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  Platinum-based anticancer drugs, such as cisplatin, carboplatin, and oxaliplatin, have 

been approved for clinical use worldwide for decades. Despite their enormous success, their 

widespread application is hindered by either cross-resistance or toxic side effects, including 

nephrotoxicity and neurotoxicity. The need to overcome these drawbacks has stimulated the 

search for new platinum-based drugs.  

 This dissertation will start with the accidental discovery of cisplatin, followed by an 

introduction of other platinum-based anticancer agents, including the action mechanism, general 

structures, and development history. Picoplatin is a newer generation of platinum-based 

anticancer agent. The bulky 2-methylpyridine as a non-leaving group on picoplatin could reduce 

the detoxification effect caused by thiol-containing species, such as glutathione and 

metallothionein, thus may grant picoplatin the ability to overcome cisplatin resistance. A 

convenient synthesis route for picoplatin derivatives has been developed. 11 new picoplatin 

derivatives have been designed by varying the bulkiness of the non-leaving amine group. All 

complexes have been characterized by different instrumentations, including MS, 1H NMR, 13C 

NMR, 195Pt NMR, HMQC, X-ray crystallography, and elemental analysis. Different bioassays, 

such as DNA binding, cell viability, and cellular accumulation, have been applied to evaluate 

their efficacy on cisplatin-sensitive ovarian cancer cell line A2780 and cisplatin-resistant ovarian 
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cancer cell line A2780cis. The newly designed picoplatin derivatives show comparable efficacy 

with that of picoplatin and less resistance compared with cisplatin. The study of picoplatin 

derivatives laid the foundation toward the research of bifunctional platinum-based anticancer 

agents by incorporating histone deacetylase (HDAC) inhibition. 

Histone acetyltransferase (HAT) and histone deacetylase (HDAC) are a pair of important 

enzymes in epigenetic regulation. They work in harmony to acetylate and deacetylate histone 

lysine residues, resulting in a more relaxed or more condensed chromatin structure, respectively. 

HDAC has been found to be overexpressed in some cancer cells. Since 2006, 5 HDAC inhibitors 

(HDACi) have entered clinical use for cancer treatment. 19 new HDACi with additional 

coordination sites on the phenyl cap have been designed, synthesized, and evaluated. A few of 

the new HDACi show comparable or even better HDAC inhibition than that of Vorinostat 

(SAHA, the first FDA approved HDACi). 

A logical design would involve the installation of HDACi on the platinum center as a 

non-leaving group ligand. When the bifunctional drug reaches the cancer cell, the synergistic 

effect could be maintained as the relaxed chromatin structure makes DNA more susceptible to be 

attacked by the platinum centers, thus increase the anticancer activity and possibly selectivity 

toward cancer cells. 6 Pt-HADCi conjugates have been designed and synthesized. Dual functions 

of the new Pt-HDACi have been confirmed by DNA electrophoresis assay and HDAC inhibition 

assay. One of the Pt-HDACi (CF-101) shows comparable cytotoxicity with cisplatin and less 

resistance, which could be used as the lead compound for further structural modification and in 

vivo studies.   
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 Platinum Anticancer Agents 

1.1 The Discovery of Cisplatin 

 Over 50 years ago, Dr. Barnett Rosenberg, a biophysicist at Michigan State University, 

was applying an electrical field to bacteria in order to investigate whether it could affect the cell 

division. Because platinum is inert and was thought to have no biological effect in the study, Dr. 

Rosenberg and his group added platinum electrodes in the growth chamber containing E. coli. 

Once the current was on, the E.coli stopped dividing and kept growing as very long filaments (up 

to 300 times long as normal length), which was quite abnormal. When the power/current was off, 

the E.coli began to divide again. They spent two years trying to understand why the electrical 

field had such a powerful effect on E. coli division. It turned out that this effect was not due to 

the electrical field but rather the compound formed with platinum that was released from the 

electrode that blocked cell division. Dr. Rosenberg and his team spent another two years to 

identify the active complex and later named it cisplatin.1 It turns out that cisplatin was originally 

synthesized by the Italian chemist Michele Peyrone in 1845 and named as Peyrone’s chloride.2,3 

Later, cisplatin was approved by the US Food and Drug Administration (FDA) for cancer 

treatment in 1978. It is the first metal-based anticancer reagent for worldwide clinical use. Before 

that time, all the chemicals for cancer treatment were either natural products or synthetic organic 

compounds. Since then, cisplatin became the gold standard for new metal-containing drug 

design.4,5 As of 2019, there are still close to 1,000 clinical trials involving cisplatin all over the 

world (Figure 1.1).6 
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Figure 1.1 NIH-registered clinical trials involving cisplatin as of 2019. The numbers only reflect 

those trials that are recruiting and active, not recruiting.6  
 
 
 

 The first rapid way to synthesize cisplatin was developed by S. C. Dhara in 1970 

(Scheme 1).7,8,9 K2PtCl4 was first converted to K2PtI4 in aqueous solution with an excess of KI. 

Two equivalents of ammonium hydroxide were added to the dark brown solution of K2PtI4 and 

yielded a yellow precipitate cis-[Pt(NH3)2I2]. Iodide ligands were then removed by 2 equiv 

AgNO3, yielding cis-[Pt(NH3)2(H2O)2]
2+. Finally, isometrically pure cisplatin was made by 

adding excess KCl. The key intermediate during the Dhara synthesis was K[Pt(NH3)I3]. The 

stronger trans effect of iodide with respect to chloride ensures that the next NH3 ligand would 

substitute the position trans to an iodide, which affords the cis isomer. Cisplatin can be purified 

by recrystallization in hot water containing either 0.1 M HCl or 0.9 % NaCl solution.10,11 The 

high chloride concentration helps to stabilize the cisplatin during the recrystallization process.  
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Scheme 1.1 Synthesis of cisplatin (Dhara method). 
 
 
 

1.2 Action Mechanism of Cisplatin 

Cisplatin has been widely used for different types of cancer treatment, including 

testicular, ovarian, cervical, breast, bladder, head and neck, esophageal, lung cancer, 

mesothelioma brain tumors, and neuroblastoma.12 It is administered intravenously to the patients 

as a short-term infusion in saline solution. Numerous experiments have been designed and 

conducted by scientists to study the cisplatin action mechanism. The general mechanism 

involves four key steps (Figure 1.2), including (i) cellular uptake, (ii) aquation/activation, (iii) 

DNA binding, and (iv) apoptosis.13 Once the cisplatin is administered to the bloodstream, it 

remains unchanged and neutral due to the high concentration of chloride (~ 100 mM).9 However, 

cisplatin is still susceptible to be attacked by plasma proteins, particularly those containing thiol 

groups, such as albumin, which lead to the deactivation of cisplatin, causing side effects 

including nephrotoxicity and neurotoxicity.4,9,14 There are two main pathways in the cellular 

uptake process, either by passive diffusion due to the concentration difference or active transport 

by membrane proteins, such as copper transporter proteins.15,16,17 The relative importance of 
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these two pathways remains to be determined.  Once cisplatin enters the cell, intracellular 

chloride concentration is decreased (below 20 mM) and chlorine ligands on cisplatin can be 

easily substituted by water molecules.18 This process is called aquation/activation. However, 

such activation is suppressed in the bloodstream due to the high chloride concentration. The 

positively charged Pt-water complex ion could be attracted to the negatively charged DNA, 

where the water molecules coordinated to the Pt center could be substituted by the most 

nucleophilic N7 position on guanine and adenine.19 The major DNA binding product is the 1,2-

d(GpG) intrastrand cross-link adduct (65%), which causes the distortion of DNA.20,21 If the cell 

cannot repair the damage, it will go apoptosis. One of the main mechanisms during the cell 

apoptosis from platinum treatment is the inhibition of RNA polymerases transcription past 

platinum lesions.22  

 

 

 

 

Figure 1.2 Action mechanism of cisplatin.13 
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However, some cancers are intrinsically resistant to cisplatin or acquire resistance during 

the treatment, either by the lowered uptake efficiency, increased detoxification in the cytoplasm, 

or resistance mediated after DNA binding.1,13 As cisplatin is a highly polar compound compared 

with other small molecule drugs, the uptake process is relatively slow and influenced by many 

other factors, like Na+ and K+ concentrations, and transporter expression. The resistance of 

cisplatin during the uptake process is mainly due to the low uptake efficiency rather than 

increased cisplatin efflux, which is a common resistance mechanism for most natural product-

based drugs.15 It has been reported that downregulation of membrane transporters is one of the 

reasons.1  However, the detailed molecular mechanism involved in the cisplatin uptake is still 

poorly understood. Another reason for cisplatin resistance is the increased detoxification caused 

by the raised concentration of thiol-containing species in the cytoplasm of cancer cells, such as 

glutathione and metallothioneins. Because cisplatin is easier to bind to sulfur-containing species, 

the resulting conjugation is more readily exported from the cancer cells.23–25 After the platinum-

DNA adducts are formed, cells can survive by either through increased DNA repair or tolerance 

mechanism. Many cisplatin-resistant cancer cell lines have shown increased DNA repair capacity 

compared to the sensitive cell lines, like testicular cancer. The major DNA repair pathway 

involved in the removal of platinum-DNA lesions is nucleotide excision repair.26 The increased 

tolerance could also come from the loss of DNA mismatch repair,27,28 bypass of DNA adducts, 

29,30 or decreased apoptosis.31 

1.3 General Structure of Platinum Anticancer Agents 

Although cisplatin is a very effective anticancer drug, it is highly toxic to kidneys 

(nephrotoxicity),1,32 which have driven chemists and biologists to make safer platinum agents to 

overcome the toxicity and the cisplatin resistance. In designing new platinum-based anticancer 
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agents, there are a few moieties that could be modified (Figure 1.3).8  Typically, there are three 

different types of ligands (L, R, and X) that could be incorporated onto the coordination 

environment of the Pt core. Ligands L, the “non-leaving group” ligands which typically contain 

nitrogen donors, bind to platinum tightly and stay unchanged in the final platinum-DNA adducts. 

 

 

 

 

Figure 1.3 General structure of platinum anticancer agents.8 
 
 
 

Modification of the L ligands would affect the nature of the platinum-DNA adducts, therefore 

changing the resistance profile.33–35 The leaving group ligands X, commonly halides and 

carboxylates, are labile and could be replaced through ligand substitution. Modification of 

ligands X can change the aquation/activation kinetics and therefore changing toxicity profile.36 

The axial ligands R only present in tetravalent platinum complexes and will dissociate after 

biological reduction. They could be used for tumor targeting by incorporating a functional R 

group aiming for specific cancer cells. Any modification of these three types of ligands will 

cause the change of lipophilicity and solubility, and both of these properties are very important in 



21 

 

terms of drug design.  Ongoing research mainly focuses on reducing the toxic side effects of 

cisplatin, combating the drug resistance by modifying the ligands or improving the delivery 

technique.  

1.4 Clinically Approved Platinum Anticancer Agents  

Since the discovery of the first platinum drug cisplatin, another six platinum drugs 

(Figure 1.4) have been approved for clinical use in the USA and other countries. Carboplatin, as 

the second-generation Pt-based drug, was approved by FDA in 1989 and primarily used to treat 

ovarian cancer. 12,37 It contains the same non-leaving group as cisplatin, but a different leaving 

group. The bidentate 1,1-cyclobutanedicarboxylate ligand that binds to Pt is tighter due to the 

chelation effect, resulted in a much slower aquation/activation rate compared with cisplatin.38,39 

Because of the slower activation rate, carboplatin is much more gentle to off-target biological 

nucleophiles and thus has a lower toxicity profile. 40,41 Therefore, carboplatin can be 

administered at a higher dosage than cisplatin. Although carboplatin is less toxic than cisplatin, it 

exhibits the same cross-resistance to cisplatin since they share the same non-leaving group, 

which results in the same platinum DNA-adducts as cisplatin.42,43  

Oxaliplatin mainly used for colorectal cancer treatment, is the third generation of 

platinum-based anticancer drugs and gained FDA approval in 2002.12,37 Like carboplatin, 

oxaliplatin has a chelating ligand (oxalate) as the leaving group, which are less susceptible to 

aquation. However, it has a different non-leaving group (1R,2R-diaminocyclohexane), which 

shows different sensitivity to cancer cell lines compared to cisplatin and carboplatin.42 The 

accumulation of oxaliplatin seems to be less dependent on copper transporters, but more on 

organic cation transporters, which are normally overexpressed in colon cancer.44,45 Oxaliplatin is 

the first clinically approved platinum drug that can overcome cisplatin resistance.  
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Figure 1.4 The family tree of platinum anticancer agents. 
 

 

 

Nedaplatin is a second-generation analog that shares the same non-leaving group as 

cisplatin and carboplatin, but has a different chelating leaving group (glycolate) compared to 

carboplatin. The glycolate contributes to nedaplatin’s higher water solubility than cisplatin and 

lower nephrotoxicity than cisplatin and carboplatin.46 Nedaplatin was approved in Japan in 1995 

and was primarily used for small cell lung cancer and non-small cell lung cancer.12,37   
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Heptaplatin, approved by South Korea in 1999, is used for gastric cancer treatment.12,37 It 

possesses malonate as a chelating leaving group and bidentate 2-(1-methylethyl)-1,3-dioxolane-

4,5-dimethanamine as the non-leaving group. The advantage of heptaplatin is the lower toxic 

side effects.47 

Lobaplatin, approved by China in 2003,  is used for chronic myelogenous leukemia, 

breast cancer, and small cell lung cancer.12,13,37 It has an S-lactate as the leaving group and a R, R 

and S, S racemic mixture as the non-leaving group ligand. Therefore, lobaplatin is a mixture of 

diastereomers.48 

Miriplatin, approved by Japan in 2009, is used for hepatocellular carcinoma. It has the 

same non-leaving group as oxaliplatin and contains myristates as the leaving group, which makes 

miriplatin a lipophilic complex. It can be easily suspended in ethyl esters of iodized fatty acids. 

The advantage of miriplatin suspension is the reduced toxicities in normal liver and the whole 

body.49 

There are a few platinum anticancer agents that have entered clinical trials but not 

approved yet, such as satraplatin (an orally active prodrug),50 picoplatin (overcome cisplatin 

resistance),51 prolindac (AP5346, water-soluble biocompatible polymer for advanced delivery),52 

and et al. Detailed discussion about picoplatin will be included in Chapter 2. 
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 Picoplatin Derivatives 

2.1 Introduction 

Numerous  studies have indicated that the platinum detoxification by thiol-containing 

species, such as glutathione and metallothionein, is one of the main reasons for cisplatin 

resistance.23–25 The rationality of the design for a platinum drug containing a bulky ligand is that 

the bulky ligand could reduce the possibility of platinum binding to thiols which led to the 

invention of picoplatin (cis-aminodichloro(2-methylpyridine) platinum (II)).51,53–55 

 

 

 

 

Figure 2.1 Crystal structure of picoplatin.  
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As shown in Figure 2.1, picoplatin contains a 2-methylpyridine (2-picoline) as one of the 

non-leaving groups. The pyridine ring is approximately perpendicular to the square planar 

coordination plane of platinum, leaving the methyl group on 2-picoline pointing to the axial 

position of the platinum. This provides the steric hindrance that prevents the thiols from 

attacking the platinum, therefore reducing the drug detoxification. Picoplatin was shown to be 

less reactive to thiol-containing species than cisplatin and also exhibited a slower aquation rate 

than cisplatin.56,57 The steric methyl group on the pyridine ring significantly affects the 

substitution kinetics of the picoplatin complex.  

 Picoplatin initially came from the collaboration between the Institute of Cancer and 

Johnson Matthey/AnorMed.53 Preclinical studies have shown that picoplatin has antitumor 

properties in cisplatin-resistant ovarian cancer cells and lung cancer cell lines.58 Studies have 

shown that cisplatin sensitive ovarian cancer cells (A2780) that were transfected to overexpress 

metallothionein has around 7-fold higher resistance to cisplatin, whereas there is no appreciable 

resistance to picoplatin.59 Picoplatin also retains anticancer activity in cells with overexpressed 

drug resistance proteins and cell lines possessing acquired resistance to oxaliplatin.60–62 A phase I 

clinical trial study of picoplatin started in 1997 and the drug was well tolerated with neutropenia 

as the common side effect.37 In a phase II clinical trial study, picoplatin was evaluated against 

platinum pretreated ovarian cancers and small cell lung cancers.63–65 In a phase III trial study 

launched in 2007 with 399 participants, picoplatin was used as a second-line treatment for small 

cell lung cancer, sponsored by Poniard Pharmaceuticals.55 There are also other clinical trial 

studies involving picoplatin as a treatment for different types of cancer.  

 Picoplatin with potent activity toward cancer cells and advantage over cisplatin-resistance 

cancer cells due to its steric feature presented us great potential to further fine-tune its structural 
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properties. Thus, we set our goal to synthesize families of picoplatin derivatives by varying the 

bulkiness of the non-leaving amine group. In this chapter, synthesis, characterization and various 

bioassay studies of picoplatin derivatives will be described in detail, followed by results and 

discussion.  

2.2 Preparation of Picoplatin Derivatives  

General procedures. The synthesis was conducted in a regular wet-lab setting in the 

Chemistry Department, University of the Pacific. All reagents were purchased from commercial 

vendors and used without further purification. NMR spectra were recorded using a JEOL 600 MHz 

spectrometer. 1H NMR data are reported as follows: chemical shift in ppm relative to the residual 

solvent peaks, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet,  m = 

multiplet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, br = broad 

signal). MS spectra were recorded using JEOL DART/ESI-AccuTOF spectrometer, Varian 320 

ESI-MS spectrometer or Thermal ESI-LTQ MS spectrometer. Elemental analysis was performed 

by Atlantic Microlab, Inc. X-ray structures were collected on Beamline 11.3.1 at the Advanced 

Light Source, Lawrence Berkeley National Lab using monochromatic radiation (λ = 0.7749 Å)       

              

 

 

 

Scheme 2.1 Synthesis of Picoplatin.  
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Scheme 2.2 Synthesis of picoplatin derivatives. 

 

 

 

A rapid way to synthesize picoplatin was developed in our lab by modifying the methods in 

literature66 and patent.67,68  The synthesis scheme was shown in Scheme 2.1. The key 

intermediate K[PtCl3(2-picoline)] (TCPP) was synthesized in anhydrous N-methyl-2-pyrrolidone 

(NMP) and further purified from anhydrous dimethylformamide (DMF). The yield of TCPP 

could reach 90%. The crystal structure is given in Appendix D. The bulky methyl group on the 

pyridine ring is crucial to the formation of the monosubstituted Pt intermediate. Picoplatin was 

then directly synthesized from TCPP in water by adding ammonium hydroxide without adding 

any other buffer. The purification process is quite straightforward without any use of 

chromatography. Using TCPP as the key intermediate, more than 10 picoplatin derivatives have 

been successfully synthesized and isolated (Scheme 2.2). They all secured 2-picoline as one non-

leaving group and another non-leaving group, including primary amines, secondary amines, 

cycloalkyl amines, cyclic amines, pyridine, and benzylamine (Figure 2.2). According to the trans 
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effect theory, all derivatives should have a cis configuration, which was confirmed in most of the 

derivatives by X-ray crystallography (Appendix D). 

 

 

 

 

Figure 2.2 Summary of picoplatin derivatives. 



29 

 

K[PtCl3(2-picoline)] (TCPP). To a mixture of potassium tetrachloroplatinate (II) fine powder, 

K2PtCl4 (1.0 g, 2.41 mmol, 1.0 equiv) in anhydrous NMP (6 mL) was added a solution of 2-picoline 

(261 µL, 0.464 mmol, 1.1 equiv) in 1 mL NMP at a rate of 20% every 20 min. The reaction was 

stirred at 65 °C for around 2 h after the complete addition of 2-picopline and stopped after all 

K2PtCl4 has dissolved. Byproduct KCl and a trace amount of unreacted K2PtCl4 are removed by 

vacuum filtration. Dichloromethane (DCM) was added to the filtrate to precipitate/crush out the 

product as a yellow solid. After the solids settled down, the supernatant was decanted, and the 

process was repeated three times to help to remove most NMP solvent. The solid was collected 

via vacuum filtration and washed with DCM, which was then dried overnight. The crude product 

was further purified by dissolving it in anhydrous DMF (~3-5 mL) and insoluble salts were 

removed by filtration. DCM was then added to the filtrate to induce product formation. After the 

solids settled down, the supernatant was decanted, and the process was repeated three times to help 

to remove most DMF solvent. The solid was collected via vacuum filtration and washed with DCM, 

which was then dried overnight to afford a yellow solid (0.94g, yield: 90%). 1H NMR (600 MHz, 

D2O): δ 8.82 (dd, J = 6.0, 1.1 Hz, 1H), 7.72 (td, J = 7.8, 1.6 Hz, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.26 

(t, J = 6.7 Hz, 1H), 3.18 (s, 3H). 13C NMR (151 MHz, D2O): δ 161.41, 153.56, 139.00, 126.97, 

123.55, 26.02. 195Pt NMR (129 MHz, D2O): δ 1781.63. ESI-MS: m/z value of the most abundant 

isotope peak of C6H7Cl3NPt, [M]- calcd 393.9267, found 393.9. Crystals were obtained by vapor 

diffusion crystallization set-up with ether diffusing into a methanol solution.  

PtCl2(2-picoline)(NH3) (Pt-1, picoplatin). To a solution of TCPP (120 mg, 0.277 mmol, 1.0 

equiv) in H2O (1 mL) was added 6 M NH4OH (231µL, 1.38 mmol, 5.0 equiv) and stirred at 45 °C 

in dark. A light-yellow solid started to precipitate out after 10 min. The light-yellow solid was 

collected via vacuum filtration after 1 h of stirring and washed with cold water and acetone. The 
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final product was dried under vacuum overnight (43.6 mg, yield: 42%). 1H NMR (600 MHz, DMF-

d7) δ 9.05 (d, J = 5.7 Hz, 1H), 7.88 (t, J = 7.7 Hz, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.35 (t, J = 6.6 Hz, 

1H), 4.41 (s, 2H), 3.18 (s, 3H). 13C NMR (151 MHz, DMF-d7): δ 162.84, 155.27, 139.13, 127.31, 

123,91, 26.82. 195Pt NMR (129 MHz, DMF-d7): δ -2042.86. ESI-AccuTOF MS: m/z value of the 

most abundant isotope peak of C6H10Cl2N2PtNa, [M+Na]+ calcd 398.9747, found 398.9662. 

