanol, we calculated 

the isobutanol AIE at the G4,
131

 CBS-QB3,
133-134

 CBS-APNO,
132

 and W1U
81

 composite levels of 

theory (9.656, 9.686, 9.633, and 9.687 eV, respectively).  Determining the precise location of an 

onset of photoionization mass spectrometry (PIMS) data involves extrapolation to the baseline 

with a straight line.  The extrapolated energy depends on which region of the spectrum is fitted 

as most photoionization plots are curved.  Photoelectron spectroscopy is not sensitive to reverse 

barriers or slow reactions unlike PIMS but weakly overlapping Franck-Condon factors could 

shift the determined AIE to a higher value.  This has been shown for ethanol where the reported 

AIE values were found to be significantly off from the true value.
126

 A similarly large 

discrepancy but with an opposite sign has been observed between the previously published and 

the true AIE of diethyl ether.
118

 As the precision of our calculated values is impressive, and they 

are significantly lower than the experimental data found in the literature it is possible that 

literature values do not correspond to the adiabatic value.  Therefore, we used the 9.66 ± 0.05 eV 

in the statistical modeling of the isobutanol PEPICO data. 

 

 



  94 

 

 
Figure 20. Breakdown curves for isobutanol in the 10.0–13.2 eV photon energy range. Solid 

polygons correspond to experimental data points, whereas continuous lines are modeling results. 

The m/z = 41 channel is not included here because of its low abundance. 

 

 

 
Figure 21. Sample threshold photoionization TOF distributions of isobutanol. Open circles are 

the experimentally measured PEPICO mass spectra and lines are the best fit modeling of the 

data. 
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The breakdown diagram of isobutanol is shown in Figure 20 and selected PEPICO time-

of-flight spectra are shown in Figure 21.  Compared to 1-butanol, the breakdown diagram for 

isobutanol consists of the same six fragment ions, but with the notable difference that the lowest 

energy H2O-loss channel is no longer the only low-energy channel.  Similarly to 1-butanol, two 

dissociation channels, the formation of m/z = 31 and 41, were not reported in the literature 

before. 

The first channel involves a loss of water to produce C4H8
+•

 (m/z = 56, [3,4,6]).  In 

contrast to 1-butanol, the water-loss channel is much less abundant and is quickly overtaken by 

the loss of C3H5
•
 to produce CH3OH2

+
 (m/z = 33, [8]) at nearly the same photon energy.  This is 

consistent with the findings of Shao et al. and Xie et al.
8,178

 The asymmetric fragment ion TOF 

peaks of both of these ions are indicative of slow dissociation and their double-exponential shape 

implies isomerization of the molecular ion, as also noted by Shao et al.
8
 To make sure that this is 

indeed the case, we first assumed direct dissociation for both dissociation pathways in the 

statistical model, which resulted in an unacceptable fit even when the transition states were set 

unreasonably tight.  Therefore, in the model that we used to successfully fit the experimental 

data, isomerization was also included, similar to the 1-butanol model.  In this case, as discussed 

in detail in the computational section, a hydrogen atom shifts from the methine group to the 

hydroxyl through a reverse barrier at 10.50 eV and the resulting water is coordinated in a 

bridging position.  Water is lost from this complex to form isobutene [6] fragment ion.  From the 

best fit to the experimental data, a 0 K appearance energy of 10.566  0.050 eV was obtained, 

which is in reasonable agreement with our G4 calculated value for the hydrogen transfer 

transition state. These results are in contrast to Shao et al.,
8
 who suggested that 

methylcyclopropane ion is the only contributor to the m/z = 56 channel. However, 
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methylcyclopropane ion [4] could also be formed if the hydrogen is transferred from one of the 

methyl groups, then the two CH2 moiety close the three-membered ring.  According to our 

calculations, the distance of these aforementioned groups is approximately 2.5 Å and it proceeds 

through a reverse barrier at 10.64 eV.  The CH3OH2
+
 [8] fragment ion comes from a different 

ion-neutral complex, where one of the methyl hydrogen is transferred to the hydroxyl group, then 

the other methyl group migrates to the water moiety to form the protonated methanol fragment 

ion.  The 0 K appearance energy of CH3OH2
+
 was determined to be 10.612  0.020 eV, which is 

in good agreement with the G4 thermochemical limit of 10.62 eV, indicating a submerged barrier 

corresponding to the methyl migration. 