Crystals were obtained by vapor diffusion crystallization set-up using MeOH and ether.  

PtCl2(2-picoline)( (CH3)2NH) (Pt-2). To a solution of TCPP (100 mg, 0.23 mmol, 1.0 

equiv) in H2O (1 mL) was added dimethylamine with a mass percentage of 40% in water 

(87.6µL, 0.69 mmol, 3.0 equiv) and stirred at 45 °C in dark for 1 h. A light-yellow solid that 

formed was collected via vacuum filtration and washed with cold water, acetone and DCM. The 

product was dried under vacuum overnight (37 mg, yield: 40 %). 1H NMR (600 MHz, DMF-d7) 

δ 9.16 (d, J = 5.6 Hz, 1H), 7.93 (t, J = 7.5 Hz, 1H), 7.63 (d, J = 7.7 Hz, 1H), 7.42 (t, J = 6.5 Hz, 

1H), 5.89 (s, 1H), 3.21 (s, 3H), 2.60 (d, J = 5.7 Hz, 3H), 2.54 (d, J = 5.7 Hz, 3H). 13C NMR (151 

MHz, DMF-d7): δ 162.71, 154.97, 139.48, 127.79, 124.44, 44.29, 44.19, 26.91. 195Pt NMR (129 

MHz, DMF-d7): δ -2088.57. ESI-AccuTOF MS: m/z value of the most abundant isotope peak of 

C8H14Cl2N2PtNa, [M+Na]+ calcd 427.0061, found 427.0079. Anal. calcd for C8H14Cl2N2Pt: C, 

23.77; H, 3.49; N, 6.93%. Found: C, 23.92; H, 3.45; N, 6.69%.  Crystals were obtained by slow 

evaporation of a saturated DMF solution. 

PtCl2(2-picoline)( (CH3)2CHNH2) (Pt-3). Following the same synthesis procedure as Pt-2, 

the reaction afforded a light-yellow solid (yield: 20 %). 1H NMR (600 MHz, DMF-d7) δ 9.05 (d, J 

= 5.8 Hz, 1H), 7.89 (td, J = 7.7, 1.2 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.38 (t, J = 6.7 Hz, 1H), 3.18 

(s, 3H), 3.12 (m, 1H), 1.33 (d, J = 6.5 Hz, 3H), 1.26 (d, J = 6.5 Hz, 3H). 13C NMR (151 MHz, 

DMF-d7): δ 162.87, 155.21, 139.24, 127.54, 124.16, 48.65, 26.84, 23.65, 23.45. 195Pt NMR (129 
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MHz, DMF-d7): δ -2101.25. ESI-AccuTOF MS: m/z value of the most abundant isotope peak of 

C9H16Cl2N2PtNa, [M+Na]+ calcd 427.0218, found 441.0277. Anal. calcd for C9H16Cl2N2Pt: C, 

25.85; H, 3.86; N, 6.70%. Found: C, 26.08; H, 3.72; N, 6.64%.  Crystals were obtained by vapor 

diffusion crystallization set-up using MeOH and ether.   

PtCl2(2-picoline)(cyclopropylamine) (Pt-4). To a solution of TCPP (125 mg, 0.288 mmol, 

1.0 equiv) in anhydrous DMF (3 mL) was added cyclopropylamine (16.5 mg, 20.0 µL, 0.288 

mmol, 1.0 equiv). The resulting mixture was stirred at 65 °C for 20 h. An insoluble byproduct 

was removed by filtration and DMF in the filtrate was removed under reduced pressure (40-

45 °C, 125 rpm). The residual was then dissolved in acetone (0.5mL), filtered and purified by 

preparative alumina TLC (DCM/Acetone =3/1). The gel band containing the product was 

scratched off, dissolved in acetone, filtered, concentrated to dryness, and triturated twice with 

Et2O. A light-yellow product was collected via centrifugation, and dried under vacuum overnight 

(23 mg, yield: 19 %). 1H NMR (600 MHz, DMF-d7) δ 9.14 (d, J = 5.8 Hz, 1H), 7.90 (td, J = 7.8, 

1.4 Hz, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.39 (t, J = 6.6 Hz, 1H), 5.17 (s, 2H), 3.23 (s, 3H), 2.37 – 

2.31 (m, 1H), 0.50 – 0.46 (m, 2H), 0.45 – 0.41 (m, 2H). 13C NMR (151 MHz, DMF-d7): δ 

162.87, 155.42, 139.28, 127.41, 123,98, 30.76, 26.94, 6.80, 6.78. 195Pt NMR (129 MHz, DMF-

d7): δ -2084.60. ESI-AccuTOF MS: m/z value of the most abundant isotope peak of 

C9H14Cl2N2PtNa, [M+Na]+ calcd 439.0061, found 439.0069. Anal. calcd for C9H14Cl2N2Pt: C, 

25.97; H, 3.39; N, 6.73%. Found: C, 26.17; H, 3.27; N, 6.75%.  Crystals of the final product 

were obtained by slow evaporation of a saturated DMF solution.  

PtCl2(2-picoline)(cyclobutylamine) (Pt-5). Following the same synthesis procedure as Pt-4, 

the reaction led to a light-yellow solid as the final product (yield: 20 %).  1H NMR (600 MHz, 

DMF-d7) δ 9.05 (d, J = 5.3 Hz, 1H), 7.90 (t, J = 7.7 Hz, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.39 (t, J = 
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6.6 Hz, 1H), 5.32 (d, J = 49.5 Hz, 2H), 3.46 – 3.38 (m, 1H), 3.19 (s, 3H), 2.16 (m, 2H), 1.97 (m, 

2H), 1.55 (m, 2H). 13C NMR (151 MHz, DMF-d7): δ 162.86, 155.34, 139.26, 127.49, 124.11, 

52.74, 30.88, 30.81, 26.94, 14.38. 195Pt NMR (129 MHz, DMF-d7): δ -2104.26. ESI-AccuTOF 

MS: m/z value of the most abundant isotope peak of C10H16Cl2N2PtNa, [M+Na]+ calcd 453.0218, 

found 453.0271. Anal. calcd for C10H16Cl2N2Pt: C, 27.92; H, 3.75; N, 6.51%. Found: C, 28.05; 

H, 3.78; N, 6.30%.  Crystals were obtained by vapor diffusion crystallization set-up using DCM 

and ether. 

PtCl2(2-picoline)(cyclopentylamine) (Pt-6). A light-yellow solid (yield: 14 %) as the 

product was obtained by following the same synthesis procedure as Pt-4.  1H NMR (600 MHz, 

DMF-d7) δ 9.07 (d, J = 5.1 Hz, 1H), 7.89 (t, J = 7.4 Hz, 1H), 7.58 (d, J = 7.5 Hz, 1H), 7.39 (t, J = 

6.1 Hz, 1H), 5.12 (s, 2H), 3.26 (m, 1H), 3.20 (s, 3H), 2.08 (m, 1H), 1.98 (m, 1H), 1.65 (m, 4H), 

1.49 (m, 2H). 13C NMR (151 MHz, DMF-d7): δ 162.86, 155.21, 139.22, 127.50, 124.10, 58.64, 

34.03, 33.99, 26.87, 24.70, 24.62. 195Pt NMR (129 MHz, DMF-d7): δ -2099.05. ESI-AccuTOF 

MS: m/z value of the most abundant isotope peak of C11H18Cl2N2PtNa, [M+Na]+ calcd 467.0375, 

found 467.0442. Anal. calcd for C11H18Cl2N2Pt: C, 29.74; H, 4.08; N, 6.31%. Found: C, 29.85; 

H, 3.93; N, 6.31%.  Crystals were obtained by vapor diffusion crystallization set-up using DCM 

and ether. 

PtCl2(2-picoline)(cyclohexylamine) (Pt-7). The same synthesis procedure as Pt-4 was 

applied, led to the formation of a light-yellow solid, which was further purified by preparative 

alumina TLC (DCM/EtOAc =1/1). (yield: 23 %). 1H NMR (600 MHz, DMF-d7) δ 9.05 (d, J = 

5.2 Hz, 1H), 7.88 (t, J = 7.4 Hz, 1H), 7.57 (d, J = 7.7 Hz, 1H), 7.38 (t, J = 6.3 Hz, 1H), 5.07 (s, 

2H), 3.18 (s, 3H), 2.72 (m, 1H), 2.52 m, 1H), 2.26 (d, J = 11.2 Hz, 1H), 1.72 (m, 1H), 1.67 (d, J 

= 12.8 Hz, 1H), 1.54 (d, J = 12.3 Hz, 1H), 1.30 – 1.16 (m, 4H), 1.03 (m, 1H). 13C NMR (151 
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MHz, DMF-d7): δ 162.85, 155.27, 139.18, 127.49, 124.11, 55.74, 34.53, 34.32, 26.82, 26.31, 

25.91, 25.84. 195Pt NMR (129 MHz, DMF-d7): δ -2093.93. ESI-AccuTOF MS: m/z value of the 

most abundant isotope peak of C12H20Cl2N2PtNa, [M+Na]+ calcd 481.0532, found 481.0679. 

Anal. calcd for C12H20Cl2N2Pt (0.5 H2O): C, 30.82; H, 4.53; N, 6.00%. Found: C, 31.02; H, 4.60; 

N, 5.89%.  Crystals were obtained by vapor diffusion crystallization set-up using DCM and 

ether. 

PtCl2(2-picoline)(azetidine) (Pt-8). To a solution of TCPP (150 mg, 0.346 mmol, 1.0 

equiv) in anhydrous DMF (3 mL) was added azetidine (19.7 mg, 23.3 µL, 0. 346mmol, 1.0 

equiv), and the resulting solution was stirred at 65 °C for 20 h. The insoluble byproducts were 

removed by filtration. DMF in the filtrate was concentrated under reduced pressure (40-45 °C, 

125 rpm) until only ~0.5 mL was left. The residual was triturated twice with H2O (2.0 mL), 

decanted, and lyophilized to remove water. The crude product was washed with EtOAc (~1 mL) 

and Et2O (5 mL) twice, collected via centrifugation, and dried under vacuum overnight to afford 

a light-yellow solid (26 mg, yield: 18 %). 1H NMR (600 MHz, DMF-d7) δ 9.08 (d, J = 5.4 Hz, 

1H), 7.93 (t, J = 7.6 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 6.6 Hz, 1H), 6.84 (br, 1H), 

3.93 (m, 1H), 3.78 (m, 1H), 3.56 – 3.47 (m, 2H), 3.14 (s, 3H), 2.52 (m, 1H), 2.08 (m, 1H). 13C 

NMR (151 MHz, DMF-d7): δ 162.43, 155.02, 139.45, 127.65, 124.38, 53.93, 53.65, 26.84, 22.56 

. 195Pt NMR (129 MHz, DMF-d7): δ -2139.23. ESI-AccuTOF MS: m/z value of the most 

abundant isotope peak of C9H14Cl2N2PtNa, [M+Na]+ calcd 439.0061, found 438.9988. Anal. 

calcd for C9H14Cl2N2Pt: C, 25.97; H, 3.39; N, 6.73%. Found: C, 26.13; H, 3.40; N, 6.51%.  

Crystals were obtained by vapor diffusion crystallization set-up using DCM and ether. 

PtCl2(2-picoline)( pyrrolidine) (Pt-9). Following the same synthesis procedure as Pt-8, the 

reaction led to the formation of a light-yellow crude product, which was purified by preparative 
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silica TLC (DCM/MeOH =20/1). The gel band containing the product was scratched off, 

dissolved in anhydrous DMF, filtered, and concentrated to ~0.5 mL. EtOAc was added to 

precipitate/crush out the final light-yellow product, which was then collected via centrifugation, 

washed with Et2O, and dried under vacuum overnight (yield: 31 %). 1H NMR (600 MHz, DMF-

d7) δ 9.13 (d, J = 5.5 Hz, 1H), 7.91 (t, J = 7.6 Hz, 1H), 7.61 (d, J = 7.7 Hz, 1H), 7.40 (t, J = 6.4 

Hz, 1H), 5.89 (br, 1H), 3.21 (s, 3H), 3.18 (m, 2H), 3.04 (m, 1H), 2.83 (m, 1H), 1.66 (m, 4H). 13C 

NMR (151 MHz, DMF-d7): δ 162.64, 155.05, 139.35, 127.63, 124.36, 52.94, 52.85, 27.02, 

24.22, 24.17(shown in HMQC spectrum). 195Pt NMR (129 MHz, DMF-d7): δ -2095.61. ESI-

AccuTOF MS: m/z value of the most abundant isotope peak of C10H16Cl2N2PtNa, [M+Na]+ calcd 

453.0218, found 453.0123. Anal. calcd for C10H16Cl2N2Pt: C, 27.92; H, 3.75; N, 6.51%. Found: 

C, 28.00; H, 3.57; N, 6.46%.  Crystals were obtained by vapor diffusion crystallization set-up 

(DCM/Ether). 

PtCl2(2-picoline)( piperidine) (Pt-10). Following the same synthesis procedure as Pt-8,   

Pt-10 was obtained as a light-yellow solid (yield: 35%). 1H NMR (600 MHz, DMF-d7) δ 9.12 (d, 

J = 5.3 Hz, 1H), 7.91 (t, J = 7.5 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 6.3 Hz, 1H), 5.60 

(br, 1H), 3.41 – 3.31 (m, 2H), 3.20 (s, 3H), 3.02 (m, 1H), 2.82 (m, 1H), 1.65 (m, 2H), 1.56 (m, 

1H), 1.47 (m, 2H), 1.33 (m, 1H). 13C NMR (151 MHz, DMF-d7): δ 162.73, 154.91, 139.32, 

127.67, 124.37, 54.17, 54.06, 26.98, 26.94, 26.81, 24.33. 195Pt NMR (129 MHz, DMF-d7): δ -

2122.03. ESI-AccuTOF MS: m/z value of the most abundant isotope peak of C11H18Cl2N2PtNa, 

[M+Na]+ calcd 467.0375, found 467.0235. Anal. calcd for C11H18Cl2N2Pt: C, 29.74; H, 4.08; N, 

6.31%. Found: C, 30.16; H, 4.19; N, 6.13%.  Crystals were obtained by vapor diffusion 

crystallization set-up using MeOH and ether. 
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PtCl2(2-picoline)( pyridine) (Pt-11). Using the same synthesis procedure as Pt-9, a light-

yellow solid was obtained (yield: 18%). 1H NMR (600 MHz, DMF-d7) δ 9.22 (d, J = 5.4 Hz, 

1H), 8.92 (d, J = 5.4 Hz, 2H), 8.04 (t, J = 7.7 Hz, 1H), 7.93 (t, J = 7.4 Hz, 1H), 7.60 (d, J = 7.8 

Hz, 1H), 7.57-7.53 (m, 2H), 7.43 (t, J = 6.6 Hz, 1H), 3.19 (s, 3H). 13C NMR (151 MHz, DMF-

d7): δ 162.32, 154.46, 153.96 (2), 140.14, 139.95, 128.03, 127.53 (2), 124.76, 26.46. 195Pt NMR 

(129 MHz, DMF-d7): δ -1979.29. ESI-AccuTOF MS: m/z value of the most abundant isotope 

peak of C11H12Cl2N2PtNa, [M+Na]+ calcd 460.9905, found 460.9798. Anal. calcd for 

C11H12Cl2N2Pt: C, 30.15; H, 2.76; N, 6.39%. Found: C, 29.88; H, 2.63; N, 6.10%.  Crystals were 

obtained by vapor diffusion crystallization set-up using MeOH and hexanes.  

PtCl2(2-picoline)( benzylamine) (Pt-12). The same synthesis procedure as Pt-8 was applied 

to afford a light-yellow crude product (yield: 26%). 1H NMR (600 MHz, DMF-d7) δ 8.59 (d, J = 

5.7 Hz, 1H), 7.83 (t, J = 7.6 Hz, 1H), 7.50 (m, 3H), 7.37 (m, 3H), 7.23 (t, J = 6.5 Hz, 1H), 5.57 

(d, J = 41.6 Hz, 2H), 3.97 (m, 1H), 3.90 (m, 1H), 3.05 (s, 3H). 13C NMR (151 MHz, DMF-d7): δ 

162.76, 154.81, 139.29, 139.05, 130.15, 129.39, 128.67, 127.30, 123.82, 50.80, 26.70. (The 13C 

peak signals between 127.30 and 130.15 ppm represent 6 aromatic 13C, shown in HMQC NMR 

spectrum) 195Pt NMR (129 MHz, DMF-d7): δ -2095.60. ESI-AccuTOF MS: m/z value of the 

most abundant isotope peak of C13H16Cl2N2PtNa, [M+Na]+ calcd 489.0219, found 489.0150. 

Anal. calcd for C13H16Cl2N2Pt: C, 33.49; H, 3.46; N, 6.01%. Found: C, 33.76; H, 3.52; N, 5.83%.  

Crystals were obtained by vapor diffusion crystallization set-up using a solvent pair of EtOH and 

cyclohexane. 

2.3 Bioassay Protocols 

2.3.1 DNA binding assay. DNA binding study was performed at Dr. Liang Xue’s lab in 

the Chemistry Department, University of the Pacific. The complex was dissolved in DI water 
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(200 µM) and stirred for 2 h at rt in a darkroom. The complex (20 µM) was then incubated with 

phosphate buffer (10 µM, pH = 6) and single-strand DNA (5' TCTCCTTCTGGTCTCTTCTC 3', 

10 µM) at 37 °C for 5 hrs. Water was removed by lyophilization. The resulting sample was then 

dissolved in 30% glycerol (20 µL volume, 20 mM concentration) and loaded (5 µL) on a 22.5% 

of polyacrylamide gel (200 V for 25 h). SYBR green II was used as a stain solution. The staining 

time was 30-40 min. The gel was destained in deionized water (DI) for 1 min and scanned at 450 

nm. 

2.3.2 Cell viability assay. Cell viability study was performed in the School of Pharmacy, 

University of the Pacific in collaboration with Dr. Xin Guo’s lab. Two cell lines, ovarian cancer 

cell line A2780 (cisplatin sensitive) and A2780cis (cisplatin-resistant), were purchased from 

Sigma Aldrich and used as the screening cell lines. They have shown different morphologies, 

with round shape morphology for A2780 and fibroblastic morphology for A2780cis (Appendix 

E). The cells were seeded (10,000) and cultured for 12 h on 96-well plates (UltraCruz® Tissue 

Culture Plate, catalog: sc-204447). The cell medium is RPMI-1640 with 2 mM Glutamine and 

10% Foetal Bovine Serum (FBS). After the test compounds were dosed, the incubation (5% 

CO2, 95% humidity, 37°C) of cells was continued for 72 h. Blank and solvent controls were 

incubated under the same conditions. MTS assay purchased from Promega was used to quantify 

viable cells which are capable to reduce the tetrazolium compounds into a colored formazan 

product.69 The incubation time is 3 h and then the absorbance at 490 nm was recorded using a 

96-well plate reader. The data was processed using GraphPad Prism 7. To maintain the cisplatin 

resistance of A2780cis, cisplatin as a 1 µM solution in the same medium was added every 2 

passages.70,71 

 

https://www.sigmaaldrich.com/catalog/product/sigma/r0883
https://www.sigmaaldrich.com/catalog/product/sigma/G7513
https://www.sigmaaldrich.com/catalog/product/sigma/F2442
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2.3.3 Cellular accumulation assay. The cellular uptake study of platinum complexes 

was conducted using a Thermal ICP-OES instrument (iCAP 6000 series) in our lab at the 

Chemistry Department, University of the Pacific. Standard calibration curve of Pt in the same 

nitric acid matrix as the sample, measured at 214.4 nm using a series of dilutions from 1000 ppm 

stock solution in 5% nitric acid was obtained before the sample measurement. A2780 and 

A2780cis were cultured at the School of Pharmacy and 106 cells were seeded in 6-wells tissue 

culture plates (UltraCruz® Tissue Culture Plate, catalog: sc-204443) with 2 mL cell culture (5% 

CO2, 95% humidity, 37°C). The culture was removed after 24 h and replaced by new cell culture 

with a 10µM platinum compound and continue to incubate for 24 h. The cell culture was 

removed using a pipette and washed three times with phosphate-buffered saline (PBS buffer, 2 

mL each wash). Parallel experiments under the same condition except adding platinum 

compounds were used for cell counting. Concentrated HNO3 (70%, 1 mL/well) was used to 

digest the samples. After 2 h, the digested sample was diluted 10 times using DI (0.6 mL to 5.4 

mL DI), which was then injected to ICP-OES directly. Wells without cell seeding was used as 

the blank control. Three independent replicates were conducted for every experiment. After 

subtracting the values from the blank control, the platinum content was quantified to nanogram 

Pt per 106 cells.72,73  

2.4 Results and Discussion 

2.4.1 DNA binding study. Since DNA is the biological target of platinum-based 

anticancer agents and 1,2-d(GpG) intrastrand cross-link adduct is the main product. A single 

strand 20mer DNA with two adjacent guanines in the middle (5' TCTCCTTCTGGTCTCTTCTC 

3')74 as the binding site was selected and prepared by Dr. Liang Xue’s lab for initial screening.   
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Figure 2.3 DNA gel electrophoresis of picoplatin derivatives. 
 
 
 

 In the DNA gel electrophoresis graph of Figure 2.3, the bottom darker spot is the pure 

DNA and the top spot is the Pt-DNA adduct, which has been confirmed by mass spectrometry 

(Appendix E). Since the molecular weight of Pt-DNA adduct formed with each picoplatin 

derivative is quite close to that of cisplatin, the separation difference of all Pt-DNA adducts is 

negligibly small like cisplatin, thus all the Pt-DNA adducts were aligned in the gel 

electrophoresis. Quantitative study with three runs for each complex has been conducted 

(Appendix E) and the summary is shown in Figure 2.4. Not surprisingly, cisplatin is still the 

most efficient one in terms of binding yield. Complexes Pt-4, Pt-5, and Pt-6 showed comparable 

binding efficiency with Pt-1 (picoplatin). In order to further exam these complexes, a cell 

viability study was performed. 
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Figure 2.4 The DNA binding yield of picoplatin derivatives. (confidence interval: 95%, p<0.01) 
 
 
 

2.4.2 Cell viability study. Before performing the cell viability study, the toxicity of the 

formulation solvent needed to be evaluated. Dimethyl sulfoxide (DMSO) is the most commonly 

used formulation solvent in cell viability studies. However, it does not work for platinum-

containing agents as the nucleophilic sulfur atom on the DMSO will bind to platinum and 

deactivate the complex.75 As initiated by other researchers, DMF was applied to formulate our 

platinum compound. Different amount of DMF have been used in the literature, ranging from 

0.1% to 1.0% by volume.70,71, 76–78 Initially, 1% DMF was chosen, however, most of the cells 

died before adding any of the platinum complexes. A detailed study was performed to evaluate 

the percentage of DMF by volume toxicity effect on cell viability, shown in Figure 2.5. The 

figure demonstrated that DMF at higher concentration does possess higher toxicity toward cells. 

In order to reduce solvent toxicity but at the same time formulate/dissolve the platinum complex, 

0.25 % DMF was chosen in the following studies.   
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Figure 2.5 DMF % by volume effect on cell viability study of A2780 and A2780cis. 
 
 
 

 Preliminary cell viability screening of picoplatin derivatives in A2780 and A2780cis cell 

lines was performed at two different concentrations of 5 µM, and 20 µM (Figure 2.6). It is very 

clear that the A2780 cell line is more sensitive to all complexes. In A2780 cell line, Pt-4, Pt-5, 

Pt-6, Pt-11, and Pt-12 shows comparable cell viability to cisplatin and picoplatin (Pt-1), while 

the rest are less toxic. In A2780cis cell line, Pt-4, Pt-5, Pt-6, Pt-11, and Pt-12 have comparable 

cell viability to picoplatin and even better than that of cisplatin. Overall, the picoplatin 

derivatives bearing a cycloalkyl amine as the non-leaving group showed promising activity, 

while cyclic amines as the non-leaving group have less efficacy. Pyridine ring (Pt-11) and 

benzylamine (Pt-12) as non-leaving groups also showed better efficacy. The study demonstrated 

that the steric feature and ring constraints of the ligands on the platinum agents played an 

important role in its efficacy toward cancer cells. Pt-1, Pt-3, and Pt-4, representing a reference 

and samples with potent efficacy, were used for more detailed study.  
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Figure 2.6 Preliminary cell viability screening of picoplatin derivatives in two ovarian cell lines 

at two concentrations. (a) A2780 with 5 µM, (b) A2780 with 20 µM, (c) A2780cis with 5 µM, 

(d) A2780cis with 20 µM. 
 
 
 

 The IC50 values of Pt-1, Pt-3, and Pt-4 against A2780 and A2780cis were reported in 

Figure 2.7 and summarized in Table 2.1. Cisplatin is used as the reference compound. Directly 

dissolving the compound in 0.25% or 25% DMF did not work. The pre-formulation strategy was 

applied in the study. A test compound is first dissolved in pure DMF and then diluted with 3× 

volume of the cell culture media to reach 25% DMF by volume. A series of dilution was done 

using cell culture media containing 25% DMF by volume to obtain the stock solution. The stock 
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solution was further diluted 100× using pure cell culture media to obtain the working solution 

(0.25% DMF by volume), which was directly added to the 96-well plates (200 µL). 
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Figure 2.7 IC50 curve of cisplatin, Pt-1, Pt-3, and Pt-4 in (a) A2780 and (b) A2780cis cell lines. 
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Table 2.1 Cytotoxic activities of cisplatin, Pt-1, Pt-3, and Pt-4 in cell lines A2780 and A2780cis. 

     *Resistance factor (Rf) is defined as IC50(A2780cis)/IC50(A2780) 

 

 

 

 Although Pt-1 (picoplatin) and Pt-4 are less toxic than cisplatin in cisplatin sensitive cell 

line A2780, they show comparable IC50 value with cisplatin in A2780cis. As expected, cisplatin 

shows a high resistance factor (Rf) of 8.63, which is consistent with the literature data.70,71 Both 

Pt-1 (picoplatin) and Pt-4 have a much smaller resistance factor, indicating a low cross-

resistance to cisplatin. Pt-3 has a very similar formula and structure as those of Pt-4 but less 

cytotoxic in both A2780 and A2780cis cell lines. In order to further understand the nuance of 

biological action among these complexes, a cellular accumulation study was conducted. 

2.4.3 Cellular accumulation study. Intracellular accumulation is one of the key factors 

affecting the cytotoxicity of platinum-based anticancer agents. To examine the accumulation 

level of platinum in A2780 and A2780cis cell lines, cisplatin, Pt-1, Pt-3, and Pt-4 were chosen 

for the study. The test compounds, each at 10 µM, were incubated with the cancer cell lines for 

24 h and the platinum level was measured by ICP-OES. Data from Figure 2.8 and Table 2.2 

demonstrated that significant difference was observed among the four compounds, with cisplatin 

being the simplest and smallest platinum agent but having low cellular accumulation. Picoplatin 

derivatives with more organic components and higher molecular weight, especially Pt-1 and Pt-

4, were easier to accumulate in both cell lines than cisplatin. Therefore, the structural feature of 

the platinum agents played a significant role in the platinum accumulation levels in cells. 

IC50 (µM) A2780 A2780cis Resistance factor (Rf)* 

Cisplatin 1.42 ± 0.13 12.26 ± 0.59 8.63 

Pt-1 4.40 ± 0.50 12.85 ± 1.59 2.92 

Pt-3 11.59 ± 1.05 23.13 ± 4.35 2.00 

Pt-4 4.43 ± 0.48 14.81 ± 2.08 3.34 
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However, there is no linear relationship between the bulkiness of the complex and the level of 

cellular accumulation. Even a minor change in the structure could lead to huge difference in 

cellular uptake, such as Pt-3 and Pt-4. The only difference between Pt-3 and Pt-4 is on one of the 

non-leaving groups, being isopropylamine on Pt-3 and cyclopropylamine with ring strain on Pt-

4. However, the cellular accumulation levels of Pt-4 in both cell lines are nearly doubled in 

comparison to those of Pt-3. Therefore, a trivial structural variation, such as with or without ring 

strain, could significantly alter its activity toward cancer cells.  

The accumulation levels of platinum in A2780cis are significantly lower than that in 

A2780 for all four compounds, which explains the decreasing cytotoxicity of these compounds in 

A2780cis. The research provided strong support for the proposed hypothesis where cancer cells 

could grow resistance to platinum drugs possibly by downregulation of membrane 

transporter,1,45,79,80,81 or more readily exportation of detoxified conjugation from cells.23,24,25 Pt-1 

and Pt-4 are much easier to accumulate in both A2780 and A2780cis cell lines, however, the 

IC50 values (Table 2.1) are not smaller than that of cisplatin in A2780, indicating the enhanced 

cytotoxicity of cisplatin in A2780 is not due to the significantly low cellular accumulation of 

cisplatin. The higher cellular accumulation of Pt-1 and Pt-4 in A2780cis may contribute to their 

low IC50 values (Table 2.1), which are comparable to that of cisplatin.  

 

 

 

Table 2.2 Cellular accumulation of platinum from cisplatin, Pt-1, Pt-3, and Pt-4  in A2780 and 

A2780cis.* 

Mean (ng Pt/106 cell) A2780 A2780cis 

Cisplatin 59.59 ± 1.62 10.28 ± 0.41 

Pt-1 121.80 ± 0.94 29.89 ± 1.35 

Pt-3 55.35 ± 2.64 21.77 ± 2.49 

Pt-4 103.50 ± 3.18 51.82 ± 5.17 

                     *treated at 10µM for 24 h 
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Figure 2.8 Cellular accumulation of platinum from cisplatin, Pt-1, Pt-3, and Pt-4 in A2780 and 

A2780cis cell lines. (treated at 10µM for 24 h) **** p≤0.0001, *** p≤0.001. 
 
 
 

2.5 Conclusions 

A convenient synthesis route for picoplatin derivatives have been established and 11 

picoplatin derivatives have been synthesized and characterized. The bulky methyl group on 2-

picoline is crucial for the formation of monosubstituted product TCPP, while TCPP is the key 

intermediate leading to the success of all picoplatin derivatives. The solvent involved in the last 

step of the synthesis is either protic solvent H2O or anhydrous aprotic solvent DMF. If the non-

leaving group is a small amine and the product formation is quick, H2O with mild reaction 

temperature (~45 °C) would be applied, otherwise, anhydrous DMF with moderate reaction 

temperature (~65 °C) is the first choice. The stronger trans effect of the chloride than that of the 

pyridine on TCPP led to the successful synthesis of the picoplatin derivatives, all in cis 

configuration confirmed by solid-state structural analysis.  
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 Three bioassays were used to evaluate the efficacy of picoplatin derivatives, including 

DNA binding assay, cell viability assay, and cellular accumulation assay. The DNA gel 

electrophoresis shows that the picoplatin derivatives have comparable binding efficiency with 

picoplatin. Cell viability studies show that derivatives with cycloalkyl amines with ring strain as 

non-leaving group exhibits better efficacy, while that with cyclic amines as non-leaving group 

shows less efficacy. Pt-11 with pyridine ring and Pt-12 with benzylamine as non-leaving groups 

also show better efficacy. Cellular accumulation study shows a higher level of platinum content 

in the A2780 cell line than that of A2780cis, which may be one of the explanations for the 

cisplatin resistance in A2780cis cell line.   

 The study of picoplatin derivatives laid the foundation for the search of platinum-based 

anticancer agents through structural attenuation.     
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 HDAC Inhibitors 

3.1 Introduction 

 It is well known that DNA is wrapped around histone proteins to form chromatin. As 

shown in Figure 3.1, the positively charged lysine residue of histone protein has strong ionic 

interaction with the negatively charged DNA, resulting in a more condensed chromatin 

structure.82,83 Histone acetylase (HAT)  is an enzyme that can add an acetyl group on the lysine 

residue, thereby neutralizing the positive charge and forming a relaxed chromatin structure. The 

more open structure allows transcription factors to access the gene, thereby promoting the gene 

expression. On the other hand, histone deacetylase (HDAC) is an enzyme that can remove the 

acetyl group from the acetylated lysine residue and restore the positive charge, therefore 

returning to the condensed chromatin structure. Deacetylation of the histone proteins will cause 

gene silencing. The acetylation status is controlled by HAT and HDAC enzyme families and is 

one of the most extensively studied epigenetic process.83,84,85  

 There are eighteen HDACs that have been identified in humans and are subdivided into 

four classes, including class I HDACs (HDAC 1, 2, 3 and 8), class II HDACs (HDAC 4, 5, 6, 7, 

9 and 10), class III HDACs (SIRT 1, 2, 3, 4, 5, 6 and 7) and class IV HDACs (HDAC 11).86,87 It 

has been reported that many HDACs are overexpressed in different types of cancers, including 

HDAC1 in the prostate,88 gastric,89 colon90 and breast cancers91, HDAC2 in colorectal,90,92 

cervical93 and gastric cancer,94 HDAC3 in colon cancer90 and HDAC6 in breast cancer.95 On the 

other hand, knockdown of individual HDACs overexpressed in cancers could suppress cell 

growth.90,92,93,96 It also has been shown that overexpressed HDAC suppress the expression of 

cancer suppressor genes in many tumors, and HDAC inhibitors (HDACi) could restore the 
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expression of cancer-suppressive genes and induce apoptosis.86,97–103 Therefore, HDAC has 

become a promising biological target for cancer treatment.83,86,104,105  

 

 

 

 

Figure 3.1 Roles of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in 

regulating histone proteins (right), and HDACs in deacetylation mechanism (left).82,83 
 
 
 

 Most HDACs have a catalytic zinc domain, as shown in the left part of Figure 3.1.82,83 

The zinc cofactor acts as a Lewis acid, which interacts with the oxygen atom of the acetyl group 

and catalyzes its hydrolysis. If there is a stronger chelator that could bind to the catalytic zinc 

center, the deacetylation would be inhibited, resulting in a more relaxed chromatin structure.  

  The design of HDACi was originally derived from the understanding of the co-crystal 

structure between a bacterial homolog of histone deacetylase-like protein and hydroxamic acid 

Trichostain A.106 The scaffold was also based on mimics of acetylated lysine. The first FDA 

approved HDACi is Vorinostat (SAHA). As shown in Figure 3.2 b, it consists of three main 
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domains: a surface binding domain (cap), a hydrocarbon linker motif, and a zinc-binding group 

(ZBG).83 All components are necessary for a new HDAC inhibitor to function effectively. A 

recent study on the X-ray crystal structure of SAHA bound to an HDAC-like protein discovered 

an internal cavity adjacent to the zinc-binding domain (Figure 3.2 a), which hinted for additional 

hydrophobic moiety in the newer HDACi design.107 

 

 

 

 

Figure 3.2 (a) X-ray crystal structure of SAHA bound to an HDAC-like protein.107 (b) Molecular 

structure of SAHA.83 
 
 
 

 To date, five HDAC inhibitors shown in Figure 3.3 have entered clinical use, with four 

approved by US FDA and one approved by the China Food and Drug Administration (CFDA).108 

Vorinostat, belinostat, and panobinostat all have hydroximic acids as the zinc-binding group. The 

depsipeptides romidepsin is more like a prodrug and the disulfide bond in romidepsin would be 

reduced and release the active thiol group acting as the zinc-binding group. Chidamide has 

ortho-aminoanilide as the zinc-binding group. There are many kinds of HDAC inhibitors, 

including short-chain alkanoic acids, hydroxamic acids, cyclic peptides, and other macrocycles, 

ortho-aminoanilides, et al.83,109 As most clinically studied and approved HDAC inhibitors are 

hydroxamic acids and ortho-aminoanilides derivatives, and their synthesis is more 
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straightforward while compared to cyclic peptides, we will focus on HDAC inhibitors with 

hydroxamic acids and ortho-aminoamilides in the following study.  

 

 

 

 

Figure 3.3 Clinically approved HDAC inhibitors with approving agency, year of approval,  

therapeutic indication, and administration route.108 
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3.2 Preparation of HDAC Inhibitors 

 
 
 

 

Figure 3.4 Structures of HDAC inhibitors (CF-L01 to CF-L12). 

 

 

 

 As shown in Figure 3.4,12 HDAC inhibitors have been synthesized and characterized in 

our lab. They shared the same cap domain, 2-methyl pyridine, but have variations on the linkage 

between the cap domain and linker, the linker length, and the zinc-binding group. The linkage 

between the cap domain and linker could be an ether bond or a reversed amide bond. 

Convenience in their synthesis is the main reason in choosing these linkages. The second 

variation is the linker length, with 5 or 6 carbons, which is the appropriate length approved by 

various bioassays.110–112 The third variation is the zinc-binding group, including hydroxamic 

acid, ortho-aminoamilide and ortho-aminoamilide possessing a C-5 phenyl group that could 

occupy the internal cavity illustrated in Figure 3.2 a.83,106  The general synthesis scheme is shown 

in Scheme 3.1. Structures of HDAC inhibitors CF-L13 to CF-L19 are shown in Figure 3.5 and 

Figure 3.6. CF-L13 to CF-L17 were designed based on the results of structural activity 

relationship study of CF-L01 to CF-L12. CF-L18 and CF-L19 were designed by modifying 
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Panobinostat. The detailed synthesis scheme of each individual HDAC inhibitor is included 

Appendix A.  

 

 

 

 

Scheme 3.1 Synthesis routes of HDAC inhibitors (CF-L01 to CF-L12).  
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Figure 3.5 Structures of HDAC inhibitors (CF-L13 to CF-L17). 
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Figure 3.6 Structures of HDAC inhibitors CF-L18 and CF-L19. 
 
 
 

General procedures. Refer to part 2.2 in Chapter 2. 

Synthesis of N-hydroxy-6-((2-methylpyridin-4-yl)oxy)hexanamide (CF-L01) 

6-((2-methylpyridin-4-yl)oxy)hexanoic acid (CF-L01-1). Oxepan-2-one (414.0 mg, 

3.63 mmol, 1.25 equiv) in DMSO (1 mL) was added dropwise to a stirred suspension of fine 

KOH powder (570.8 mg, 10.2 mmol, 3.5 equiv) in DMSO (5 mL) at 75 °C. After 30 min, 4-

bromo-2-methylpyridine (500 mg, 2.91 mmol, 1.0 equiv) in DMSO (1 mL) was added to the 

reaction mixture which was stirred for 2 days at 75 °C. After the reaction mixture cooled down, 

anhydrous EtOH was added and concentrated H2SO4 was used to adjust the pH to 1-2. The 
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compound CF-L01-1 was detected by DART-AccuTOF MS and directly used for the following 

step without further purification. 

Ethyl-6-((2-methylpyridin-4-yl)oxy)hexanoate (CF-L01-2). The mixture from previous 

step was refluxed overnight. EtOH was removed under reduced pressure. The reaction mixture 

was extracted with EtOAc and water three times. NaHCO3 solution was used to neutralize the 

mixture. The organic layers were combined, washed with brine twice and then dried over 

anhydrous Na2SO4. After filtration, EtOAc was removed under reduced pressure and the crude 

product was purified by silica gel chromatography (DCM/MeOH=50/1) to afford colorless oil 

(533 mg, yield: 73%). 1H NMR (600 MHz, CDCl3): δ 8.27 (d, J = 5.9 Hz, 1H), 6.65 (d, J = 2.5 

Hz, 1H), 6.62 (dd, J = 5.9, 2.5 Hz, 1H), 4.10 (q, J = 7.1 Hz,  2H), 3.98 (t, J = 6.4 Hz, 2H), 2.50 (s, 

3H), 2.31 (t, J = 7.5 Hz, 3H), 1.79 (m, 2H), 1.68 (m, 2H), 1.48 (m, 2H), 1.23 (t, J = 7.1 Hz,  3H). 

13C NMR (151 MHz, CDCl3): δ 173.62, 165.96, 159.56, 149.56, 109.70, 107.93, 67.75, 60.38, 

34.24, 28.67, 25.59, 24.67, 24.19, 14.33. DART-AccuTOF MS: m/z calcd C14H22NO3 [M+H]+ 

252.1600, found 252.1517. 

N-hydroxy-6-((2-methylpyridin-4-yl)oxy)hexanamide (CF-L01). To a solution of CF-

L01-2 (340.0 mg, 1.35 mmol, 1.0 equiv) in DCM and MeOH (1:2 ratio, 12 mL) at 0 °C, 

hydroxylamine ( 50 wt% in water, 1.2 mL, 20.29 mmol, 15.0 equiv) was added, following by 

fine NaOH powder (541.0 mg, 13.5 mmol, 10.0 equiv). The solution was stirred at 0 °C for 30 

min, and then allowed to warm to rt and stirred overnight. The solvent was removed under 

reduced pressure. Minimum H2O was added to the residual and insoluble particles were removed 

by filtration. HCl (conc. 1-2 M) was used to adjust the pH of the aqueous filtrate until a white 

solid precipitated out from the mixture which was cooled in a cold water bath. The product was 

collected through filtration, washed by cold water and dried overnight to afford a white solid 
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(257 mg, yield: 80%). 1H NMR (600 MHz, CD3OD): δ 8.19 (d, J = 6.0 Hz, 1H), 6.85 (d, J = 2.3 

Hz, 1H), 6.80 (dd, J = 6.0, 2.5 Hz, 1H), 4.07 (t, J = 6.4 Hz, 2H), 2.47 (s, 3H), 2.13 (t, J = 7.4 Hz, 

2H), 1.82 (m, 2H), 1.69 (m, 2H), 1.50 (m, 2H). 13C NMR (151 MHz, CD3OD): δ 172.77, 167.98, 

160.58, 150.08, 111.05, 109.47, 69.13, 33.62, 29.61, 26.51, 26.38, 23.56. DART-AccuTOF MS: 

m/z calcd C12H19N2O3 [M+H]+ 239.1396, found 239.1376. HPLC: 99.5%. 

Synthesis of N-hydroxy-7-((2-methylpyridin-4-yl)oxy)heptanamide (CF-L02) 

Oxocan-2-one (CF-L02-1). To a solution of m-CPBA (14.98g, 66.86 mmol, <77% 

purity, 1.50 equiv) in DCM (150mL) was added cycloheptanone (5.0 g, 44.58 mmol, 1.0 equiv) 

under 0 oC and the resulting reaction was stirred for 10 minutes. The reaction mixture was 

allowed to warm to rt and stirred for 5-6 days. The reaction mixture was cooled to 0 oC for ~30 

min and white precipitates were removed by vacuum filtration. The filtrate was washed with 

saturated NaHCO3, followed by brine twice. The organic layer was dried over anhydrous 

Na2SO4, filtered and concentrated under reduced pressure to yield a light-yellow liquid, which 

was confirmed by 1H NMR (crude yield: 89%), and used for the next step without further 

purification. 

7-((2-methylpyridin-4-yl)oxy)heptanoic acid (CF-L02-2). CF-L02-1 (761.9 mg, 5.94 

mmol, 1.0 equiv) in DMSO (1 mL) was added dropwise to a stirred suspension of fine KOH 

powder (1167.3 mg, 20.8 mmol, 3.5 equiv) in DMSO (7 mL) at 75 °C. After 30 min of stirring, 

4-bromo-2-methylpyridine (1.07 g, 6.24 mmol, 1.0 equiv) in DMSO (1 mL) was added to the 

reaction mixture, which was stirred for 2 days at 75 °C. After the reaction mixture cooled down, 

anhydrous EtOH was added and concentrated H2SO4 was added to adjust the pH to 1 to 2. The 
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compound CF-L02-2 was detected by DART-AccuTOF MS and used for the following step 

without further purification. 