The next fragment ion, C3H6
+•

 (m/z = 42, [7]) is formed by methanol loss from the 

molecular ion and quickly overtakes both previous channels and accounts for the highest ion 

abundance between 11.4 and 11.9 eV.  To rationalize the methanol loss, the simplest explanation 

is that the hydroxyl group shifts to one of the methyl groups, which induces the barrierless loss 

of CH3OH neutral fragment, forming a propene, CH3CHCH2
+•

 cation in the process.  Most likely, 

the roaming OH transition state, with an ill-defined geometry, lies below the dissociation 

threshold as the experimental E0 of 10.723  0.020 eV is in good agreement with the calculated 

thermochemical limit of 10.77 eV. 

The abundance of the C3H7
+
 (m/z = 43, [9]) ion, formed by direct CH2OH loss, steadily 

rises after ~11 eV and becomes the dominant channel above 12 eV.  Contrary to 1-butanol, 

where an internal hydrogen shift was required to form the more stable CH3CHCH3 structure, it is 

directly available from the isobutanol molecular ion by a simple bond rupture.  The experimental 

0 K appearance energy was found to be 10.970  0.050 eV, slightly lower than the G4-calculated 

thermochemical limit of 11.09 eV but in reasonable agreement with the ATcT value of 11.035 ± 
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0.010 eV.  Similarly to the case of 1-butanol, the corresponding heterolytic bond breakage is also 

possible, and the CH2OH
+
 (m/z = 31, [10]) fragment ion appears as a minor dissociation channel 

at 11.2 eV, with a maximum of 15% abundance by 13.2 eV.  The branching ratios between these 

two complementary channels are in contrast to our observations for 1-butanol, where the 

abundances of these channels are comparable: C3H7
+
 [9] is 40%, and CH2OH

+
 [10] reaches its 

maximum just below 30%.  This is another argument for a qualitatively different dissociation 

mechanism between the two systems and the common transition state that both dissociations go 

through is responsible for the similar branching ratios between the homolytic and heterolytic 

cleavage in the 1-butanol ion.  From isobutanol, the experimental E0 of CH2OH
+
 was determined 

to be 11.11  0.20 eV, in agreement with the ATcT and G4 calculated values of 11.145 ± 0.011 

eV and 11.15 eV, respectively. 

The final dissociation channel from isobutanol ions in the studied photon energy range is 

the consecutive formation of the C3H5
+
 (m/z = 41, [11]) cation by a methyl loss from m/z = 56, 

with a maximum intensity of 5%.  The abundance of this channel is so small that it could not be 

modeled reliably and it was excluded from the model.  The visual appearance energy of C3H5
+
 is 

between 11.6 and 11.9 eV, in agreement with the calculated G4 E0 of 11.73 eV. 

 

3.2.6. Calculated Dissociation Mechanisms 

Quantum chemical calculations were carried out to assist in the identification of the 

unimolecular dissociation pathways and quantify their energetics.  Stationary points that are 

likely to play a role in the ionic dissociation processes were optimized at the B3LYP/6-

311G++(d,p) level of theory.  The stationary point energies were refined using G4
131

 composite 
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method (Figures 23, 25, and 27).  All G4 energies are reported relative to the corresponding 

neutral butanol isomers. 

 

3.2.6.1. 1-Butanol.  The first dissociation channel of 1-butanol molecular ion [1] leads to the 

formation of C4H8
+•

 [3–6] by a water loss that, as we discussed in the previous section, requires 

the rearrangement of the molecular ion.  We explored hydrogen atom transfers to the OH group 

from the -, -, -, and -carbon atoms.  The α-carbon hydrogen shift proceeds through a 

transition state that is at 11.28 eV, well above the experimental E0 of 10.347 ± 0.015 eV.  The 

hydrogen on the -carbon can also be transferred in a single step through a transition state at 

10.70 eV, leading to an ion-molecule complex between water and a 1-butene ion with an O
…

C 

distance of 2.279 Å.  This complex is 0.39 eV more stable than the 1-butanol molecular ion itself 

and water is lost via a barrierless dissociation, forming 1-butene. 

 

 
Scheme 3. Formation of 1-butene ion (m/z = 56) via a β-hydrogen transfer, followed by water 

loss. 

 

In the case of a H-atom shift from the -carbon, the CH2OH moiety rotates closer to this site and 

the hydrogen transfer proceeds through a barrier of 10.42 eV, while the carbon chain assumes a 

cyclic structure.  Then, through a second saddle point at 9.87 eV, water is lost, resulting in a 

methylcyclopropane ion at a G4 thermochemical limit of 9.87 eV.  Similarly to the -carbon 

transfer, the ion-neutral complex, with an O
…

C distance of 2.431 Å, is energetically more stable 

than the parent ion, by 0.35 eV. 
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Scheme 4. Formation of methylcyclopropane ion (m/z = 56) via a γ-hydrogen transfer followed 

by water loss. 

 

As a fourth possible pathway, the -carbon hydrogen shift involves the classic McLafferty 

rearrangement mechanism.
194

 To form the six-membered ring structure, the CH2OH moiety of 1-

butanol ion is rotated to an H–O–Cα–Cβ dihedral angle of 92° through a barrier of 10.00 eV and 

the actual hydrogen transfer occurs via a transition state at 9.90 eV.  The - and -carbon atoms 

get closer to form the cyclobutane ring through a TS at 10.82 eV.  While the barrier to the 

cyclobutane-water complex is lower than the transition states mentioned above, this ion-

molecule complex is actually higher in energy than the 1-butanol cation by 0.18 eV. 

 

 
Scheme 5. Formation of cyclobutane ion (m/z = 56) via a δ-hydrogen transfer followed by water 

loss. 

 

From here, water is directly lost with a thermochemical limit of 10.44 eV, which is energetically 

less feasible than the methylcyclopropane fragment ion channel.  Because of this, the m/z = 56 

ion is most likely methylcyclopropane [3] at low energies but, at higher energies, dissociation to 

cyclobutane ion [5] is also possible.  Therefore, as discussed in length in the previous section, the 

source of the m/z = 41 ion [11] is most likely 1-butene ion [4] formed through the -carbon H-
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shift.  The structure of the C3H5
+
 ion is CH2CHCH2

+
 formed by a methyl loss without a saddle 

point from 1-butene ion at 11.63 eV. 

 

 

Scheme 6. Formation of allylium ion (m/z = 41) from 1-butene ion (m/z = 56) via a methyl 

radical loss. 

 

 
Figure 22. Potential energy surface of the beta, gamma, and delta-carbon hydrogen transfers, 

shown with red, blue, and black colors, respectively. All energies are at 0 K at the G4 level of 

theory. Energies on the left axis are relative to the neutral precursor while energies on the right 

axis are relative to the molecular ion. For structures, see Figure 23 and the schemes in the text. 
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[1] [1a] [1b] [2a] [2b] 

     
[3] [3a] [3b] [4] [4a] 

     
[4b] [5] [5a] [5b] [6a] 

   

  

[6b] [7a] [7b]   

Figure 23. Structures of minima and saddle points as indicated in Figure 22. 

 

 

The next ion in the breakdown diagram, C3H6
+•

 [7], is the product of a methanol loss.  

The lowest energy pathway is the γ-carbon hydrogen transfer to the α-carbon followed by the 

barrierless loss of the CH3OH fragment.  Hydrogen migration proceeds through a reverse barrier 

of 10.87 eV and falls into a minimum structure, where the - and -carbon atoms are separated 

by a bridging hydrogen atom.  At this point, methanol is in a loose ion-neutral complex with the 

CH3CHCH2
+•

 molecular ion.  The -carbon–hydrogen and -carbon–hydrogen distances are 

1.283 Å and 1.445 Å, respectively, and a C–H–C angle of 169º. 