Ethyl-7-((2-methylpyridin-4-yl)oxy)heptanoate (CF-L02-3). Following the same 

synthesis procedure as CF-L01-2, a colorless oil was obtained as the product (yield: 54%). 1H 

NMR (600 MHz, CDCl3): δ 8.27 (d, J = 5.9 Hz, 1H), 6.65 (d, J = 2.4 Hz, 1H), 6.62 (dd, J = 5.9, 

2.5 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.97 (t, J = 6.5 Hz, 2H), 2.50 (s, 3H), 2.29 (t, J = 7.5 Hz, 

2H), 1.77 (m, 2H), 1.64 (m, 2H), 1.45 (m, 2H), 1.37 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H). 13C NMR 

(151 MHz, CDCl3): δ 173.77, 165.96, 159.59, 149.64, 109.68, 107.91, 67.89, 60.32, 34.29, 

28.85, 28.78, 25.70, 24.88, 24.26, 14.34. DART-AccuTOF MS: m/z calcd C15H23NO3 [M+H]+ 

266.1756, found 266.1662. 

N-hydroxy-7-((2-methylpyridin-4-yl)oxy)heptanamide (CF-L02). A white solid 

product was obtained following the same synthesis procedure as CF-L01 (yield: 80%). 1H NMR 

(600 MHz, CDCl3): δ 8.17 (d, J = 5.9 Hz, 1H), 6.82 (d, J = 2.3 Hz, 1H), 6.77 (dd, J = 5.9, 2.5 Hz, 

1H), 4.05 (t, J = 6.4 Hz, 2H), 2.46 (s, 3H), 2.10 (t, J = 7.4 Hz, 2H), 1.79 (m, 2H), 1.65 (m, 2H), 

1.49 (m, 2H), 1.40 (m, 2H). 13C NMR (151 MHz, CD3OD): δ 172.90, 167.74, 160.78, 150.44, 

110.92, 109.31, 69.09, 33.67, 29.81, 29.78, 26.67, 26.63, 23.77. DART-AccuTOF MS: m/z calcd 

C13H21N2O3 [M+H]+ 253.1552, found 253.1449. HPLC: 99.5%.  

Synthesis of N1-hydroxy-N7-(2-methylpyridin-4-yl)heptanediamide (CF-L03) 

Ethyl-7-((2-methylpyridin-4-yl)amino)-7-oxoheptanoate (CF-L03-1). To a solution of 

ethyl hydrogen pimelate (870.3 mg, 4.62 mmol, 1.0 equiv) in anhydrous DMF (15 mL) was 

added DIEA (2.4 mL, 13.87 mmol, 3.0 equiv) and HATU (2.2 g, 5.78 mmol, 1.25 equiv). The 

resulting mixture was stirred for 30 min, followed by the addition of 4-amino-2-picoline (500 
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mg, 4.62 mmol, 1.0 equiv) and stirring for another 24 h. H2O (~30 mL) was then added and the 

mixture was extracted with EtOAc twice. The combined organic layers were washed with brine 

three times, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The 

crude product was purified by silica gel chromatography (DCM; DCM/MeOH=50/1 to 20/1) to 

afford a white powder (720 mg, yield: 56%). 1H NMR (600 MHz, CDCl3): δ 8.94 (br, 1H), 8.25 

(d, J = 5.9 Hz, 1H), 7.61 (d, J = 1.9 Hz, 1H), 7.40 (dd, J = 5.9, 1.9 Hz, 1H), 4.08 (q, J = 7.1 Hz, 

2H), 2.48 (s, 3H), 2.38 (t, J = 7.4 Hz, 2H), 2.27 (t, J = 7.4 Hz, 2H), 1.68 (m, 2H), 1.61 (m, 2H), 

1.35 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, CDCl3): δ 173.99, 173.05, 157.99, 

147.82, 147.39, 113.62, 111.73, 77.37, 77.16, 76.95, 60.45, 37.19, 34.09, 28.53, 24.83, 24.51, 

23.21, 14.26. DART-AccuTOF MS: m/z calcd C15H23N2O3 [M+H]+ 279.1709, found 279.1889.   

N1-hydroxy-N7-(2-methylpyridin-4-yl)heptanediamide (CF-L03). The same synthesis 

procedure as CF-L01 was applied, resulting a white solid as the product (yield: 72%). 1H NMR 

(600 MHz, DMSO-d6): δ 10.33 (s, 1H), 10.15 (s, 1H), 8.67 (br, 1H), 8.25 (d, J = 5.6 Hz, 1H), 

7.44 (d, J = 1.7 Hz, 1H), 7.34 (dd, J = 5.6, 2.0 Hz, 1H), 2.39 (s, 3H), 2.32 (t, J = 7.4 Hz, 2H), 

1.94 (t, J = 7.4 Hz, 2H), 1.56 (m, 2H), 1.50 (m, 2H), 1.26 (m, 2H). 13C NMR (151 MHz, DMSO-

d6): δ 172.36, 169.03, 158.51, 149.55, 146.05, 111.91, 110.52, 36.35, 32.13, 28.17, 24.89, 24.55, 

24.28, 24.27. DART-AccuTOF MS: m/z calcd C13H20N3O3 [M+H]+ 266.1505, found 266.1407.  

HPLC: 98.7% 

Synthesis of N1-hydroxy-N8-(2-methylpyridin-4-yl)octanediamide (CF-L04) 

 Methyl-8-((2-methylpyridin-4-yl)amino)-8-oxooctanoate (CF-L04-1). To a solution of 

8-methoxy-8-oxooctanoic acid (870.3 mg, 4.62 mmol, 1.0 equiv) in anhydrous DMF (15 mL) 

was added DIEA (2.4 mL, 13.87 mmol, 3.0 equiv) and HATU (2.2 g, 5.78 mmol, 1.25 equiv). 
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The resulting mixture was stirred for 30 min, 4-amino-2-picoline (500 mg, 4.62 mmol, 1.0 equiv) 

was then added and the resulting mixture was stirred for 24 h. H2O (~30 mL) was added and the 

mixture was extracted with EtOAc twice. The combined organic layers were washed with brine 

three times, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The 

crude product was purified by silica gel chromatography (DCM; DCM/MeOH=50/1 to 20/1) to 

afford a white powder (550 mg, yield: 43%). 1H NMR (600 MHz, CDCl3): δ 8.68 (s, 1H), 8.26 

(d, J = 5.9 Hz, 1H), 7.62 (d, J = 1.9 Hz, 1H), 7.42 (dd, J = 5.9, 2.1 Hz, 1H), 3.64 (s, 3H), 2.50 (s, 

3H), 2.39 (t, J = 7.5 Hz, 2H), 2.29 (t, J = 7.4 Hz, 2H), 1.68 (m, 2H), 1.60 (m, 2H), 1.37 – 1.29 

(m, 4H). 13C NMR (151 MHz, CDCl3): δ 174.51, 173.10, 158.18, 147.74, 147.62, 113.62, 

111.74, 77.37, 77.16, 76.95, 51.65, 37.45, 34.03, 28.74, 28.73, 25.01, 24.72, 23.44. DART-

AccuTOF MS: m/z calcd C15H23N2O3 [M+H]+ 279.1709, found 279.1669.  

N1-hydroxy-N8-(2-methylpyridin-4-yl)octanediamide (CF-L04). Following the same 

synthesis procedure as CF-L01, a white solid was obtained as the final product (yield: 69%). 1H 

NMR (600 MHz, DMSO-d6): δ 10.34 (s, 1H), 10.17 (s, 1H), 8.67 (br, 1H), 8.25 (d, J = 5.6 Hz, 

1H), 7.44 (d, J = 1.9 Hz, 1H), 7.34 (dd, J = 5.6, 2.0 Hz, 1H), 2.38 (s, 3H), 2.32 (t, J = 7.4 Hz, 

2H), 1.93 (t, J = 7.4 Hz, 2H), 1.56 (m, 2H), 1.48 (m, 2H), 1.30 – 1.21 (m, 4H). 13C NMR (151 

MHz, DMSO-d6): δ 172.42, 169.10, 158.50, 149.55, 146.07, 111.92, 110.53, 36.46, 32.23, 28.37, 

28.34, 25.01, 24.73, 24.29. DART-AccuTOF MS: m/z calcd C14H22N3O3 [M+H]+ 280.1661, 

found 280.1621. HPLC: 98.2% 

Synthesis of N-(2-aminophenyl)-6-((2-methylpyridin-4-yl)oxy)hexanamide (CF-L05) 

6-((2-methylpyridin-4-yl)oxy)hexanoic acid (CF-L05-1). Following the same synthesis 

procedure as CF-L01-1, CF-L05-1 could be synthesized and used for the next step without 
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further purification. Alternatively, CF-L05-1 can be synthesized and purified via basic 

hydrolysis of CF-L01-2. More specifically, CF-L01-2 (798 mg, 3.18 mmol, 1.0 equiv) was 

dissolved in a 30 mL mixed solution of THF and MeOH (1:1 ratio), followed by the addition of 

NaOH (1.27 g, 31.8, mmol, 10.0 equiv) in H2O (7.5 mL). The mixture was stirred at rt overnight, 

concentrated under reduced pressure, and extracted with EtOAc twice. The organic layer was 

discarded and the insoluble particles in aqueous phase were removed by filtration. HCl solution 

(conc 1-2 M) was used to adjust the pH of the aqueous filtrate until a white solid precipitated out 

under cold water bath. Liquid nitrogen could also be applied to induce the precipitate formation 

if there are no precipitates formed while using cold water bath alone. The product was collected 

through filtration, washed by cold water and dried overnight to afford a white powder (384 mg, 

yield: 35%).1H NMR (600 MHz, DMSO-d6): δ 8.21 (d, J = 5.8 Hz, 1H), 6.80 (d, J = 2.4 Hz, 1H), 

6.74 (dd, J = 5.8, 2.5 Hz, 1H), 4.00 (t, J = 6.5 Hz, 2H), 2.38 (s, 3H), 2.22 (t, J = 7.4 Hz, 2H), 1.70 

(m, 2H), 1.55 (m, 2H), 1.40 (m, 2H). 13C NMR (600 MHz, DMSO-d6): δ 174.43, 164.83, 159.40, 

150.02, 109.15, 107.80, 67.28, 33.62, 28.12, 25.03, 24.21, 24.08.  DART-AccuTOF MS: m/z 

calcd C12H18NO3 [M+H]+ 224.1287, found 224.1238.  

N-(2-aminophenyl)-6-((2-methylpyridin-4-yl)oxy)hexanamide (CF-L05). To a 

solution of CF-L05-1 (907 mg, 4.06 mmol, 1.0 equiv) in anhydrous DMF (15 mL) was added 

DIEA (2.11 mL, 12.19 mmol, 3.0 equiv) and HATU (1.93 g, 5.08 mmol, 1.25 equiv). The 

solution was stirred for 30 min, followed by the addition of o-phenylenediamine (461 mg, 4.26 

mmol, 1.05 equiv). The resulting mixture was stirred for another 24 h. H2O (~30 mL) was added 

and the mixture was extracted with EtOAc twice. The combined organic layers were washed 

with brine three times, dried over anhydrous Na2SO4, filtered and concentrated under reduced 

pressure. The crude product was purified by basic alumina gel chromatography 
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(DCM/MeOH=30/1) to afford a white powder (535 mg, yield: 42%). 1H NMR (600 MHz, 

CD3OD): δ 8.17 (d, J = 5.9 Hz, 1H), 7.07 (dd, J = 7.8, 1.5 Hz, 1H), 7.02 (td, J = 7.7, 1.5 Hz, 1H), 

6.85 (dd, J = 8.0, 1.4 Hz, 1H), 6.83 (d, J = 2.3 Hz, 1H), 6.78 (dd, J = 5.9, 2.5 Hz, 1H), 6.71 (td, J 

= 7.6, 1.3 Hz, 1H), 4.08 (t, J = 6.4 Hz, 2H), 2.49 – 2.42 (m, 5H), 1.86 (m, 2H), 1.80 (m, 2H), 

1.59 (m, 2H). 13C NMR (151 MHz, CD3OD): δ 174.86, 167.72, 160.79, 150.46, 143.30, 128.24, 

127.08, 125.16, 119.50, 118.55, 110.94, 109.33, 69.00, 37.06, 29.71, 26.66, 26.65, 23.78. 

DART-AccuTOF MS: m/z calcd C18H24N3O2 [M+H]+ 314.1869, found 314.1916. HPLC: 98.5%.  

Synthesis of N-(2-aminophenyl)-7-((2-methylpyridin-4-yl)oxy)heptanamide (CF-L06) 

7-((2-methylpyridin-4-yl)oxy)heptanoic acid (CF-L06-1). Following the same 

synthesis procedure as CF-L02-2, CF-L06-1 was synthesized and used for the next step without 

further purification. Alternatively, CF-L06-1 could be synthesized and purified via basic 

hydrolysis of CF-L02-2, following a similar synthesis procedure as CF-L05-1, yielding a white 

powder (yield: 48%). 1H NMR (600 MHz, CD3OD): δ 8.21 (d, J = 6.1 Hz, 1H), 6.90 (d, J = 2.4 

Hz, 1H), 6.85 (dd, J = 6.1, 2.5 Hz, 1H), 4.09 (t, J = 6.4 Hz, 2H), 2.49 (s, 3H), 2.29 (t, J = 7.4 Hz, 

2H), 1.81 (m, 2H), 1.64 (m, 2H), 1.50 (m, 2H), 1.42 (m, 2H). 13C NMR (151 MHz, CD3OD): δ 

178.27, 168.46, 160.21, 149.46, 111.29, 109.73, 69.50, 35.37, 29.91, 29.77, 26.69, 26.16, 23.20. 

DART-AccuTOF MS: m/z calcd C13H20NO3 [M+H]+ 238.1443, found 238.1369.  

N-(2-aminophenyl)-7-((2-methylpyridin-4-yl)oxy)heptanamide (CF-L06). The same 

synthesis procedure as CF-L05 was applied to afford a white solid (yield: 43%). 1H NMR (600 

MHz, CD3OD): δ 8.17 (d, J = 5.9 Hz, 1H), 7.07 (dd, J = 7.8, 1.5 Hz, 1H), 7.02 (td, J = 7.6, 1.5 

Hz, 1H), 6.84 (dd, J = 8.0, 1.4 Hz, 1H), 6.82 (d, J = 2.3 Hz, 1H), 6.77 (dd, J = 5.9, 2.5 Hz, 1H), 

6.70 (td, J = 7.5, 1.3 Hz, 1H), 4.07 (t, J = 6.4 Hz, 2H), 2.45 – 2.42 (m, 5H), 1.83 (m, 2H), 1.76 
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(m, 2H), 1.52 (m, 4H). 13C NMR (151 MHz, CD3OD): δ 175.00, 167.75, 160.77, 150.45, 143.29, 

128.23, 127.06, 125.18, 119.51, 118.56, 110.94, 109.32, 69.12, 37.12, 29.95, 29.82, 26.91, 26.76, 

23.78. DART-AccuTOF MS: m/z calcd C19H26N3O2 [M+H]+ 328.2025, found 328.1901. HPLC: 

98.8%.  

Synthesis of N1-(2-aminophenyl)-N7-(2-methylpyridin-4-yl)heptanediamide (CF-L07).  

7-((2-methylpyridin-4-yl)amino)-7-oxoheptanoic acid (CF-L07-1). A similar synthesis 

procedure as CF-L05-1 was applied to afford a white solid (yield: 58%). 1H NMR (600 MHz, 

DMSO-d6): δ 12.03 (br, 1H), 10.16 (s, 1H), 8.25 (d, J = 5.6 Hz, 1H), 7.44 (d, J = 1.8 Hz, 1H), 

7.34 (dd, J = 5.6, 1.9 Hz, 1H), 2.39 (s, 3H), 2.32 (t, J = 7.4 Hz, 2H), 2.20 (t, J = 7.4 Hz, 2H), 1.57 

(m, 2H), 1.51 (m, 2H), 1.29 (m, 2H). 13C NMR (151MHz, DMSO-d6): δ 174.44, 172.35, 158.50, 

149.53, 146.06, 111.92, 110.52, 36.35, 33.55, 28.13, 24.56, 24.27, 24.26. DART-AccuTOF MS: 

m/z calcd C13H19N2O3 [M+H]+ 251.1396, found 251.1322.  

N1-(2-aminophenyl)-N7-(2-methylpyridin-4-yl)heptanediamide (CF-L07). A similar 

synthesis procedure as CF-L05 was used to afford a white solid (yield: 48%). 1H NMR (600 

MHz, CD3OD): δ 8.23 (d, J = 5.8 Hz, 1H), 7.51 (d, J = 2.0 Hz, 1H), 7.45 (dd, J = 5.8, 2.0 Hz, 

1H), 7.06 (dd, J = 7.9, 1.5 Hz, 1H), 7.01 (ddd, J = 8.0, 7.4, 1.5 Hz, 1H), 6.84 (dd, J = 8.0, 1.3 Hz, 

1H), 6.69 (td, J = 7.4, 1.5 Hz 1H), 2.46 (s, 3H), 2.43 (td, J = 7.4, 3.2 Hz, 4H), 1.76 (m, 4H), 1.49 

(m 2H). 13C NMR (151 MHz, CD3OD): δ 175.26, 174.93, 160.04, 149.95, 148.42, 143.30, 

128.25, 127.12, 125.11, 119.48, 118.52, 114.19, 112.44, 37.83, 36.95, 29.72, 26.62, 26.13, 23.89. 

DART-AccuTOF MS: m/z calcd C19H25N4O2 [M+H]+ 341.1978, found 341.1893. HPLC: 99.3% 

Synthesis of N1-(2-aminophenyl)-N8-(2-methylpyridin-4-yl)octanediamide (CF-L08).  
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 8-((2-methylpyridin-4-yl)amino)-8-oxooctanoic acid (CF-L08-1). The same synthesis 

procedure as CF-L05-1 was applied to afford a white solid (yield: 65%). 1H NMR (600 MHz, 

DMSO-d6): δ 12.03 (br, 1H), 10.14 (s, 1H), 8.25 (d, J = 5.6 Hz, 1H), 7.44 (s, 1H), 7.34 (dd, J = 

5.6, 0.5 Hz, 1H), 2.39 (s, 3H), 2.32 (t, J = 7.4 Hz, 2H), 2.19 (td, J = 7.4, 1.0 Hz, 2H), 1.57 (m, 

2H), 1.49 (m, 2H), 1.28 (m, 4H). 13C NMR (151 MHz, DMSO-d6): δ 174.47, 172.40, 158.48, 

149.50, 146.09, 111.93, 110.53, 36.45, 33.62, 28.32, 28.31, 24.69, 24.36, 24.25. DART-

AccuTOF MS: m/z calcd C14H21N2O3 [M+H]+ 265.1552, found 265.1545. 

N1-(2-aminophenyl)-N8-(2-methylpyridin-4-yl)octanediamide (CF-L08). Similar 

synthesis procedure as CF-L05 was applied to synthesize CF-L08. A white solid was obtained 

as the final product (yield: 51%). 1H NMR (600 MHz, CD3OD): δ 8.23 (d, J = 5.8 Hz, 1H), 7.51 

(d, J = 1.7 Hz, 1H), 7.45 (dd, J = 5.8, 2.1 Hz, 1H), 7.07 (dd, J = 7.8, 1.5 Hz, 1H), 7.01 (m, 1H), 

6.84 (dd, J = 8.0, 1.4 Hz, 1H), 6.70 (td, J = 7.6, 1.4 Hz, 1H), 2.46 (s, 3H), 2.41 (m, 4H), 1.81 – 

1.64 (m, 4H), 1.51 – 1.39 (m, 4H). 13C NMR (151 MHz, CD3OD): δ 175.37, 175.04, 159.95, 

149.81, 148.54, 143.28, 128.24, 127.10, 125.15, 119.51, 118.54, 114.20, 112.45, 37.96, 37.11, 

29.96, 29.92, 26.82, 26.28, 23.81. DART-AccuTOF MS: m/z calcd C20H27N4O2 [M+H]+ 

355.2134, found 355.2068. HPLC: 98.7% 

Synthesis of N-(4-amino-[1,1'-biphenyl]-3-yl)-6-((2-methylpyridin-4-yl)oxy)hexanamide 

(CF-L09).  

 N-(4-amino-[1,1'-biphenyl]-3-yl)-6-((2-methylpyridin-4-yl)oxy)hexanamide (CF-

L09). The same synthesis procedure as CF-L05 was used to afford CF-L09-1, which then 

underwent boc deprotection using 4M HCl in dioxane and EtOH (1:1 ratio) and purified by silca 

gel chromatography (DCM/MeOH=20/1, 10/1) to afford a white powder (yield: 63%). 1H NMR 
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(600 MHz, CD3OD): δ 8.14 (d, J = 5.9 Hz, 1H), 7.50 (dd, J = 8.3, 1.1 Hz, 2H), 7.40 (d, J = 2.1 

Hz, 1H), 7.34 (t, J = 7.8 Hz, 2H), 7.30 (dd, J = 8.3, 2.1 Hz, 1H), 7.22 (m, 1H), 6.91 (d, J = 8.3 

Hz, 1H), 6.79 (d, J = 2.4 Hz, 1H), 6.73 (dd, J = 5.9, 2.5 Hz, 1H), 4.04 (t, J = 6.4 Hz, 2H), 2.47 (t, 

J = 7.4 Hz, 2H), 2.42 (s, 3H), 1.86 – 1.77 (m, 4H), 1.58 (m, 2H). 13C NMR (151 MHz, CD3OD): 

δ 174.98, 167.68, 160.73, 150.40, 142.76, 142.01, 132.66, 129.73, 127.39, 127.19, 126.66, 

125.46, 125.29, 118.78, 110.94, 109.31, 69.00, 37.11, 29.69, 26.67, 26.63, 23.77. DART-

AccuTOF MS: m/z calcd C24H28N3O2 [M+H]+ 390.2182, found 390.2188. HPLC: 96.4%. 

Crystals were obtained by vapor diffusion crystallization set-up using DCM and ether (Appendix 

D). 