 
Scheme 7. Formation of propene ion (m/z = 42) via a methanol loss. 
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It is evident that the m/z = 33 ion, CH3OH2
+
 [8], cannot be formed without substantial 

rearrangement of the molecular ion.  The first step is the β-carbon hydrogen transfer to the OH 

group at 10.70 eV, which is the same initial step that we saw in the higher-energy water-loss 

channel.  Then, the methyl group and water molecule form protonated methanol through a 

reverse barrier and the CH2CHCH2 fragment is lost.  Optimizations of this TS structure have not 

converged. 

 

 
Scheme 8. Formation of methyloxonium ion (m/z = 33) via an allyl radical loss. 

 

The last two ions observed in our experiments, CH2OH
+
 [10] and C3H7

+
 [9], could 

theoretically be formed by a simple bond rupture of 1-butanol.  To confirm or reject this, 

constrained potential energy scans along the Cα–C bond length were performed on the 

molecular ion and no saddle point was located at the B3LYP level of theory.  This means that 

CH2OH
+ 

+ CH3CH2CH2
•
 and CH3CH2CH2

+
 + CH2OH

•
 could formed at 11.17 eV and 11.34 eV, 

respectively.  However, both of these values are higher than the experimental appearance 

energies of 11.104 ± 0.030 eV.  Further quantum-chemical investigation revealed that one of the 

-hydrogen atoms can be transferred over to the -carbon, forming the energetically more stable 

CH3CHCH3 structure.  At the G4 level, the saddle point corresponding to hydrogen transfer is at 

11.00 eV; slightly higher than the thermochemical threshold for CH3CHCH3
+
 (10.99 eV) and 

slightly lower than the calculated threshold for CH2OH
+
 (11.05 eV). 
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Scheme 9. Formation of isopropylium (m/z = 43) and hydroxymethylium (m/z = 31) ions. 

 

 
Figure 24. G4-calculated potential energy surface for the remaining dissociation pathways of 

energy-selected 1-butanol ions. Energies on the left axis are relative to the neutral precursor 

while energies on the right axis are relative to the molecular ion. For structures, see Figures 23, 

25 and the schemes in the text. 

 

     
[7]  [8] [9] [10]  [11] 

 

  

  

 [8b] [10b]   

Figure 25. Structures of minima and saddle points as indicated in Figure 24. 
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3.2.6.2. Isobutanol.  The first dissociation channel is the formation of C4H8
+•

 by a water loss that 

also requires the rearrangement of the molecular ion.  We explored hydrogen atom transfers to 

the OH group both from the CH and CH3 groups.  The methine hydrogen is transferred in a 

single step through a barrier at 10.50 eV, forming isobutene, CH2=C(CH3)CH3
+•

 molecular ion 

after the  successive, barrierless water loss. 

 

 
Scheme 10. Formation of isobutene (m/z = 56) via a water loss. 

 

In the case of the methyl hydrogen shift, the transfer happens through a saddle point at 10.58 eV. 

This ion-molecule complex has a 4-membered ring, which is significantly more strained, 

compared to ones formed in the case of 1-butanol, with a O
…

C bond distance of only 1.547 Å. At 

this point there are two possibilities: (1) losing the water or (2) forming a three-membered ring. 

In the first case, water is lost through a barrier at 10.34 eV, while the molecular ion undergoes a 

rearrangement via a methyl migration, forming 1-butene molecular ion. 

 

 
Scheme 11. Formation of 1-butene (m/z = 56) after an internal rearrangement. 

 

In the other pathway, the α and γ carbon atoms move closer to each other, forming a 

cyclopropane ring through a barrier of 10.64 eV.  Then, water is lost without a saddle point, 
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forming methylcyclopropane molecular ion with a similar thermochemical limit as in the case of 

[4]. 

 

 
Scheme 12. Formation of methylcyclopropane (m/z = 56) via ring closure. 

 

Since the ring closure step proceeds through a higher-lying transition state than for 1-

butene (see Scheme 10), the most likely second contributor to the m/z = 56 signal is 1-butene ion 

but this latter channel leading to methylcyclopropane ion cannot be ruled out, either. 