Synthesis of N-(4-amino-[1,1'-biphenyl]-3-yl)-7-((2-methylpyridin-4-yl)oxy)heptanamide 

(CF-L10).  

N-(4-amino-[1,1'-biphenyl]-3-yl)-7-((2-methylpyridin-4-yl)oxy)heptanamide (CF-

L10). Similar synthesis procedure as CF-L09 was applied to afford a white powder (yield: 60%). 

1H NMR (600 MHz, CD3OD):  δ 8.14 (d, J = 5.9 Hz, 1H), 7.51 (dd, J = 8.3, 1.1 Hz, 2H), 7.40 (d, 

J = 2.1 Hz, 1H), 7.34 (t, J = 7.8 Hz, 2H), 7.30 (dd, J = 8.3, 2.2 Hz, 1H), 7.22 (t, J = 7.4 Hz, 1H), 

6.91 (d, J = 8.3 Hz, 1H), 6.78 (d, J = 2.3 Hz, 1H), 6.73 (dd, J = 5.9, 2.5 Hz, 1H), 4.02 (t, J = 6.4 

Hz, 2H), 2.45 (t, J = 7.4 Hz, 2H), 2.42 (s, 3H), 1.84 – 1.71 (m, 4H), 1.56 – 1.44 (m, 4H). 13C 

NMR (151 MHz, CD3OD): δ 175.10, 167.69, 160.72, 150.42, 142.72, 142.01, 132.67, 129.72, 

127.39, 127.19, 126.62, 125.41, 125.32, 118.79, 110.93, 109.27, 69.10, 37.18, 29.97, 29.80, 

26.86, 26.74, 23.78. DART-AccuTOF MS: m/z calcd C25H30N3O2 [M+H]+ 404.2338, found 

404.2333. HPLC: 97.4%. Crystals were obtained by vapor diffusion crystallization set-up using 

DCM and ether (Appendix D). 
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Synthesis of N1-(4-amino-[1,1'-biphenyl]-3-yl)-N7-(2-methylpyridin-4-yl)heptanediamide 

(CF-L11).  

N1-(4-amino-[1,1'-biphenyl]-3-yl)-N7-(2-methylpyridin-4-yl)heptanediamide (CF-

L11). The same synthesis procedure as CF-L07 was used to afford CF-L11-1, which then 

underwent boc deprotection using 4M HCl in dioxane and MeOH (1:1 ratio) and purified by 

silca gel chromatography (DCM/MeOH=20/1, 10/1) to afford a white powder (yield: 64%). 1H 

NMR (600 MHz, CD3OD):  δ 8.19 (d, J = 5.8 Hz, 1H), 7.52 – 7.49 (m, 3H), 7.45 (dd, J = 5.8, 2.1 

Hz, 1H), 7.39 (d, J = 2.2 Hz, 1H), 7.34 (t, J = 7.8 Hz, 2H), 7.30 (dd, J = 8.3, 2.2 Hz, 1H), 7.22 

(m, 1H), 6.90 (d, J = 8.3 Hz, 1H), 2.48 – 2.42 (m, 7H), 1.77 (m 4H), 1.50 (m, 2H). 13C NMR 

(151 MHz, CD3OD): δ 175.26, 175.07, 159.71, 149.47, 148.77, 142.78, 142.00, 132.65, 129.72, 

127.38, 127.18, 126.67, 125.51, 125.23, 118.73, 114.25, 112.50, 37.82, 36.99, 29.72, 26.56, 

26.06, 23.63. DART-AccuTOF MS: m/z calcd C25H29N4O2 [M+H]+ 417.2291, found 417.2231. 

HPLC: 98.0% 

Synthesis of N1-(4-amino-[1,1'-biphenyl]-3-yl)-N8-(2-methylpyridin-4-yl)octanediamide 

(CF-L12).  

N1-(4-amino-[1,1'-biphenyl]-3-yl)-N8-(2-methylpyridin-4-yl)octanediamide (CF-

L12). The same synthesis procedure as CF-L11 was applied to afford a white powder (yield: 

51%). 1H NMR (600 MHz, CD3OD): δ 8.21 (d, J = 5.8 Hz, 1H), 7.52 – 7.48 (m, 3H), 7.43 (dd, J 

= 5.8, 2.1 Hz, 1H), 7.38 (d, J = 2.2 Hz, 1H), 7.34 (t, J = 7.8 Hz, 2H), 7.30 (dd, J = 8.3, 2.1 Hz, 

1H), 7.22 (m, 1H), 6.91 (d, J = 8.3 Hz, 1H), 2.45 (m, 5H), 2.40 (t, J = 7.5 Hz, 2H), 1.78 – 1.69 

(m, 4H), 1.49 – 1.41 (m, 4H). 13C NMR (151 MHz, CD3OD): δ 175.35, 175.16, 159.98, 149.87, 

148.45, 142.75, 142.00, 132.70, 129.72, 127.38, 127.19, 126.66, 125.48, 125.29, 118.77, 114.19, 
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112.43, 37.96, 37.17, 29.97, 29.91, 26.79, 26.28, 23.85. DART-AccuTOF MS: m/z calcd 

C26H31N4O2 [M+H]+ 431.2447, found 431.2401. HPLC: 97.7% 

Synthesis of N1-hydroxy-N8-(pyridin-4-yl)octanediamide (CF-L13).  

Methyl 8-oxo-8-(pyridin-4-ylamino)octanoate (CF-L13-1). The same synthesis 

procedure as CF-L04-1 was used to afford a white solid (yield: 46%). 1H NMR (600 MHz, 

CD3Cl): δ 8.73 (s, 1H), 8.44 (d, J = 5.9 Hz, 2H), 7.56 (d, J = 6.2 Hz, 2H), 3.65 (s, 3H), 2.37 (t, J 

= 7.5 Hz, 2H), 2.29 (t, J = 7.4 Hz, 2H), 1.70 (m, 2H), 1.60 (m, 2H), 1.37 – 1.29 (m, 4H). 13C 

NMR (151 MHz, CD3Cl): δ 174.45, 172.66, 150.26, 145.99, 113.81, 51.66, 37.56, 34.01, 28.77, 

28.73, 25.12, 24.71. DART-AccuTOF MS: m/z calcd C14H21N2O3 [M+H]+ 265.1552, found 

265.1523. 

N1-hydroxy-N8-(pyridin-4-yl)octanediamide (CF-L13). A similar synthesis procedure 

as CF-L04 afforded a white solid (yield: 39%). 1H NMR (600 MHz, DMSO-d6): δ 10.33 (s, 1H), 

10.24 (s, 1H), 8.67 (s, 1H), 8.39 (dd, J = 4.8, 1.5 Hz, 2H), 7.55 (dd, J = 4.8, 1.6 Hz, 2H), 2.33 (t, 

J = 7.5 Hz, 2H), 1.93 (t, J = 7.4 Hz, 2H), 1.60 – 1.54 (m, 2H), 1.51 – 1.45 (m, 2H), 1.31 – 1.22 

(m, 4H). 13C NMR (151 MHz, DMSO-d6): δ 172.49, 169.09, 150.30, 145.76, 113.04, 36.46, 

32.23, 28.36, 28.34, 25.00, 24.68. DART-AccuTOF MS: m/z calcd C13H20N3O3 [M+H]+ 

266.1505, found 266.1467. HPLC: 99.0% 

Synthesis of N1-(4-(aminomethyl)phenyl)-N8-hydroxyoctanediamide hydrogen chloride 

(CF-L14). 

Methyl-8-((4-(((tert-butoxycarbonyl)amino)methyl)phenyl)amino)-8-oxooctanoate 

(CF-L14-1). The same synthesis procedure as CF-L04-1 afforded the crude product, which was 

further purified by recrystallization using EtOAc and hexanes and yielded a white powder (82%).  
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1H NMR (600 MHz, DMSO-d6): δ 9.81 (s, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.31 (t, J = 6.0 Hz, 1H), 

7.13 (d, J = 8.4 Hz, 2H), 4.05 (d, J = 6.1 Hz, 2H), 3.57 (s, 3H), 2.28 (m, 4H), 1.54 (m, 4H), 1.39 

(s, 9H), 1.30 – 1.24 (m, 4H). 13C NMR (151 MHz, DMSO-d6): δ 173.33, 171.05, 155.74, 137.93, 

134.65, 127.28, 118.94, 77.68, 51.15, 43.00, 36.27, 33.22, 28.31, 28.25, 28.22, 24.94, 24.31. 

DART-AccuTOF MS: m/z calcd C21H33N2O5 [M+H]+ 393.2390, found 393.2334. McLafferty 

rearrangement and decarboxylation occurred during the DART-AccuTOF mass spectrometry 

measurement.  

tert-butyl (4-(8-(hydroxyamino)-8-oxooctanamido)benzyl)carbamate (CF-L14-2). To 

a solution of CF-L14-1 (1.35 g, 3.4 mmol, 1.0 equiv) in DCM and MeOH (1:2 ratio, 24 mL) at 

0 °C, hydroxylamine ( 50 wt% in water, 3.04 mL, 51.6 mmol, 15.0 equiv) was added, followed 

by addition of a fine NaOH powder (1.38 g, 34.4 mmol, 10.0 equiv). The solution was stirred at 

0 °C for 30 min, and then allowed to warm to rt and stirred overnight. Solvent was removed 

under reduced pressure to yield a white solid.  H2O (10 mL) was added to the residual and the 

solid product was insoluble. HCl (conc 1-2 M) was added to adjust the pH to ~9 while stirring. 

The product was collected through vacuum filtration, washed by cold water and dried overnight. 

The aqueous filtrate was washed with EtOAc three times, dried over Na2SO4, filtered and 

concentrated under reduced pressure to yield a white solid. All white solids were combined and 

recrystallized from EtOAc (~30-50 mL, not completely soluble) to afford a white powder (1.35 

g, yield: quantitative). 1H NMR (600 MHz, DMSO-d6):
 δ 10.19 (br, 1H), 7.54 (d, J = 8.3 Hz, 

2H), 7.34 (t, J = 5.8 Hz, 1H), 7.12 (d, J = 8.4 Hz, 2H), 4.04 (d, J = 5.8 Hz, 2H), 2.27 (t, J = 7.4 

Hz, 2H), 1.85 (t, J = 7.4 Hz, 2H), 1.55 (m, 2H), 1.44 (m, 2H), 1.38 (s, 9H), 1.30 – 1.18 (m, 4H). 

13C NMR (151 MHz, DMSO-d6): δ 171.29, 167.62, 155.77, 138.13, 134.54, 127.23, 118.98, 

77.68, 43.03, 36.27, 32.95, 28.52, 28.43, 28.27, 25.72, 25.18. DART-AccuTOF MS: m/z calcd 
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C19H32N3O3 [M-CO2+H]+ 350.2444, found 350.2405. McLafferty rearrangement and 

decarboxylation occurred during the DART-AccuTOF mass spectrometry measurement. ESI-

AccuTOF MS: m/z calcd C20H31N3O5Na [M+Na]+ 416.2161, found 416.2060.  

N1-(4-(aminomethyl)phenyl)-N8-hydroxyoctanediamide hydrogen chloride (CF-

L14). To a mixture of insoluble CF-L14-2 (700 mg, 1.78 mmol, 1.0 equiv) in anhydrous DCM 

(3 mL), 1 M HCl in anhydrous EtOAc (9 mL) was added. The mixture was stirred overnight. The 

organic liquid was removed using centrifuge and the product was washed with dry Et2O three 

times and dried overnight to afford a white powder (yield: quantitative). 1H NMR (600 MHz, 

DMSO-d6): δ 10.43 (s, 1H), 10.20 (s, 1H), 8.68 (br, 1H), 8.49 (s, 3H), 7.64 (d, J = 8.6 Hz, 2H), 

7.40 (d, J = 8.6 Hz, 2H), 3.91 (q, J = 5.4 Hz, 2H), 2.31 (t, J = 7.5 Hz, 2H), 1.94 (t, J = 7.4 Hz, 

2H), 1.56 (m, 2H), 1.47 (m, 2H), 1.32 – 1.20 (m, 4H). 13C NMR (151 MHz, DMSO-d6): δ 

171.53, 169.22, 139.61, 129.48, 128.27, 118.88, 41.78, 36.31, 32.24, 28.40, 28.38, 25.05, 25.01. 

ESI-AccuTOF MS: m/z calcd C15H24N3O3 [M+H]+ 294.1818, found 294.1769. HPLC: 95.1% 

Synthesis of N1-(4-(2-aminoethyl)phenyl)-N8-hydroxyoctanediamide hydrogen chloride 

(CF-L15).  

Methyl-8-((4-(2-((tert-butoxycarbonyl)amino)ethyl)phenyl)amino)-8-oxooctanoate 

(CF-L15-1). The same synthesis procedure as CF-L14-1 afforded a white powder (83%). 1H 

NMR (600 MHz, DMSO-d6):
 δ 9.77 (s, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.5 Hz, 2H), 

6.84 (t, J = 5.6 Hz, 1H), 3.57 (s, 3H), 3.09 (m, 2H), 2.62 (m, 2H), 2.31 – 2.23 (m, 4H), 1.62 – 

1.47 (m, 4H), 1.36 (s, 9H), 1.31 – 1.25 (m, 4H). 13C NMR (151 MHz, DMSO-d6): δ 173.34, 

170.99, 155.50, 137.43, 133.91, 128.71, 119.05, 77.46, 51.15, 41.61, 36.29, 34.92, 33.23, 28.31, 

28.26, 28.23, 24.98, 24.32. DART-AccuTOF MS: m/z calcd C22H35N2O5 [M+H]+ 407.2546, 
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found 407.2519. McLafferty rearrangement and decarboxylation occured during the DART-

AccuTOF mass spectrometry measurement.  

tert-butyl (4-(8-(hydroxyamino)-8-oxooctanamido)phenethyl)carbamate (CF-L15-2). 

Similar synthesis procedure as CF-L14-2 was applied and afforded a white powder (96%).1H 

NMR (600 MHz, DMSO-d6): δ 10.25 (br, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.5 Hz, 2H), 

6.87 (t, J = 5.5 Hz, 1H), 3.08 (m, 2H), 2.61 (m, 2H), 2.26 (t, J = 7.4 Hz, 2H), 1.80 (t, J = 7.4 Hz, 

2H), 1.59 – 1.49 (m, 2H), 1.47 – 1.39 (m, 2H), 1.36 (s, 9H), 1.27 – 1.20 (m, 4H). 13C NMR (151 

MHz, DMSO-d6): δ 171.27, 167.24, 155.52, 137.66, 133.76, 128.66, 119.12, 77.45, 41.63, 36.24, 

34.92, 33.35, 28.55, 28.33, 28.28, 26.08, 25.28. DART-AccuTOF MS: m/z calcd C20H34N3O3 

[M-CO2+H]+ 364.2600, found 364.2589. McLafferty rearrangement and decarboxylation 

occurred during the DART-AccuTOF mass spectrometry measurement. ESI-AccuTOF MS: m/z 

calcd C21H33N3O5Na [M+Na]+ 430.2318, found 430.2265.  

N1-(4-(2-aminoethyl)phenyl)-N8-hydroxyoctanediamide hydrogen chloride (CF-

L15). The same synthesis procedure as CF-L14 produced a white powder (yield: quantitative). 

1H NMR (600 MHz, DMSO-d6): δ 10.49 (s, 1H), 10.12 (s, 1H), 8.27 (s, 3H), 7.57 (d, J = 8.5 Hz, 

2H), 7.14 (d, J = 8.5 Hz, 2H), 2.94 (m, 2H), 2.85 (m, 2H), 2.29 (t, J = 7.4 Hz, 2H), 1.94 (t, J = 7.4 

Hz, 2H), 1.54(m, 2H), 1.47 (m, 2H), 1.33 – 1.17 (m, 4H). 13C NMR (151 MHz, DMSO-d6): δ 

171.26, 169.19, 138.13, 131.75, 128.74, 119.28, 39.99, 36.30, 32.33, 32.23, 28.40, 28.39, 25.08, 

25.05. DART-AccuTOF MS: m/z calcd C16H26N3O3 [M+H]+ 308.1974, found 308.1907. ESI-

AccuTOF MS: m/z calcd C16H26N3O3 [M+H]+ 308.1974, found 308.1961. HPLC: 95.4% 

Synthesis of 4-(((2-aminoethyl)amino)methyl)-N-(7-(hydroxyamino)-7-

oxoheptyl)benzamide hydrogen chloride (CF-L16).  
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 Methyl-7-(4-formylbenzamido)heptanoate (CF-L16-1). Similar synthesis procedure as 

CF-L03-1 led to a crude product, which was purified by silica gel chromatography 

(DCM/EtOAc=1/1) to afford a white powder (yield: 88%). 1H NMR (600 MHz, CDCl3): δ 10.05 

(s, 1H), 7.91 (s, 4H), 6.44 (s, 1H), 3.64 (s, 3H), 3.44 (dt, J = 7.2, 6.1 Hz, 2H), 2.30 (t, J = 7.4 Hz, 

2H), 1.68 – 1.52 (m, 4H), 1.42 – 1.31 (m, 4H). 13C NMR (151 MHz, CDCl3): δ 191.69, 174.29, 

166.53, 140.09, 138.19, 129.92, 127.73, 51.61, 40.27, 34.00, 29.44, 28.79, 26.66, 24.82. DART-

AccuTOF MS: m/z calcd C16H22NO4 [M+H]+ 292.1549, found 292.1541. 

Methyl-7-(4-(((2-((tert-

butoxycarbonyl)amino)ethyl)amino)methyl)benzamido)heptanoate (CF-L16-2). To a 

solution of CF-L16-1 (635 mg, 2.18 mmol, 1.0 equiv) in MeOH (15 mL) was added tert-butyl 

(2-aminoethyl)carbamate (366.7 mg, 1.05 mmol, 1.05 equiv) and stirred at rt overnight. Fine 

NaBH4 powder (123.7 mg, 3.27 mmol, 1.5 equiv) was added in portions at 0 °C. After complete 

addition, the reaction mixture was stirred for 1 h at rt. MeOH was removed under reduced 

pressure. The residual was extracted with EtOAc and H2O twice. The combined organic layers 

were washed with brine three times, dried over anhydrous Na2SO4, filtered and concentrated 

under reduced pressure. The crude product was purified by silica gel chromatography (DCM; 

DCM/MeOH=10/1) to afford a white powder (500 mg, yield: 53%). 1H NMR (600 MHz, 

DMSO-d6): δ 8.36 (t, J = 5.6 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 6.74 (t, J 

= 5.4 Hz, 1H), 3.71 (s, 2H), 3.57 (s, 3H), 3.23 (q, J = 6.7 Hz,  2H), 3.02 (q, J = 6.0 Hz, 2H), 2.51 

(t, J = 6.5 Hz, 2H), 2.29 (t, J = 7.4 Hz, 2H), 1.51 (m, 4H), 1.36 (s, 9H), 1.32 – 1.25 (m, 4H). 13C 

NMR (151 MHz, DMSO-d6): δ 173.33, 165.94, 155.62, 144.10, 132.98, 127.54, 126.95, 77.44, 

52.23, 51.13, 48.38, 39.95 (shown in HMQC spectrum), 39.06, 33.22, 28.96, 28.23, 28.20, 26.13, 

24.38. DART-AccuTOF MS: m/z calcd C23H38N3O5 [M+H]+ 436.2812, found 436.2709.  
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 tert-butyl (2-((4-((7-(hydroxyamino)-7-

oxoheptyl)carbamoyl)benzyl)amino)ethyl)carbamate (CF-L16-3). To a solution of CF-L16-2 

(150 mg, 0.34 mmol, 1.0 equiv) in DCM and MeOH (1:2 ratio, 12 mL) at 0 °C, hydroxylamine 

( 50 wt% in water, 0.30 mL, 5.17 mmol, 15.0 equiv) was added, following by fine NaOH powder 

(138 mg, 3.44 mmol, 10.0 equiv). The solution was stirred at 0 °C for 30 min, and then allowed 

to warm to rt and stirred overnight. Solvent was removed under reduced pressure to yield a white 

solid.  H2O (2.5 mL) was added to the residual and the insoluble solid was removed by filtration. 

HCl solution (conc 1-2 M) was added to adjust the pH and no precipitates formed. The mixture 

was extracted with EtOAc three times, dried over Na2SO4, filtered and concentrated under 

reduced pressure to yield a white solid. The crude product was recrystallized from EtOAc to 

afford a white powder (100 mg, yield: 67%). 1H NMR (600 MHz, DMSO-d6):
 δ 10.33 (br, 1H), 

8.66 (br, 1H), 8.36 (t, J = 5.6 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 6.74 (t, 

J = 5.4 Hz, 1H), 3.71 (s, 2H), 3.34 (br, 1H), 3.23 (q, J = 6.6 Hz, 2H), 3.02 (q, J = 6.2 Hz, 2H), 

2.52 (t, J = 6.5 Hz, 2H), 1.94 (t, J = 7.4 Hz, 2H), 1.49 (m, 4H), 1.37 (s, 9H), 1.31 – 1.24 (m, 

4H). %). 13C NMR (151 MHz, DMSO-d6):
 δ 169.09, 165.96, 155.64, 144.15, 132.98, 127.55, 

126.97, 77.46, 52.24, 48.40, 39.97 (shown in HMQC spectrum), 39.12 (shown in HMQC 

spectrum), 32.24, 29.06, 28.36, 28.25, 26.23, 25.10. DART-AccuTOF MS: m/z calcd 

C22H37N4O5 [M+H]+ 437.2764, found 437.2727 

4-(((2-aminoethyl)amino)methyl)-N-(7-(hydroxyamino)-7-oxoheptyl)benzamide 

hydrogen chloride (CF-L16). Similar synthesis procedure as CF-L14 was applied in this 

synthesis, which afforded a white powder (yield: 92%). 1H NMR (600 MHz, DMSO-d6): δ 7.87 

(d, J = 7.8 Hz, 2H), 7.64 (d, J = 7.5 Hz, 2H), 4.24 (s, 2H), 3.30 – 3.14 (m, 6H), 1.93 (t, J = 7.3 

Hz, 2H), 1.52 – 1.43 (m, 4H), 1.30 – 1.21 (m, 4H). 13C NMR (151 MHz, DMSO-d6): δ 169.62, 
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165.76, 135.18, 134.65, 130.06, 127.62, 49.76, 43.91, 39.30 (shown in HMQC spectrum), 35.23, 

32.37, 29.09, 28.47, 26.36, 25.25. DART-AccuTOF MS: m/z calcd C17H29N4O3 [M+H]+ 

337.2240, found 337.2204. HPLC: 96.4% 

Synthesis of 7-(4-(((2-aminoethyl)amino)methyl)phenoxy)-N-hydroxyheptanamide 

hydrogen chloride (CF-L17) 

Ethyl-7-(4-formylphenoxy)heptanoate (CF-L17-1). To a solution of 4-

hydroxybenzaldehyde (1.22 g, 10.0 mmol, 1.0 equiv) in ACN (50 mL) was added ethyl-7-

bromoheptanoate (2.37 g, 10.0 mmol, 1.0 equiv) and K2CO3 (5.52 g, 40 mmol, 3.0 equiv). The 

mixture was refluxed overnight. Partial ACN was removed under reduced pressure and the 

resulting mixture was extracted with EtOAc and H2O three times. The organic layers were 

combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced 

pressure to give a yellow crude product. The crude product was dissolved in Et2O and hexane 

and left in freezer overnight, which afforded a light-yellow product (1.5 g, 54%). 1H NMR (600 

MHz, CDCl3): δ 9.87 (s, 1H), 7.82 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 4.12 (q, J = 7.1 

Hz, 2H), 4.03 (t, J = 6.5 Hz, 2H), 2.31 (t, J = 7.5 Hz, 2H), 1.81 (m, 2H), 1.66 (m, 2H), 1.52 – 

1.46 (m, 2H), 1.41 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, CDCl3): δ 190.93, 

173.82, 164.31, 132.11, 129.91, 114.86, 68.35, 60.35, 34.34, 28.98, 28.92, 25.79, 24.94, 14.38. 