 

 
Figure 26. Potential energy surface for the internal hydrogen rearrangement and subsequent 

water loss from energy-selected isobutanol ions. Beta and gamma hydrogen transfers are shown 

with red and blue ink, respectively, and black lines show the methylcyclopropane formation 

through the ring closure. Energies on the left axis are relative to the neutral precursor while 

energies on the right axis are relative to the molecular ion. For structures, see Figures 23, 27 and 

the schemes in the text. 
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[2] [6] [8a] [9a] [10a] 

     
[11a] [11b] [12b] [13b] [14b] 

Figure 27. Structures of minima and saddle points as indicated in Figure 26. 

 

 

The next fragment ion, namely CH3OH2
+
 is formed by a C3H5 loss. Its formation requires 

substantial rearrangement within the molecular ion.  First, a hydrogen atom is transferred from 

one of the methyl groups to the hydroxyl group at 10.58 eV, similarly to the water loss channel. 

Then, the other methyl group and the water moiety forms the protonated methanol ion.  The 

remaining neutral, which has a CH2CHCH2 structure leaves without a reverse barrier. 

 

 
Scheme 13. Formation of methyloxonium ion (m/z = 33) via two internal rearrangement steps. 

 

The next ion in the breakdown diagram, C3H6
+•

, is formed via a methanol loss and the 

dissociation mechanism is similar to the CH3OH2
+
 channel.  In this case, one of the methyl 

groups moves closer to the hydroxyl group, forming a CH3OH group, which leaves without a 

reverse barrier, forming the CH3CHCH2
+•

 fragment ion at a thermochemical threshold of 10.77 

eV.  An other possibility involving the transfer of a methyl hydrogen to the α-carbon was ruled 
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out as it only resulted in an internal rearrangement of the molecular ion.  The hydroxyl group 

moves to the place of the transferred hydrogen atom, essentially reforming isobutanol. 

 

 
Scheme 14. Formation of propene ion (m/z = 42) via a methanol loss. 

 

C3H7
+
 is the dominant channel in the breakdown diagram above 12.0 eV.  Contrary to 1-

butanol there is no need for rearrangement to form the energetically favorable CH3CHCH3 

structure.  Constrained potential energy scans along the Cα–C bond length in the isobutanol 

molecular ion showed no saddle point, forming the energetically favored C3H7
+
 ion at 11.09 eV, 

or forming CH2OH
+
 at 11.15 eV, which latter is only a minor product, contrary to the analogous 

dissociation from the 1-butanol ion. 

 
Scheme 15. Formation of isopropylium ion (m/z = 43) and hydroxymethylium ion (m/z = 31) via 

a bond rupture. 

 

Finally, C3H5
+
 is formed by a sequential CH3

•
 loss from 1-butene molecular ion without a saddle 

point at 11.73 eV. 
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Scheme 16. Formation of allylium ion (m/z = 41) from 1-butene ion (m/z = 56) via a methyl 

radical loss. 

 

 
Figure 28. G4-calculated potential energy surface for the remaining dissociation pathways of 

energy-selected isobutanol ions. Energies on the left axis are relative to the neutral precursor 

while energies on the right axis are relative to the molecular ion. For structures, see Figures 23, 

25, 27, and the schemes in the text. 

 

Calculated and experimental appearance energies are summarized in Table 3. 
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Table 3 

Comparison of the appearance energies for the various dissociation channels of 1-butanol and 

isobutanol cations. 

Fragment ion 
Experimental E0 (eV) G4-calculated E0 (eV) 

from 1-butanol from isobutanol from 1-butanol from isobutanol 

C4H8
+•

 10.347 ± 0.015 10.566 ± 0.050 10.42 10.58 

C3H7
+
 11.104 ± 0.030 10.970 ± 0.050 11.00 11.09 

C3H6
+•

 10.942 ± 0.040 10.723 ± 0.020 10.87 TS (10.77) 

C3H5
+
 11.6 – 11.7 11.6 – 11.9 11.63 11.73 

CH3OH2
+
 10.738 ± 0.090 10.612 ± 0.020 TS (10.51) TS (10.62) 

CH2OH
+
 11.104 ± 0.030 11.11 ± 0.20 11.05 11.15 

 

 

3.2.7. Thermochemistry 

In the absence of a reverse barrier (that is, through a loose transition state), appearance 

energies represent the thermochemical limits leading to the ionic and neutral products.  

Therefore, the 0 K heat of formation of the 1-butanol and isobutanol can be calculated by using 

well-known literature thermochemical data on the fragment ions and neutrals and the appearance 

energies extracted from the modeled breakdown diagrams.  Ancillary thermochemical data and 

the results of this work are summarized in Table 4. 
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Table 4 

Auxiliary and derived thermochemical data. 

Chemical formula Species 
∆fH

o
0 K ∆fH

o
298 K  

kJ mol
–1

 

C4H10O 1-butanol –245.81
c
   

   –274.4
d
  

   –274.9
e
 ± 0.4 

 isobutanol –249.4
a
 –279.1

a
 ± 1.6 

   –283.8
d,f

 ± 0.8 

   –284.1
e
 ± 0.9 

C3H7
+
 CH3CH

+
CH3 822.91

b
  ± 0.25 

 CH3CH2CH2
+
 856.96

b
  ± 0.86 

C3H7 CH3CHCH3 105.32
b
  ± 0.53 

 CH3CH2CH2 118.34
b
  ± 0.55 

CH3O
+
 CH2OH

+
 717.9

b
  ± 0.7 

  717.70
b
  ± 0.18 

CH3O CH2OH –11.1
b
  ± 0.9 

  –10.46
b
  ± 0.28 

a
This work; 

b
ATcT

195
; 

c
Yaws

174
; 

d
Rosenstock et al.

173
; 

e
Pedley et al.

172
; 

f
Connett.

175
 

 

In the studied energy ranges, every dissociation pathway of 1-butanol ions and most 

isomerization pathways of isobutanol ions proceed through various higher-lying transition states, 

which means that the appearance energies do not correspond to the thermochemical limits 

corresponding to the products.  This prevents using these experimental appearance energies to 

extract reliable and accurate thermochemical information.  However, there is one, rather 

prominent channel in isobutanol dissociative photoionization where the rearrangement transition 

state is submerged and the appearance energy does correspond to the thermochemical limit, and 

this is the CH3CHCH2
+•

 + CH3OH channel.  Combining this with the E0s of C3H7
+
 and CH2OH

+
 

channels, we can calculate the isobutanol 0 K heat of formation reliably from three different 

channels.  The extracted appearance energy for CH3CHCH2
+•

 + CH3OH dissociation is 10.723 ± 

0.020 eV.  The ATcT
195

 reports ∆fH
o
0 K of 975.22 ± 0.21 kJ mol

–1
 for the propylene ion and –

190.01 ± 0.15 kJ mol
–1

 for methanol, which gives –249.40 ± 1.76 kJ mol
–1

 for the 0 K heat of 
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formation of isobutanol.  The second channel is for CH3CHCH3
+
 + CH2OH

•
 dissociation with a 

E0 of 10.970 ± 0.050 eV.  Using the heats of formations found in ATcT
195

 as 822.91 ± 0.25 kJ 

mol
–1

 for the ion and –10.46 ± 0.28 kJ mol
–1

 for the radical, we obtain a 0 K heat of formation of 

isobutanol as –245.99 ± 4.84 kJ mol
–1

.  Finally, the complimentary pair of the former 

dissociation, CH2OH
+
 + CH3CHCH3

•
, is used in a similar fashion with ATcT heats of formations 

of 717.70 ± 0.18 kJ mol
–1

 for the ion and 105.32 ± 0.53 kJ mol
–1

 for the radical.  The isobutanol 

heat of formation is calculated to be –248.0 ± 19.3 kJ mol
–1

.  The weighted average of all three 

values is calculated to be –249.00 ± 1.64 kJ mol
–1

 as described by Shuman et al.
196

 To compare 

the evaluated heat of formation of isobutanol with literature values we converted our 0 K value 

to 298 K.  The conversion factor (H298 K – H0 K) was carefully calculated to be 20.7 kJ mol
–1

 by 

Bodi et al.,
197

 who took every internal rotation of isobutanol into account.  Therefore, we obtain 