DART-AccuTOF MS: m/z calcd C16H23O4 [M+H]+ 279.1596, found 279.1572.  

Ethyl-7-(4-(((2-((tert-

butoxycarbonyl)amino)ethyl)amino)methyl)phenoxy)heptanoate (CF-L17-2). Similar 

synthesis procedure as CF-L16-2 was applied to yield crude product, which was further purified 

by silica gel chromatography (DCM/MeOH=20/1) to afford a white powder (yield: 92%). 1H 
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NMR (600 MHz, DMSO-d6): δ 7.19 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 6.72 (t, J = 5.4 

Hz, 1H), 4.04 (q, J = 7.1 Hz, 2H), 3.91 (t, J = 6.5 Hz, 2H), 3.58 (s, 2H), 3.00 (q, J = 6.3 Hz, 2H), 

2.49 (m, 2H), 2.28 (t, J = 7.4 Hz, 2H), 2.00 (s, 1H), 1.72 – 1.63 (m, 2H), 1.57 – 1.50 (m, 2H), 

1.42 – 1.30 (m, 13H), 1.17 (t, J = 7.1 Hz, 3H). %). 13C NMR (151 MHz, DMSO-d6): δ 172.85, 

157.39, 155.61, 132.71, 129.00, 113.98, 77.41, 67.22, 59.62, 52.08, 48.28, 39.93 (shown in 

HMQC spectrum), 33.43, 28.54, 28.23, 28.17, 25.20, 24.39, 14.11. DART-AccuTOF MS: m/z 

calcd C23H39N2O5 [M+H]+ 423.2859, found 279.1572.  

tert-butyl (2-((4-((7-(hydroxyamino)-7-oxoheptyl)oxy)benzyl)amino)ethyl)carbamate 

(CF-L17-3). Similar synthesis procedure as CF-L16-3 yielded a white wax solid (yield: 75%). 

1H NMR (600 MHz, DMSO-d6): δ 10.34 (br, 1H), 7.19 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 

2H), 6.72 (t, J = 5.7 Hz, 1H), 3.91 (t, J = 6.5 Hz, 2H), 3.58 (s, 2H), 3.00 (q, J = 6.3 Hz, 2H), 2.48 

(t, J = 6.5 Hz, 1H), 1.94 (t, J = 7.4 Hz, 2H), 1.69 – 1.65 (m, 2H), 1.53 – 1.46 (m, 2H), 1.42 – 1.34 

(m, 11H), 1.31 – 1.25 (m, 2H). 13C NMR (151 MHz, DMSO-d6): δ 169.05, 157.40, 155.62, 

132.71, 129.02, 114.00, 77.43, 67.28, 52.09, 48.29, 39.95 (shown in HMQC spectrum), 32.20, 

28.62, 28.34, 28.25, 25.27, 25.07. DART-AccuTOF MS: m/z calcd C21H36N3O5 [M+H]+ 

410.2655, found 410.2661.  

7-(4-(((2-aminoethyl)amino)methyl)phenoxy)-N-hydroxyheptanamide hydrogen 

chloride (CF-L17). Similar synthesis procedure as CF-L16 afforded a white solid (yield: 92%). 

1H NMR (600 MHz, D2O): δ 7.46 (d, J = 6.0 Hz, 2H), 7.06 (d, J = 6.5 Hz, 2H), 4.28 (s, 2H), 4.08 

(t, J = 5.5 Hz, 2H), 3.44 (m, 4H), 2.16 (t, J = 6.8 Hz, 2H), 1.76 (m, 2H), 1.59 (m, 2H), 1.44 (m, 

2H), 1.35 (m, 2H). 13C NMR (151 MHz, D2O): δ 159.40, 131.71, 122.68, 115.53, 100.00, 68.69, 

51.21, 43.48, 35.57, 35.55, ESI-AccuTOF MS: m/z calcd C16H28N3O3 [M+H]+ 310.2131, found 

310.2125 HPLC: 95.2%.  
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Synthesis of (E)-N-hydroxy-3-(4-(((2-(pyridin-4-yl)ethyl)amino)methyl)phenyl)acrylamide 

(CF-L18). Similar synthesis procedure as CF-L16-2 produced a crude product CF-L18-1, which 

was used directly for the following step. Similar synthesis procedure as CF-L01 was applied to 

afford a light yellow solid (overall yield: 28%). 1H NMR (600 MHz, CD3OD): δ 8.44 (d, J = 6.1 

Hz, 2H), 7.56 (m, 3H), 7.41 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 6.1 Hz, 2H), 6.47 (d, J = 15.8 Hz, 

1H), 3.93 (s, 2H), 3.00 (m, 2H), 2.93 (dd, J = 8.4, 6.4 Hz, 2H). 

Synthesis of (E)-3-(4-(1-(3,4-diaminophenethyl)pyrrolidin-2-yl)phenyl)-N-

hydroxyacrylamide (CF-L19). 

4-acetamidophenethyl acetate (CF-L19-1). To a solution of 2-(4-aminophenyl)ethan-1-

ol (2.74 g, 19.97 mmol, 1.0 equiv) in DCM (50 mL) was added TEA (8.09 g, 11.1 mL, 79.9 

mmol, 4.0 equiv) and Ac2O (6.12 g, 59.92 mmol, 3.0 equiv). The reaction mixture was stirred 

under 0 °C for 45 min and then rt for overnight. The reaction was monitored by silica gel TLC 

(DCM/MeOH=10/1). The mixture was washed by water and brine twice, dried over anhydrous 

Na2SO4, concentrated under reduced pressure to afford a light-yellow solid as a crude product, 

which was further purified by recrystallization (EtOAc/Cyclohexane) to afford a white solid 

(3.55 g, yield: 80%). 1H NMR (600 MHz, CDCl3): δ 7.76 (s, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.13 

(d, J = 8.4 Hz, 2H), 4.23 (t, J = 7.1 Hz, 2H), 2.88 (t, J = 7.1 Hz, 2H), 2.14 (s, 3H), 2.02 (s, 3H). 

13C NMR (151 MHz, CDCl3): δ 171.23, 168.69, 136.67, 133.76, 129.42, 120.23, 65.02, 34.56, 

24.54, 21.07. DART-AccuTOF MS: m/z calcd C12H16NO3 [M+H]+ 222.1130, found 222.0921. 

4-acetamido-3-nitrophenethyl acetate (CF-L19-2). To a solution of CF-L19-1 (2.0 g, 

9.04 mmol, 1.0 equiv) in DCM (25 mL) was added Ac2O (1.85 g, 1.71 mL, 18.08 mmol, 2.0 

equiv) and cooled at  0 °C. Fuming HNO3 (0.9 mL, 18.08 mmol, 2.0 equiv) was added to the 
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mixture and stirred for 1 h. The reaction was monitored by silica TLC (PE/EtOAc=1/1) and 

another portion of fuming HNO3 was added if there was still starting material left. The mixture 

was poured into water and stirred for 30 min, after which the mixture was extracted with DCM 

three times. The combined organic layers were washed with water twice, dried over anhydrous 

Na2SO4, concentrated under reduced pressure to yield a yellow solid. The crude product was 

dissolved in minimum Et2O and left in the freezer for recrystallization. The recrystallized 

product was collected through vacuum filtration and washed with hexane to afford a bright-

yellow solid (2.03 g, yield: 84%). 1H NMR (600 MHz, CDCl3): δ 10.24 (s, 1H), 8.69 (d, J = 8.7 

Hz, 1H), 8.06 (d, J = 2.1 Hz, 1H), 7.50 (dd, J = 8.7, 2.2 Hz, 1H), 4.28 (t, J = 6.7 Hz, 2H), 2.96 (t, 

J = 6.6 Hz, 2H), 2.28 (s, 3H), 2.03 (s, 3H). 13C NMR (151 MHz, CDCl3): δ 170.95, 169.09, 

136.66, 136.37, 133.73, 133.55, 125.74, 122.51, 64.09, 34.13, 25.70, 20.98. DART-AccuTOF 

MS: m/z calcd C12H15N2O5 [M+H]+ 267.0981, found 267.0953.  

2-(4-amino-3-nitrophenyl)ethan-1-ol (CF-L19-3). To a solution of CF-L19-2 (1.8 g, 

6.76 mmol, 1.0 equiv) in MeOH (20 mL) was added 10 M NaOH (1.35 mL, 13.52 mmol, 2.0 

equiv) and stirred for 15 min. The reaction was monitored by silica gel TLC (PE/EtOAc=1/1) 

and another portion of NaOH was added if there was still starting material left. MeOH was 

removed under reduced pressure and the residue was extracted by DCM/H2O three times. The 

combined organic layers were washed with water twice, dried over anhydrous Na2SO4, 

concentrated under reduced pressure to afford bright red crystals (1.03 g, yield: 84%). 1H NMR 

(600 MHz, DMSO-d6):  δ 7.79 (d, J = 1.9 Hz, 1H), 7.34 – 7.23 (m, 3H), 6.94 (d, J = 8.7 Hz, 1H), 

4.60 (t, J = 5.2 Hz, 1H), 3.55 (dt, J = 6.7, 5.3 Hz, 2H), 2.61 (t, J = 6.7 Hz, 2H). 13C NMR (151 

MHz, DMSO-d6): δ 144.74, 137.15, 129.93, 126.96, 124.43, 119.06, 61.72, 37.36. DART-

AccuTOF MS: m/z calcd C8H11N2O3 [M+H]+ 183.0770, found 183.0764.  
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4-(2-bromoethyl)-2-nitroaniline (CF-L19-4). CF-L19-3 (1.0 g, 5.49 mmol, 1.0 equiv) 

was dissolved in 48% HBr solution (30 mL) and refluxed for 6 h. The reaction was monitored by 

silica gel TLC (PE/EtOAc=1/1). After the reaction mixture cooled down, it was poured into a 

beaker with 30 mL H2O, neutralized with saturated NaHCO3, extracted with DCM three times. 

The combined organic layers were washed with water twice, dried over anhydrous Na2SO4, 

concentrated under reduced pressure to afford an orange oil. The crude product was further 

purified by silica gel chromatography (EtOAc/PE=1/10-1/5) to afford a yellow oil, from which 

orange crystals formed after being left in the freezer overnight (1.0 g, yield: 74%). 1H NMR (600 

MHz, CDCl3): δ 7.97 (d, J = 2.1 Hz, 1H), 7.23 (dd, J = 8.5, 2.1 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 

6.04 (s, 2H), 3.53 (t, J = 7.2 Hz, 2H), 3.08 (t, J = 7.2 Hz, 2H). 13C NMR (151 MHz, CDCl3): δ 

143.75, 136.51, 132.07, 127.76, 125.77, 119.19, 37.81, 32.93. DART-AccuTOF MS: m/z calcd 

C8H10BrN2O2 [M+H]+ 244.9926, found 244.9903.  

tert-butyl 2-(4-bromophenyl)pyrrolidine-1-carboxylate (CF-L19-5). To a solution of 

2-(4-bromophenyl)pyrrolidine (2.0 g, 8.84 mmol, 1.0 equiv) in THF (30 mL), 1 M NaOH (9.73 

mL, 9.73 mmol, 1.1 equiv) and 1 M Boc2O in THF (9.29 mL, 9.29 mmol, 1.05 equiv) was added. 

NMR spectra of the precursors were shown in Appendix B and couldn’t differentiate 

enantiomers. The mixture was stirred at rt overnight. THF was removed under reduced pressure 

and the residual was extracted with EtOAc three times. The combined organic layers were 

washed with brine twice, dried over anhydrous Na2SO4, concentrated under reduced pressure to 

yield an oily crude product, which was further purified by silica gel chromatography (DCM) to 

afford a white solid (2.5 g, 87%).  1H NMR (600 MHz, DMSO-d6):  δ 7.49 (d, J = 7.3 Hz, 2H), 

7.13 (d, J = 7.4 Hz, 2H), 4.80 - 4.63 (m, 1H), 3.57 – 3.38 (m, 2H), 2.36 – 2.14 (m, 1H), 1.79 (m, 

2H), 1.70 – 1.60 (m, 1H), 1.38 – 1.11 (s, 9Hs). (two sets of signals indicate two diastereomers). 
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13C NMR (151 MHz, DMSO-d6):  δ 153.44, 153.30, 144.70. 143.86, 130.96, 130.88, 127.75, 

127.66, 119.24. 119.19, 78.48, 78.15, 60.24, 59.69, 46.99, 46.81, 35.48, 34.27, 28.11, 27.79, 

23.02, 22.72 (two sets of signals indicate two diastereomers). DART-AccuTOF MS: m/z calcd 

C15H21BrNO2 [M+H]+ 326.0756, found 326.0659. McLafferty rearrangement and 

decarboxylation occur during the DART-AccuTOF mass spectrometry measurement. 

tert-butyl (E)-2-(4-(3-methoxy-3-oxoprop-1-en-1-yl)phenyl)pyrrolidine-1-

carboxylate (CF-L19-6). To a solution of CF-L19-5 (1.63 g, 5.0 mmol, 1.0 equiv) in anhydrous 

ACN (20 mL) was added Pd(OAc)2 (56 mg, 0.25 mmol, 0.05 equiv), TEA (2.1 mL, 15 mmol, 

3.0 equiv) and methyl acrylate (1.29 g, 15 mmol, 3.0 equiv) under argon. The mixture was stirred 

at 90 °C for 20 h. All solvent was removed under reduced pressure and the residual was extracted 

with EtOAc three times. The combined organic layers were washed with brine twice, dried over 

anhydrous Na2SO4, concentrated under reduced pressure to yield an oily crude product, which 

was further purified by silica gel chromatography (DCM; DCM/EtOAc=20/1) to afford a white 

solid (850 mg, yield: 51%).  1H NMR (600 MHz, CDCl3):  δ 7.67 (d, J = 15.8 Hz, 1H), 7.45 (d, J 

= 7.7 Hz, 2H), 7.18 (s, 2H), 6.41 (d, J = 15.8 Hz, 1H), 4.93 – 4.75 (m, 1H), 3.78 (s, 3H), 3.61 (m, 

2H), 2.32 (m, 1H), 1.97 – 1.74 (m, 3H), 1.44 – 1.16 (s, 9H). 13C NMR (151 MHz, CDCl3):  δ 

167.61, 154.54, 144.88, 144.70, 132.86, 128.38, 128.11, 126.17, 126.03, 117.27, 117.16, 79.47, 

61.23, 60.65, 51.74, 47.48, 47.19, 36.02, 34.86, 28.59, 28.23, 23.71, 23.33. (two sets of signals 

indicate two diastereomers). DART-AccuTOF MS: m/z calcd C19H26NO4 [M+H]+ 332.1862, 

found 332.1769. 

Methyl (E)-3-(4-(pyrrolidin-2-yl)phenyl)acrylate hydrogen chloride (CF-L19-7). 

Following the same synthesis procedure as CF-L14 afforded a white powder (yield: 86%). 1H 

NMR (600 MHz, D2O):  δ 7.57 (m, 3H), 7.45 (d, J = 8.2 Hz, 2H), 6.44 (d, J = 16.1 Hz, 1H), 4.64 
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(m, 1H), 3.74 (s, 3H), 3.51 – 3.42 (m, 2H), 2.48 – 2.41 (m, 1H), 2.28 – 2.22 (m, 1H), 2.21 – 2.12 

(m, 2H). 13C NMR (151 MHz, D2O):  δ 169.55, 144.69, 136.71, 134.89, 128.94, 128.03, 118.11, 

62.80, 52.30, 45.50, 30.18, 23.48. DART-AccuTOF MS: m/z calcd C14H18NO2 [M+H]+ 

232.1338, found 232.1262.  

Methyl (E)-3-(4-(1-(4-amino-3-nitrophenethyl)pyrrolidin-2-yl)phenyl)acrylate (CF-

L19-8). To a solution of CF-L19-4 (450 mg, 1.84 mmol, 1.0 equiv) in ACN (25 mL) was added 

CF-L19-7 (761mg, 1.84 mmol, 1.0 equiv) and K2CO3 (761 mg, 5.5 mmol, 3.0 equiv). The 

resulting mixture was refluxed overnight. Partial ACN was removed under reduced pressure and 

the resulting mixture was extracted with EtOAC and H2O three times. The organic layers were 

combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced 

pressure to give a yellow crude product. The crude product was further purified by silica gel 

chromatography (DCM, DCM/EtOAc=10/1), which afforded a yellow product (500 mg, 69%). 

1H NMR (600 MHz, DMSO-d6): δ 7.67 (d, J = 2.0 Hz, 1H), 7.61 (d, J = 16.0 Hz, 1H), 7.56 (d, J 

= 8.2 Hz, 2H), 7.29 (s, 2H), 7.24 (d, J = 8.2 Hz, 2H), 7.15 (dd, J = 8.7, 2.1 Hz, 1H), 6.90 (d, J = 

8.6 Hz, 1H), 6.55 (d, J = 16.0 Hz, 1H), 3.71 (s, 3H), 3.33 – 3.27 (m, 2H), 2.61 – 2.51 (m, 3H), 

2.29 – 2.21 (m, 2H), 2.12 – 2.05 (m, 1H), 1.84 – 1.73 (m, 2H), 1.49 – 1.41 (m, 1H). 13C NMR 

(151 MHz, DMSO-d6): δ 166.72, 146.94, 144.69, 144.44, 136.82, 132.60, 129.85, 128.30, 

127.69, 127.62, 123.93, 119.00, 117.03, 68.77, 55.04, 52.86, 51.41, 34.91, 32.89, 22.32. DART-

AccuTOF MS: m/z calcd C22H26N3O4 [M+H]+ 396.1923, found 396.1859. 

Methyl (E)-3-(4-(1-(3,4-diaminophenethyl)pyrrolidin-2-yl)phenyl)acrylate (CF-L19-

9). To a solution of CF-L19-8 (450 mg, 1.14 mmol, 1.0 equiv) in EtOH/H2O (2/1; 20 mL) was 

added an iron powder (638 mg, 11.4 mmol, 10.0 equiv) and NH4Cl (305 mg, 5.7 mmol, 5.0 

equiv). The reaction mixture was refluxed for 1-2 h and monitored by silica gel TLC 
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(DCM/MeOH=20/1). All iron powder was removed via gravity filtration and EtOH was removed 

under reduced pressure. The residual was extracted with DCM three times. The organic layers 

were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under 

reduced pressure to give a brown solid (225 mg yield: 54%), which was confirmed by DART-

AccuTOF MS and used for the following step without further purification. DART-AccuTOF 

MS: m/z calcd C22H28N3O2 [M+H]+ 366.2180, found 366.2117.  

(E)-3-(4-(1-(3,4-diaminophenethyl)pyrrolidin-2-yl)phenyl)-N-hydroxyacrylamide 

(CF-L19). To a solution of CF-L19-9 (200 mg, 0.547 mmol, 1.0 equiv) in DCM/MeOH (1/2, 12 

mL) at 0 °C, hydroxylamine ( 50 wt% in water, 0.484mL, 8.21 mmol, 15.0 equiv) was added, 

followed by fine NaOH powder (219 mg, 5.47 mmol, 10.0 equiv). The solution was stirred at 

0 °C for 30 min and then allowed to warm to rt and stirred overnight. The solvent was removed 

under reduced pressure. H2O (2.5 mL) was added to the residual and the insoluble solid was 

removed by filtration. HCl (conc. 1-2 M) was added to adjust the pH (~9) and the mixture was 

extracted with EtOAc three times, dried over Na2SO4 and filtered. The EtOAc volume was 

reduced under reduced pressure and hexanes were added to induce the formation of the product. 