–279.10 ± 1.64 kJ mol
–1

 as the 298 K heat of formation of isobutanol.  Connett
175

 and 

Rosenstock
173

 reported –283.8 kJ mol
–1

 and –283.8 ± 0.9 kJ mol
–1

, respectively as the gas phase 

heat of formation of isobutanol at 298 K, while Pedley et al.
172

 gave –284.1 ± 0.9 kJ mol
–1

 at the 

same temperature.  Our calculated 298 K heat of formation value does not match with literature 

findings. 

 

3.2.8. Conclusions 

The unimolecular dissociation mechanism of internal energy selected 1-butanol and 

isobutanol cations was investigated by imaging photoelectron photoion coincidence spectroscopy 

using VUV synchrotron radiation.  Both butanol isomer cations dissociate by numerous parallel 

and consecutive dissociation channels producing fragment ions with the same mass-to-charge 

ratios: m/z = 31, 33, 41, 42, 43, and 56.  The fractional ion abundances were plotted in 
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breakdown diagrams, which showed markedly different behaviors between the two butanol 

isomers, despite the similarity expressed in fragment masses.  To understand the reaction 

mechanisms and to obtain reliable 0-K appearance energies, the breakdown diagrams were 

modeled using statistical energy distributions and rate theory and the interpretation and analysis 

was aided by high-level quantum chemical calculations. 

In both systems, the first dissociation channel is a water-loss at the 0 K appearance 

energy of 10.347  0.015 eV and 10.566  0.050 eV for 1-butanol and isobutanol, respectively. 

Both channels are slow at the dissociation limit on the timescale of the experiment and involve 

an initial isomerization step forming loose C4H8
+•…

H2O ion-neutral complexes.  It should be 

noted, however, that the two isomers do not proceed through the same ion-neutral complex.  In 

the case of 1-butanol, the ion-neutral complex is formed by a -carbon H-atom shift through a 

transition state at 10.42 eV and followed by a subsequent loss of water producing the 

methylcyclopropane fragment ion (m/z = 56, [3]).  In contrast, in isobutanol the ion-neutral 

complex is formed by a H-atom shift from the methine group through a reverse barrier at 10.50 

eV and the resulting water is lost to form the isobutene fragment ion (m/z = 56, [6]).  On one 

hand, this H2O-loss channel dominates the 1-butanol breakdown diagram in the 10.0–11.5 eV 

photon energy range while, on the other hand, it only appears as a minor pathway for isobutanol. 

The noticeable difference in behavior observed between the two isomers can be explained by 

examining the tightness of the H-shift transition state involved in the formation of the ion-neutral 

complex.  This rearrangement involves a favored 5-membered ring structure in 1-butanol, but 

requires a less favorable 4-membered ring structure in isobutanol, resulting in a more strained TS 

in isobutanol.  Therefore, this channel is quickly overtaken by the kinetically more favorable 

CH3OH2
+
 channel. 
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For 1-butanol, the CH3OH2
+
 (m/z = 33, [8]) channel only reaches ~10% maximum 

abundance.  The formation of this cation proceeds through a higher lying transition state, 

rendering it unavailable at its thermochemical threshold.  The 0 K appearance energy was found 

to be 10.738  0.090 eV.  The experimentally derived activation entropies at 600 K are 18.2 J K
–

1
 mol

–1
 and 2.0 J K

–1
 mol

–1
 for m/z = 56 and 33 channels in 1-butanol, respectively.  In contrast, 

for isobutanol, the breakdown diagram is dominated by this cation in the 10.4–11.3 eV photon 

energy range.  Its formation is slow at the dissociation limit and involves the formation of 

another ion-neutral complex by first a H-atom shift from one of the methyl to the hydroxyl group 

at 10.58 eV, and a subsequent CH3OH2
+
-loss through a submerged reverse barrier.  The 0 K 

appearance energy of CH3OH2
+
 was determined to be 10.612  0.020 eV, in excellent agreement 

with the G4 calculated thermochemical limit of 10.62 eV.  The experimental activation entropies 

at 600 K are –43.1 J K
–1

 mol
–1

 and 17.1 J K
–1

 mol
–1

 for m/z = 56 and 33 channels, respectively. 

This provides further evidence that the m/z = 56 transition state is significantly tighter than that 

of m/z = 33. 

The next channel in the 1-butanol breakdown diagram is the formation of C3H6
+•

 (m/z = 

42, [7]) by a CH3OH-loss.  The lowest energy structure is the CH3CH=CH2 ion, which is formed 

by an internal H-shift from the -carbon to the -carbon through a reverse barrier of 10.87 eV 

prior to a barrierless loss of CH3OH.  The 0 K appearance energy is 10.942  0.040 eV.  In the 

breakdown diagram of the isobutanol cation, the formation of C3H6
+•

 rapidly takes over, with an 

appearance energy of 10.723  0.020 eV, and accounts for the highest ion abundance up to about 

11.9 eV.  This ion is easily accessible by a methyl group ―grabbing on‖ the hydroxyl group, 

forming the CH3CH=CH2 ion.  Note, that this mechanism in 1-butanol would result in the 
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formation of a higher-energy c-CH2CH2CH2 ion, which is not energetically consistent with the 

observed experimental results. 

In both butanol isomers, the fragmentation pathways of the C3H7
+
 (m/z = 43, [9]) and the 

CH2OH
+
 (m/z = 31, [10]) cations correspond to a complementary pair.  Based on the 

experimentally indistinguishable appearance energies of these two fragments in 1-butanol, we 

concluded that the dissociation proceeds through a common transition state, slightly above the 

thermochemical limits at 11.104  0.030 eV.  However, in the case of isobutanol, the C3H7
+
 (m/z 

= 43) and CH2OH
+
 (m/z = 31) fragment ions are formed by direct C–C bond cleavage at the 

appearance energy of 10.970  0.050 and 11.11  0.20 eV, respectively.  The difference between 

the E0 for these two fragment ions can be accounted for by looking at the difference in the 

ionization energy of CH2OH
+
 and C3H7

+
, calculated to be 0.110 eV, in good agreement with our 

experimental appearance energies.  These conclusions are further supported by observed 

discrepancies in the branching ratios between the two complementary channels in the two 

butanol isomers.  In the case of 1-butanol, the abundances of these channels are comparable with 

a maximum of 40% for C3H7
+
 [9] and 30% for CH2OH

+
 [10], supporting the conclusion of a 

common transition state at play.  However, for isobutanol cations, C3H7
+
 [9] dominates the 

breakdown diagram above 11.9 eV with a maximum abundance of ~70%, whereas CH2OH
+
 [10] 

is only a minor channel with 15%.  This significant difference is explained by C3H7
+
 [9] being 

the thermodynamically favored product. 

Finally, in the case of both butanol isomers, a consecutive dissociation channel opens up 

around 11.7–11.9 eV, consistent with the formation of C3H5
+
 (m/z = 41, [11]) by a consecutive 

loss of a methyl group from the H2O-loss fragment ion.  This consecutive channel amounts to 

about 15% in 1-butanol and only a few percent in isobutanol.  Since water loss is possible 
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through more than one mechanism and, in fact, the m/z = 41 channel could only be fit assuming 

at least two parallel pathways, an accurate statistical modeling of the consecutive dissociation 

was not possible with any practical fidelity. 

In conclusion, PEPICO is successfully implemented to investigate complex dissociation 

mechanisms of 1-butanol and isobutanol involving isomerization of molecular ions.  These 

findings were used to explain the differences in the relative abundances of dissociation channels. 

Furthermore, fragment ions m/z = 33 and 43 in 1-butanol, and m/z = 31 and 41 in isobutanol, 

were not reported in earlier studies. 
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