The organic solvent was removed using a centrifuge and the product was washed with dry Et2O 

three times and dried overnight to afford a brown powder (50 mg, yield: 25%). 1H NMR (600 

MHz, DMSO-d6): δ 10.73 (s, 1H), 9.03 (s, 1H), 7.48 (d, J = 8.1 Hz, 2H), 7.43 (d, J = 15.7 Hz, 

1H), 7.33 (d, J = 8.1 Hz, 2H), 6.42 (d, J = 15.8 Hz, 1H), 6.35 (d, J = 7.7 Hz, 1H), 6.23 (d, J = 1.9 

Hz, 1H), 6.10 (dd, J = 7.8, 1.9 Hz, 1H), 4.27 (s, 4H), 3.33 – 3.31 (m, 1H), 3.31 – 3.24 (m, 1H), 

2.55 (m, 1H), 2.48 (m, 1H), 2.38 – 2.32 (m, 1H), 2.25 (m, 1H), 2.19 – 2.06 (m, 2H), 1.87 – 1.73 

(m, 2H), 1.51 (m, 1H). ESI-AccuTOF MS: m/z calcd C21H27N4O2 [M+H]+ 367.2134, found 

367.2010.  
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3.3 HDAC Inhibition and Cell Viability Study 

 Two bioassays have been used to evaluate the HDAC inhibitors synthesized in our lab. 

The HDAC1 inhibition study was conducted by contract research organization Nanosyn, Inc, at 

Santa Clara, CA with the support from Newave Pharmaceutical. Inc. The cell viability study was 

performed at the School of Pharmacy in collaboration with Dr. Xin Guo’s lab, University of the 

Pacific. Colon cancer cell line HCT-116 (ATCC) and lung cancer cell line A549 (ATCC) were 

used for cytotoxicity evaluation. IC50 curves can be found in Appendix E. As all of the 

compounds synthesized in this project are organic molecules, the formulation solvent is DMSO. 

Please refer to section 2.3 for more experimental details. 
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Table 3.1 HDAC1 inhibition and cell viability for compound CF-L01 to CF-L12.* 

 

Compd X n R2 
HDAC1 inhibition HCT-116 viability A549 viability 

 IC50 (µM) IC50 (µM) IC50 (µM) 

SAHA 

 

6 

 

0.04 1.05 4.42 

CF-L01 

 

5 

 

1.74 17.46 N/A 

CF-L02 

 

6 0.17 2.67 9.56 

CF-L03 

 

5 

 

0.11 >50 N/A 

CF-L04 

 

6 

 

0.04 3.59 13.30 

CF-L05 

 

5 

 

>10 >50 N/A 

CF-L06 

 

6 

 

4.34 30.16 37.05 

CF-L07 

 

5 

 

0.45 4.45 5.93 

CF-L08 

 

6 

 

1.79 17.45 >50 

CF-L09 

 

5 

 

0.07 6.20 20.09 

CF-L10 

 

6 

 

0.03 1.98 43.99 

CF-L11 

 

5 

 
 

 

0.04 1.13 >50 

CF-L12 

 

6 
  

0.04 2.30 >50 

* IC50 values are means of at least three replicates 
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 HDAC1 inhibition and cell viability data are summarized in Table 3.1. Compound CF-

L04, CF-L10, CF-L11, and CF-L12 exhibited comparable HDAC1 inhibition activity with 

reference compound SAHA. When hydroxamic acid was used as the zinc-binding group (CF-

L01 to CF-L04), the linker with 6 carbons has significantly smaller IC50 values than those with 5 

carbons. The linkage being either ether or reversed amide bond does not significantly alter its 

inhibition. When ortho-aminoamilide was used as the zinc-binding group (CF-L05 to CF-L08), 

the linker with 6 carbons has significantly smaller IC50 if an ether bond was used as the linkage 

while the IC50 in an opposite trend was observed when a reversed amide bond was used as the 

linkage. When ortho-aminoamilide possessing a C-5 phenyl group was used as the zinc-binding 

group (CF-L09 to CF-L12), the linker with 6 carbons has smaller IC50 if an ether bond was used 

as the linkage while there is no significant difference when a reversed amide bond was used. It 

might be due to the additional binding of a C-5 phenyl group to the internal cavity, which 

weakened the effects of linker length. This also explained the high inhibition potency of CF-L09 

to CF-L12.  

 A similar trend was observed in the HCT-116 colon cancer cell viability study, with CF-

L02, CF-L04, CF-L07, and CF-L09 to CF-L12 showing promising IC50 value. The inhibition 

efficiency of CF-L09 to CF-L12 in A549 was low as shown by high IC50 values. The overall 

IC50 values are higher in the A549 cell line compared with those in HCT-116, indicating that 

these compounds might be less effective in treating A549 lung cancer. CF-L02, CF-L04, and 

CF-L07 are promising HDAC inhibitors for future development. Considering the complexity of 

synthesis and purification, hydroxamic acid with 6 carbon as linker was used for the design and 

synthesis of following HDAC inhibitors. 
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 CF-L13 to CF-L17 were synthesized by modifying the cap domain of SAHA while 

keeping the 6-carbon linker and hydroxamic acid as the zinc-binding group. CF-L18 and CF-

L19 were synthesized by modifying Panobinostat. Table 3.2 summarized HDAC1 inhibition. 

CF-L13 to CF-L17 have comparable efficacy with SAHA, indicating the modification of the cap 

domain does not affect the HDAC1 inhibition too much. By changing the cap of Panobinostat to 

pyridine, CF-L18 showed comparable inhibition with SAHA. CF-19 was designed by further 

increasing the bulkiness and rigidity of the linker. Its HDAC1 inhibition was significantly 

changed and the IC50 value reached to nM molar level (1.1 nM).  

 

 

 

Table 3.2 HDAC1 inhibition of CF-L13 to CF-L19. 

Compd SAHA CF-L13 CF-L14 CF-L15 CF-L16 CF-L17 CF-L18 CF-L19 

HDAC1 

IC50(nM) 
44.8±5.4 52.3±12.1 51.4±6.9 42.2±3.4 28.3±3.4 15.7±1.2 24.7±7.6 1.1±0.1 

 
 
 

3.4 Conclusions 

 19 new HDAC inhibitors have been synthesized, characterized and evaluated by HDAC 

inhibition assay and cell viability assay. The linker length and zinc-binding group of each 

inhibitor indeed affected the bioactivity. Modification of the inhibitors directly influences its 

HDAC inhibition and thus cell viability. The HCT-116 cell line is relative decent model for 

HDAC1 inhibition screening as the trend is the same as that of HDAC1 enzyme inhibition assay. 

A549 cell line is less sensitive to the HDAC inhibitors (CF-L01 to CF-L12). The 6-carbon 

linker demonstrating high efficacy in HDAC inhibition and hydroxamic acid ZBG from 

convenient synthesis were chosen for further HDAC inhibitor design. Thanks to the bulkiness 

and higher rigidity of the linker, CF-19 shows the most promising efficacy in HDAC1 inhibition. 
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 Pt-HDACi Conjugates 

4.1 Introduction 

 As mentioned in Chapter 1, platinum-based anticancer drugs, such as cisplatin, 

carboplatin, and oxaliplatin, have been approved for worldwide clinical use for decades. Nearly 

50% of all cancer therapies involve the use of them as stand-alone treatments or in combination 

with other drugs.1,113,114 However, their widespread application is hindered by either cross-

resistance or toxic side effects.1 One of the strategies to overcome those drawbacks is to make a 

newer generation of platinum-based anticancer drugs with multiple functions.13 For example, 

carbohydrates have been conjugated to platinum(II) to achieve targeting glucose receptors since 

glucose could enhance the uptake by cancer cells.115–123 Steroid, such as estrogen, testosterone, 

and bile acids, have been incorporated with platinum(II), acting as targeting unit that directs the 

platinum drug to receptors overexpressed with respective tissues.123–132 Since the solid-phase 

peptide synthesis was developed, the research of platinum(II)-peptide conjugates arose, which 

utilized either the targeting properties of specific peptide sequences133,134 or the enhanced cellular 

uptake properties.135–138 Other bioactive agents, such as dichloroacetate,139 diclofenac,140 

curcumin,141 and vorinostat 113 have also been installed onto platinum(II) centers through the 

leaving group carboxylate to achieve dual functions. Triple and even quadruple action of Pt (IV) 

prodrugs have been extensively explored by encompassing cyclooxygenases (COX) inhibitors, 

phosphoinositide-dependent protein kinase (PDK) inhibitor, and HDAC inhibitors.12,123 

 Since histone deacetylase plays a vital role in the epigenetic pathways and is a clinically 

approved and validated cancer target, HDAC inhibitors have been extensively involved in many 

designs of hybrid molecules, aiming to simultaneously target two or more biological targets to 

achieve the synergistic anticancer activity. There are a few HDACi-based hybrid molecules 
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currently investigated in clinical trial studies. HDACi can synergize with kinase inhibitors by 

improving the sensitivity of kinase drugs and inducing apoptosis. CUDC-101 depicted in Figure 

4.1 was prepared with a receptor tyrosine kinases (RTK) binding domain as the cap. It is derived 

from erlotinib, an approved drug for epidermal growth factor receptor (HER) inhibition.142  

CUDC-907, with a phosphatidylinositol-4,5-bisphosphate (PI3K) binding domain as the cap, has 

dual PI3K and HDAC inhibition and has entered phase II clinical trial studies.6,143 

Tinostamustine (EDO-S101) is a first-in-class alkylating deacetylase inhibitor, with the 

bendamustine pharmacophore as the cap domain.144 As a DNA/HDAC bifunctional agent, it 

shows enhanced anticancer activities, compared with its parent drugs, namely bendamustine and 

vorinostat.145 Domatinostat (4SC-202) is a lysine-specific demethylase 1 (LSD1) and HDAC 

bifunctional agent while both are crucial in the Wnt and Hedgehog (Hh) pathway. It is mainly 

employed to target resistant cancer stem cells.146 Many different HDAC hybrid molecules have 

been reported in the literature and for more details, the reader could refer to some nice review 

papers of this research area.146,147–149  
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Figure 4.1 HDACi-based hybrid agents in clinical trials. 6,150,146 

 
 
 

4.2 Design of Pt-HDACi Conjugates 

Since both the multifunctional platinum agents and hybrid HDAC inhibitors have DNA 

and HDAC as their shared biological targets, several Pt-HDACi conjugates have been reported in 

the literature.113,151,152 The first Pt-HDACi conjugate,  shown in Figure 4.2, was reported by Dr. 

Celine J. Marmion and her research team.113 The complex is a hybrid molecule of two FDA- 

approved drugs, cisplatin, and SAHA (vorinostat). Their gel electrophoresis proved the DNA 

binding function of the hybrid molecule and HDAC1 inhibition assay provided an IC50 value of 

1143 nM, which is around eightfold less active than the malonic acid precursor. When HDACi is 

incorporated into the platinum core as the leaving group, the hybrid molecule will eventually 
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dissociate into two different drugs, which might decrease the efficacy as they have a different 

pharmacokinetic profile and thus could not achieve enough synergistic effect.  

 

 

 

 

Figure 4.2 Pt-HDACi hybrid molecule reported by Marmion’s team.113,151 
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Figure 4.3 The design logic of Pt-HDACi conjugates. 
 
 
 

 A logical design strategy to incorporate the dual function could involve the installation of 

HDACi on the platinum center as a non-leaving group ligand. When the hybrid molecule reaches 

the cancer cells, the synergistic effect could be maintained as the relaxed chromatin structure 

makes DNA more susceptible to attack by the Pt drug. Picoplatin and SAHA derivatives are 

hybridized to form Pt-HDACi complexes, shown in Figure 4.3. According to the biostudies of 

HDACi in Chapter 3, CF-L02, CF-L04, and CF-L07 exhibited promising HDAC inhibition and 

cytotoxicity among the first 12 HDACi (Table 3.1). Only CF-L02 was used to incorporate with 
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platinum to form Pt-HDACi, CF-101, as it was feasible to obtain the pure product for further 

evaluation. The 2-methyl pyridine cap is crucial to form the desired monodentate product. 

According to the biostudies of picoplatin derivatives in Chapter 2, Pt-11 and Pt-12 showed 

comparable cell viability to cisplatin and picoplatin in ovarian cancer cell lines A2780 and 

A2780cis (Figure 2.8). The crystal structural analysis confirmed the cis configuration of Pt-11 

and Pt-12. HDAC inhibitors, CF-L13, CF-14, and CF-15, have comparable HDACi inhibition 

with SAHA (Table 3.2). Therefore, CF-102, CF-103, and CF-104 were also designed and 

synthesized by merging Pt-11 and Pt-12 with CF-L13, CF-L14, and CF-L15.  

Ethylenediamine has been extensively used as the non-leaving group linker for 

bifunctional platinum agent’s synthesis.13 It also showed decent cytotoxicity against A2780 and 

A2780cis cell lines (Figure 4.10 ). HDAC inhibitors, CF-L16 and CF-17, have better HDACi 

inhibition than SAHA (Table 3.2). Therefore, the bidentate Pt-HDACi hybrids (CF-201, and CF-

202) were also synthesized (Figure 4.5) by combing Pt-13 with CF-L16 and CF-L17.  
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Figure 4.4 Pt-HDACi hybrid molecules (bidentate binding) designed in current research.  
 
 

  

 

Figure 4.5 Pt-HDACi hybrid molecules (bidentate binding) designed in current research. 
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4.3 Preparation of Pt-HDACi Conjugates 

General procedures. Refer to part 2.2 in Chapter 2 

 

 

 

 

Scheme 4.1 Synthesis of CF-101. 

 

 

 

CF-101. CF-L02 (53 mg, 0.21 mmol, 1.0 equiv) dissolved in anhydrous DMF (3.0 mL) 

was slowly added to a solution of K[PtCl3(NH3)] (75 mg, 0.21 mmol, 1.0 equiv) in anhydrous 

DMF (3.0 mL). The mixture was stirred at 80 °C for 20 h. The byproducts were removed by 

filtration and the filtrate was concentrated under reduced pressure (40-45 °C, 125 rpm), which 

was then purified by preparative silica TLC (DCM/MeOH = 5/1). The gel band containing the 

product was scratched off, dissolved in anhydrous DMF, filtered, and concentrated to ~0.5 mL. 

The product was crushed out with the addition of EtOAc. The off-white product was collected 

via centrifugation, washed with EtOAc (twice), Et2O (three times), and dried under vacuum 

overnight (30 mg, yield: 23 %). 1H NMR (600 MHz, DMF-d7): δ 10.59 (s, 1H), 8.99 (br, 1H), 

8.78 (d, J = 5.3 Hz, 1H), 7.16 (s, 1H), 6.95 (s, 1H), 4.36 (s, 3H), 4.17 (t, J = 6.2 Hz, 2H), 3.10 (s, 

3H), 2.09 (t, J = 6.7 Hz, 2H), 1.77 (m, 2H), 1.59 (m, 2H), 1.45 (m, 2H), 1.36 (m, 2H). 13C NMR 

(151 MHz, DMF-d7): δ 170.53, 166.98, 163.45, 155.73, 112.82, 110.91, 69.77, 33.35, 29.45, 

29.29, 26.60, 26.24, 26.21. 195Pt NMR (129 MHz, DMF-d7): δ -2021.08. ESI-AccuTOF MS: m/z 

value of the most abundant isotope peak of C13H23Cl2N3O3PtNa, [M+Na]+ calcd 558.0646, found 
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558.0630. Anal. calcd for C13H23Cl2N3O3Pt (0.5 H2O): C, 28.67; H, 4.44; N, 7.72%. Found: C, 

28.77; H, 4.29; N, 7.45%.   

 

 

 

 

Scheme 4.2 Synthesis of CF-102, CF-103 and CF-104. 

 

 

 

CF-102. CF-L13 (46 mg, 0.173 mmol, 1.0 equiv) dissolved in anhydrous DMF (3.0 mL) 

was slowly added to a solution of K[PtCl3(2-picoline)] (TCPP) (75 mg, 0.173 mmol, 1.0 equiv) 

in anhydrous DMF (3.0 mL). The mixture was stirred at 80 °C for 20 h. Following the same 

procedure as CF-101, an off-white solid was produced (13 mg, yield: 12%). 1H NMR (600 MHz, 

DMF-d7): δ 10.95 (br, 1H), 10.51 (br, 1H), 9.18 (d, J = 4.9 Hz, 1H), 8.92 (br, 1H), 8.62 (d, J = 

5.7 Hz, 2H), 7.91 (t, J = 7.4 Hz, 1H), 7.72 (s, 2H), 7.59 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 6.2 Hz, 

1H), 3.17 (s, 3H), 2.44 (m, 2H), 2.05 (t, J = 7.2 Hz, 2H), 1.61 (m, 2H), 1.57 – 1.51 (m, 2H), 1.29 

(m, 4H). 13C NMR (151 MHz, DMF-d7): δ 174.34, 170.60, 162.22, 154.49, 153.75 (2), 148.92, 
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139.80, 127.93, 124.69, 115.74 (2), 37.72, 33.40, 29.53, 29.49, 26.47, 26.23, 25.63. 195Pt NMR 

(129 MHz, DMF-d7): δ -1973.65. AccuTOF MS: m/z value of the most abundant isotope peak of 

C19H26Cl2N4O3PtNa, [M+Na]+ calcd 647.0913, found 647.0849. Anal. calcd for 

C19H26Cl2N4O3Pt (0.5 H2O): C, 36.01; H, 4.30; N, 8.85%. Found: C, 35.66; H, 3.90; N, 8.64%.   

CF-103. CF-L14 (57 mg, 0.173 mmol, 1.0 equiv) dissolved in anhydrous DMF (3.0 mL) 

with DIEA (22.4 mg, 30 µL, 1.0 equiv) was slowly added to a solution of K[PtCl3(2-picoline)] 

(TCPP) (75 mg, 0.173 mmol, 1.0 equiv) in anhydrous DMF (3.0 mL). The mixture was stirred at 

80 °C for 20 h.  An off-white solid was obtained by following the same procedure as CF-101 (20 

mg, yield: 18%). 1H NMR (600 MHz, DMF-d7): δ 10.61 (s, 1H), 10.13 (s, 1H), 8.99 (br, 1H), 

8.62 (d, J = 5.1 Hz, 1H), 7.83 (t, J = 7.4 Hz, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 7.6 Hz, 

1H), 7.41 (d, J = 8.2 Hz, 2H), 7.24 (t, J = 6.3 Hz, 1H), 5.48 (d, J = 51.9 Hz, 2H), 3.87 (m, 2H), 

3.08 (s, 3H), 2.40 (t, J = 7.1 Hz, 2H), 2.08 (t, J = 7.2 Hz, 2H), 1.71 – 1.62 (m, 2H), 1.61 – 1.51 

(m, 2H), 1.40 – 1.27 (m, 4H). 13C NMR (151 MHz, DMF-d7): δ 172.66, 170.64, 162.57, 154.70, 

140.16, 138.95, 133.66, 130.43, 127.19, 123.71, 119.98, 50.29, 37.49, 33.31, 29.52, 29.46, 26.62, 

26.17(2). 195Pt NMR (129 MHz, DMF-d7): δ -2096.14. AccuTOF MS: m/z value of the most 

abundant isotope peak of C21H30Cl2N4O3PtNa, [M+Na]+ calcd 675.1227, found 675.1182. Anal. 

calcd for C21H30Cl2N4O3Pt (H2O): C, 37.60; H, 4.81; N, 8.36%. Found: C, 37.21; H, 4.41; N, 

8.13%.   

CF-104.  CF-L15 was used as the starting material and the reaction followed the same 

procedure as CF-103 to afford an off-white solid (yield: 18%). 1H NMR (600 MHz, DMF-d7): δ 

10.59 (s, 1H), 9.98 (s, 1H), 9.11 (d, J = 5.2 Hz, 1H), 7.89 (t, J = 7.4 Hz, 1H), 7.63 (d, J = 8.1 Hz, 

2H), 7.58 (d, J = 7.8 Hz, 1H), 7.39 (t, J = 6.4 Hz, 1H), 7.14 (d, J = 8.2 Hz, 2H), 5.19 (d, J = 61.0 

Hz, 2H), 3.20 (s, 3H), 3.02 – 2.94 (m, 2H), 2.90 – 2.79 (m, 2H), 2.37 (t, J = 7.0 Hz, 2H), 2.08 (t, 
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J = 7.3 Hz, 2H), 1.68 – 1.61 (m, 2H), 1.60 – 1.53 (m, 2H), 1.39 – 1.28 (m, 4H). δ 13C NMR (151 

MHz, DMF-d7): δ 172.45, 170.64, 162.57, 154.96, 139.18, 139.04, 133.96, 129.65, 127.42, 

124.09, 120.14, 48.70, 37.52, 36.62, 33.35, 29.57, 29.51, 26.75, 26.22(2). 195Pt NMR (129 MHz, 

DMF-d7): δ -2102.74. AccuTOF MS: m/z value of the most abundant isotope peak of 

C22H32Cl2N4O3PtNa, [M+Na]+ calcd 689.1384, found 689.1258. Anal. calcd for 

C22H32Cl2N4O3Pt (H2O): C, 38.58; H, 5.01; N, 8.19%. Found: C, 38.35; H, 4.80; N, 7.88%.   

Scheme 4.3 Pt-13, Pt-14, Pt-15 and Pt-16 synthesis 

 

 

 

 

Scheme 4.3 Synthesis of Pt-13, Pt-14, Pt-15 and Pt-16. 

 

 

 

PtCl2(ethylenediamine) (Pt-13). To a solution of ethylenediamine (18.01 mg, 20.13 uL, 

0.30 mmol, 1.25 equiv) in 2 mL of H2O was added a solution of  potassium 

tetrachloroplatinate(II), K2PtCl4 (100 mg, 0.241 mmol, 1.0 eq ) in 1 mL of H2O dropwise. A 

yellow solid precipitated out after 10-20 min of stirring. The solution continued to stir for 

additional 5-6 h at rt. The yellow solids were collected via vacuum filtration, washed with cold 

water, acetone, and ether, and dried under vacuum overnight (yield: 73%). 1H NMR (600 MHz, 

DMSO-d6) δ 5.29 (s, 4H), 2.23 (s, 4H).  
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PtCl2((±)-trans-1,2-cyclohexanediamine) (Pt-14). The same synthesis procedure as Pt-13 

was applied to afford a light-yellow crude product (yield: 74%). 1H NMR (600 MHz, DMSO-d6) 

δ 6.35 (m, 1H), 6.24 (m, 2H), 5.83 (t, J = 10.2 Hz, 1H), 2.34 (m, 2H), 1.95 (d, J = 12.8 Hz, 1H), 

1.89 (d, J = 13.8 Hz, 1H), 1.51 (m, 2H), 1.37 – 1.23 (m, 2H), 1.07 – 0.96 (m, 2H). ESI-AccuTOF 

MS: m/z value of the most abundant isotope peak of C6H14Cl2N2PtNa, [M+Na]+ calcd 403.0060, 

found 403.0047. 

PtCl2(phenylenediamine) (Pt-15). Following the same synthesis procedure as Pt-13 

afforded a light-yellow crude product (yield: 89%).1H NMR (600 MHz, DMSO-d6) δ 7.62 (s, 

4H), 7.16 (s, 4H). ESI-AccuTOF MS: m/z value of the most abundant isotope peak of 

C6H8Cl2N2PtNa, [M+Na]+ calcd 396.9590, found 403.0047. 

PtCl2(2-(aminomethyl)pyridine) (Pt-16). Following the same synthesis procedure as Pt-13 

afforded light-yellow crude product (yield: 76%).1H NMR (600 MHz, DMSO-d6) (one set) δ 

9.07 (ddd, J = 5.9, 1.5, 0.7 Hz, 1H), 8.12 (td, J = 7.7, 1.6 Hz, 1H), 7.64 (ddd, J = 7.9, 1.5, 0.8 Hz, 

1H), 7.48 (m, 1H), 6.20 (m, 2H), 4.08 (t, J = 5.9 Hz, 2H). 

 

 

 

 

Scheme 4.4 Synthesis of CF-201 and CF-202. 
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CF-201. To solution of CF-L16 (50 mg, 0.122 mmol, 1.0 equiv) in H2O (0.8 mL) and 

acetone (1 mL) was added 1 M NaOH (183 µL, 0.183 mmol, 1.5 equiv). The total volume is 

around 2 mL. The solution was stirred for 5 min and then added a solution of K2PtCl4 (50.7 mg, 

0.122 mmol, 1.0 equiv) in H2O (0.3 mL) dropwise. The solution was stirred for 3.5 h. The light-

yellow solid was collected via vacuum filtration, washed with cold water and acetone, dried 

under vacuum overnight (16 mg, yield: 22%). 1H NMR (600 MHz, DMF-d7): δ 10.53 (s, 1H), 

8.51 (s, 1H), 7.99 (d, J = 6.6 Hz, 2H), 7.78 (d, J = 6.8 Hz, 2H), 6.63 (s, 1H), 5.47 (s, 2H), 4.50 (d, 

J = 12.2 Hz, 1H), 4.23 (m, 1H), 3.36 (m, 2H), 2.74 – 2.50 (m, 3H), 2.50 – 2.38 (m, 1H), 2.07 (t, J 

= 6.9 Hz, 2H), 1.58 (m, 4H), 1.41 – 1.26 (m, 4H). 

CF-202. Following the same procedure as CF-201 afforded a light-yellow solid (yield: 

23%) 1H NMR (600 MHz, DMF-d7): δ 7.57 (d, J = 8.3 Hz, 2H), 6.97 (d, J = 8.3 Hz, 2H), 6.41 (s, 

1H), 5.43 (s, 2H), 4.39 (d, J = 13.2 Hz, 1H), 4.07 (dd, J = 13.5, 8.7 Hz, 1H), 4.01 (t, J = 6.3 Hz, 

2H), 2.64 (m, 2H), 2.58 (m, 1H), 2.44 (m, 1H), 2.09 (t, J = 7.5 Hz, 2H), 1.82 – 1.69 (m, 2H), 

1.60 (m, 2H), 1.52 – 1.42 (m, 2H), 1.37 (m, 2H). 

4.4 Results and Discussion 

Four bioassays have been used to evaluate the Pt-HDACi complexes. The DNA binding 

study was performed at Dr. Liang Xue’s lab in the Chemistry Department, University of the 

Pacific. The HDAC1 inhibition study was conducted by contract research organization Nanosyn, 

Inc, at Santa Clara, CA with the support from Newave Phamarceutical Inc. The cell viability 

study was performed at the pharmacy school with collaboration with Dr. Xin Guo’s lab, 

University of the Pacific. Colon cancer cell line HCT-116 and lung cancer cell line A549, 

ovarian cancer cell lines A2780 and A2780cis were used for cytotoxicity evaluation. The cellular 

uptake study was conducted in our lab at the chemistry department, University of the Pacific. 
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Since the complexes contain platinum, the formulation solvent is DMF. Please refer to section 

2.3 for more experimental details.  

4.4.1 Monodentate Pt-HDACi conjugate. CF-101, CF-102, CF-103, and CF-104 were 

synthesized as hybrid molecules between picoplatin and SAHA derivatives. Mass spectrometry 

and NMR have been used to confirm the mass and structures of the desired products. For 

example, the stacked 1H NMR spectra of CF-L13 and CF-102 confirmed the binding of the 

HDACi to the platinum core (Figure 4.6). Although there is no X-ray data to confirm the cis 

configuration of the Pt-HDACi conjugates, their 195Pt NMR shifts are very close to their 

corresponding picoplatin derivatives in a cis configuration under the same deuterated NMR 

solvent (Table 4.1). For example, the 195Pt NMR shift of CF-101 (-2021.08 ppm) is close to that 

of Pt-1 (-2042.86 ppm). The 195Pt NMR shift of CF-102 (-1973.65 ppm) is close to that of Pt-11 

(-1979.29 ppm). The 195Pt NMR shifts of CF-103 (-2096.14 ppm) and CF-104 (-2102.74 ppm) 

are close to that of Pt-12 (-2095.60 ppm).  

 

 

 

Table 4.1 195Pt NMR shifts of monodentate Pt-HDACi and its corresponding picoplatin 

derivatives. 

Compd CF-101 CF-102 CF-103 CF-104 Pt-1 Pt-11 Pt-12 

195Pt (ppm) -2021.08 -1973.65 -2096.14 -2102.74 -2042.86 -1979.29 -2095.60 
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Figure 4.6 The stacked 1H NMR spectra of CF-L13 (top, blue trace) and CF-102 (bottom, red 

trace) 
 
 
 

 

Figure 4.7 DNA gel electrophoresis of CF-101, CF-102, CF-103 and CF-104, reference to 

cisplatin and SAHA.  
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Figure 4.8 The DNA binding yields of Pt-HDACi conjugates. (confidence interval: 95%, p<0.1) 
 
 
 

 The DNA binding study was conducted following the protocol described in section 2.3. 

As the molecular weight of Pt-DNA adducts formed with Pt-HDACi conjugates is significantly 

larger than that of cisplatin adduct, the separation difference of Pt-HDACi is bigger than that of 

cisplatin (Figure 4.7). SAHA was used as the negative control and it showed no binding between 

DNA and SAHA. Quantitative study with three runs for each complex has also been conducted 

(Figure 4.8), which demonstrated that CF-101 has a better binding efficacy that other conjugates. 

The DNA binding studies confirm the function of platinum in the Pt-HDACi conjugates. 

 

 

 

Table 4.2 HDAC1 inhibition of Pt-HDACi conjugates and their corresponding free ligands. 

Pt-HDACi SAHA CF-101 CF-102 CF-103 CF-104 

HDAC1 IC50 (nM) 44.8±5.4 148±35.7 25±4.2 22.5±2.4 32.8±5.5 

Free ligand SAHA CF-L02 CF-L13 CF-L14 CF-L15 

HDAC1 IC50 (nM) 44.8±5.4 165±31.1 52.3±12.1 51.4±6.9 42.2±3.4 
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 Results from HDAC1 inhibition assay were summarized in Table 4.2. CF-102, CF-103, 

and CF-104 showed comparable or even better inhibition efficacy than SAHA. However, CF-

101 exhibited significantly less efficacy than other conjugates. It might be due to the less 

efficacy of its corresponding free ligand, CF-L02. All Pt conjugates showed slightly better 

HDAC1 inhibition than that of corresponding free ligands. Computational studies could have 

been applied to further explore the structure-activity relationship.  

 

 

 

1 0 -4 1 0 -2 1 0 0 1 0 2 1 0 4

0

5 0

1 0 0

1 5 0

L o g ( M )

C
e

ll
 v

ia
b

il
it

y
(
%

)

S A H A

C is p la t in

C F - 1 0 1

C F - 1 0 4

C F - 1 0 2

C F - 1 0 3

(a )

1 0 -4 1 0 -2 1 0 0 1 0 2 1 0 4

0

5 0

1 0 0

1 5 0

L o g ( M )

C
e

ll
 v

ia
b

il
it

y
(
%

)

S A H A

C is p la t in

C F - 1 0 1

C F - 1 0 2

C F - 1 0 3

C F - 1 0 4

(b )

 

1 0 -4 1 0 -2 1 0 0 1 0 2 1 0 4

0

5 0

1 0 0

1 5 0

L o g ( M )

C
e

ll
 v

ia
b

il
it

y
(
%

)

S A H A

C is p la t in

C F - 1 0 1

C F - 1 0 2

C F - 1 0 3

C F - 1 0 4

( c )

1 0 -4 1 0 -2 1 0 0 1 0 2 1 0 4

0

5 0

1 0 0

1 5 0

L o g ( M )

C
e

ll
 v

ia
b

il
it

y
(
%

)

S A H A

C is p la t in

C F - 1 0 1

C F - 1 0 2

C F - 1 0 3

C F - 1 0 4

(d )

 

Figure 4.9 IC50 curve of SAHA, cisplatin, and Pt-HDACi in (a) HCT-116, (b)A549, (c)A2780 

and (d) A2780cis cell lines. 
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Table 4.3 Cell viability IC50 values of Pt-HDACi in four different cancer cell lines. 

IC50 (µM) HCT-116 A549 A2780 A2780cis Resistance factor* 

SAHA 0.81 ± 0.02 3.55 ± 0.18 1.07 ± 0.16 0.40 ± 0.07 N/A 

Cisplatin 6.13 ± 0.31 8.88 ± 0.70 0.97 ± 0.06 4.22 ± 0.21  4.35 

CF-101 5.95 ± 0.44 22.80 ± 3.66 4.22 ± 0.46 3.53 ± 0.58  0.84 

CF-102 14.84 ± 0.39 N/A 30.92 ± 6.64 N/A N/A 

CF-103 21.28 ± 0.96 >50  13.37 ± 0.41 13.39 ± 1.84  1.00 

CF-104 21.46 ± 9.69 >50  14.49 ± 1.44 N/A N/A 

     *Resistance factor (Rf) is defined as IC50(A2780cis)/IC50(A2780) 

 

 

 

Four solid tumor cancer cell lines, including colon cancer HCT-116, lung cancer A549 

and ovarian cancer A2780 and A2780cis, have been used to evaluate the cytotoxicity of the Pt-

HDACi conjugates (Figure 4.9). The IC50 values are summarized in Table 4.3. Although SAHA 

showed the best efficacy in terms of cytotoxicity in all four cell lines, it has not been approved 

for colon, lung and ovarian solid tumors treatment and one of the reasons may be its short 

elimination half-life (t1/2:1-2 h).153,154 Our project focuses on Pt-HDACi conjugates and used for 

solid tumor treatment. Cisplatin is our reference drug with a much longer elimination half-life 

and less frequent administration depending on the cancer type. Our complex is more effective on 

HCT-116 and A2780 cell lines while A549 and A2780cis cell lines are less sensitive to our Pt-

HDACi conjugates. Among all the Pt-HDACi conjugates, CF-101 shows the best efficacy, 

which is comparable with cisplatin in HCT-116 and A2780cis. CF-101 also has the lowest 

resistance factor (0.84) whereas cisplatin has a Rf value of 4.35. Further extending the HDACi 

away from the platinum core (CF-102, CF-103, and CF-104) will decrease the cytotoxicity.  
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Figure 4.10 Cellular accumulation of platinum from cisplatin, Pt-HDACi in four different cancer 

cell lines. (treated at 10µM for 24 h) **** p≤0.0001, *** p≤0.001, * p≤0.1, ns p >0.1. 
 
 
 

Table 4.4 Cellular accumulation of platinum from cisplatin, Pt-HDACi in four different cancer 

cell lines. (treated at 10µM for 24 h). 

Mean (ng Pt/106 cell) HCT-116 A549 A2780 A2780cis 

Cisplatin 27.14 ± 1.10 58.42 ± 6.17 46.84 ± 4.54 8.58 ± 3.58  

CF-101 40.22 ± 3.29 60.77 ± 3.72 61.19 ± 1.07 56.44 ± 9.23  

CF-102 53.06 ± 3.07 54.29 ± 1.22 84.68 ± 1.00 22.65 ± 1.74  

CF-103 10.33 ± 1.32 6.77 ± 3.70 19.05 ± 3.69 14.69 ± 4.30  

CF-104 30.69 ± 3.35 28.77 ± 2.86 33.1 ± 5.61 16.67 ± 4.40  

 

 

 

In order to gain more insight, cellular accumulation study was conducted according to the 

protocol described in section 2.3.3. The test compounds (10 µM) were incubated with the cancer 

cell lines for 24 h and the platinum level was measured by ICP-OES (Figure 4.10 and Table 4.4 

). The higher platinum cellular accumulation of CF-101 than that of cisplatin (*** p≤0.001) in 

HCT-116 and A2780cis may contribute to the comparable cytotoxicity with cisplatin. The 

platinum accumulation levels of CF-103 and CF-104 in A549 are significantly lower than that of 
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cisplatin and CF-101 (**** p≤0.0001), which explains the decreasing cytotoxicity of these 

compounds in A549. The platinum accumulation level of CF-102 in A549 is not significantly 

different from that of cisplatin and CF-101 (ns p >0.1), which indicates the low cytotoxicity of 

CF-102 is not due to the accumulation. The higher platinum cellular accumulation of CF-101 in 

A2780 compared to cisplatin (** p≤0.01) does not result in higher cytotoxicity. Although the 

platinum accumulation level of CF-102 in A2780 is significantly higher than all other test 

compounds (*** p≤0.001), it shows the lowest cytotoxicity with highest IC50. The higher 

platinum cellular accumulation of CF-103 and CF-104 in A2780 than that of cisplatin (** 

p≤0.01) may contribute to the decent cytotoxicity. The lowest IC50 of CF-101 in A2780cis cell 

line may derive from the highest platinum cellular level (*** p≤0.001). The platinum 

accumulation level of CF-101 (and CF-103) in A2780 and A2780cis cell lines are not 

significantly different (ns p >0.1), which may contribute to the low resistance factor. Overall, 

CF-101 shows promising efficacy as a lead compound and further studies should be performed 

in the future.  
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4.4.2 Bidentate Pt-HDACi conjugate. The monodentate Pt-HDACi complex synthesis 

involves multiple steps and the purification process is time consuming due to running 
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Figure 4.11 Preliminary cell viability screening of Pt-13, Pt-14, and Pt-15 in two different 

ovarian cell lines at two different concentrations. (a) A2780 with 5 µM, (b) A2780 with 20 µM, 

(c) A2780cis with 5 µM, (d) A2780cis with 20 µM. 
 
 
 

chromatography. Therefore, four small bidentate platinum complexes (Pt-13, Pt-14, Pt-15, and 

Pt-16) have been synthesized (Scheme 4.3) and evaluated on A2780 and A2780cis cell lines 
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(Figure 4.11) (Pt-16 was eliminated due to the low solubility). All of them show promising 

efficacy. Although Pt-14 (PtCl2((±)-trans-1,2-cyclohexanediamine)) shows the best efficacy, it is 

hard to synthesize the enantiomerically pure ligand with HDAC inhibition. Therefore, only Pt-13 

(PtCl2(ethylenediamine)) and Pt-15 (PtCl2(phenylenediamine)) were further explored.  

 CF-L16 with ethylenediamine as the binding site was designed and shown even better 

HDAC1 inhibition (28.3 nM) than SAHA (44.8 nM) (Table 3.2). Therefore, the first bidentate 

Pt-HDACi was synthesized by combing CF-L16 and Pt-13 together. However, the resulting 

complex CF-201 (Scheme 4.4) has bad solubility in both aqueous and organic solvents. In order 

to improve the solubility for biostudies, CF-202 was designed and synthesized by changing the 

amide bond to an ether bond (Scheme 4.4). However, there is no big change in solubility.  

 CF-L19 with a phenylenediamine cap was designed (Figure 3.6) from structure 

modification of Panobinostat. The tertiary amine will improve the water solubility while 

sterically hinder the binding with platinum. Although it is a racemic mixture, the HDAC1 IC50 

has reached nM level (1.1 nM). The enantiomerically pure compound will be obtained and 

conjugated with platinum soon. 

4.5 Conclusions 

 Four new Pt-HDACi conjugates have been synthesized, characterized and evaluated by 

DNA electrophoresis, HDAC inhibition assay, cell viability assay, and cellular accumulation 

assay. All the conjugates could bind to DNA and have HDAC inhibition as bifunctional 

molecules. CF-101 shows promising bioactivity data as the lead compound in HCT-116, A549, 

A2780, and A2780cis. The lowest IC50 of CF-101 in A2780cis cell line may derive from the 

highest platinum cellular level. The low resistance factor of CF-101 might be due to the similar 
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platinum accumulation level in A2780 and A2780cis cell. Two bidentate Pt-HDACi conjugates 

have been synthesized, but biostudies were not conducted due to the low solubility.  

 In order to further understand how these Pt-HDACi works, more intracellular 

experiments need to be conducted to confirm the DNA damage and HDAC inhibition. CF-101 

could be used as the lead compound for further structural modification and in vivo studies.   
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APPENDIX A: SYNTHESIS SCHEME 

 

Scheme 1. Synthesis of HDAC Inhibitor CF-L01 

 

Reagents and conditions: (a) oxepan-2-one, KOH, DMSO, 75 °C; (b) Concentrated H2SO4, EtOH, 

reflux, 73%; (c) NH2OH (50 wt% in water), NaOH, DCM/MeOH (1/2), rt, 80%.    

 

Scheme 2. Synthesis of HDAC Inhibitor CF-L02 

 

Reagents and conditions: (a) m-CPBA, DCM, rt, 89%; (b) 4-bromo-2-methylpyridine, KOH, 

DMSO, 75 °C; (c) Concentrated H2SO4, EtOH, reflux, 54%; (d) NH2OH (50 wt% in water), NaOH, 

DCM/MeOH (1/2), rt, 82%.    
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Scheme 3. Synthesis of HDAC Inhibitor CF-L03 

 

Reagents and conditions: (a) ethyl hydrogen pimelate, HATU, DIEA, DMF rt, 56%; (b) NH2OH 

(50 wt% in water), NaOH, DCM/MeOH (1/2), rt, 72%. 

 

Scheme 4. Synthesis of HDAC Inhibitor CF-L04 

 

Reagents and conditions: (a) 8-Methoxy-8-oxooctanoic acid, HATU, DIEA, DMF rt, 43%; (b) 

NH2OH (50 wt% in water), NaOH, DCM/MeOH (1/2), rt, 69%.   

  

Scheme 5. Synthesis of HDAC Inhibitor CF-L05 

 

Reagents and conditions: (a) Oxepan-2-one, KOH, DMSO, 75 °C; (b) o-Phenylenediamine, 

HATU, DIEA, DMF rt, 41%; (c) Concentrated H2SO4, EtOH, reflux, 73%; (d) NaOH, THF/H2O 

(1/1), rt, 35%.  
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Scheme 6. Synthesis of HDAC Inhibitor CF-L06 

 

Reagents and conditions: (a) m-CPBA, DCM, rt, 89%; (b) 4-bromo-2-methylpyridine, KOH, 

DMSO, 75 °C; (c) o-Phenylenediamine, HATU, DIEA, DMF rt, 43%; (d) Concentrated H2SO4, 

EtOH, reflux, 54%; (e) NaOH, THF/H2O (1/1), rt, 48%.  

 

Scheme 7. Synthesis of HDAC Inhibitor CF-L07 

 

Reagents and conditions: (a) ethyl hydrogen pimelate, HATU, DIEA, DMF rt, 56%; (b) NaOH, 

THF/H2O (1/1), rt, 58%; (c) o-Phenylenediamine, HATU, DIEA, DMF rt, 48%. 

 

Scheme 8. Synthesis of HDAC Inhibitor CF-L08 

 

Reagents and conditions: (a) 8-Methoxy-8-oxooctanoic acid, HATU, DIEA, DMF rt, 43%; (b) 

NaOH, THF/H2O (1/1), rt, 65%; (c) o-Phenylenediamine, HATU, DIEA, DMF rt, 51%. 
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Scheme 9. Synthesis of HDAC Inhibitor CF-L09 

 

Reagents and conditions: (a) Oxepan-2-one, KOH, DMSO, 75 °C; (b) tert-butyl (3-amino-[1,1'-

biphenyl]-4-yl)carbamate, HATU, DIEA, DMF rt, 80%; (c) Concentrated H2SO4, EtOH, reflux, 

73%; (d) NaOH, THF/H2O (1/1), rt, 35%. (e) 4M HCl in dioxane, rt, 63%. 

 

Scheme 10. Synthesis of HDAC Inhibitor CF-L10 

 

Reagents and conditions: (a) m-CPBA, DCM, rt, 89%; (b) 4-bromo-2-methylpyridine, KOH, 

DMSO, 75 °C; (c) tert-butyl (3-amino-[1,1'-biphenyl]-4-yl)carbamate, HATU, DIEA, DMF rt, 

75%; (d) Concentrated H2SO4, EtOH, reflux, 54%; (e) NaOH, THF/H2O (1/1), rt, 48%. (f) 4M 

HCl in dioxane, rt, 60%. 
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Scheme 11. Synthesis of HDAC Inhibitor CF-L11 

 

Reagents and conditions: (a) ethyl hydrogen pimelate, HATU, DIEA, DMF rt, 56%; (b) NaOH, 

THF/H2O (1/1), rt, 58%; (c) ) tert-butyl (3-amino-[1,1'-biphenyl]-4-yl)carbamate, HATU, DIEA, 

DMF rt, 93%; (d) 4M HCl in dioxane, rt, 64%. 

 

Scheme 12. Synthesis of HDAC Inhibitor CF-L12 

 

Reagents and conditions: (a) 8-Methoxy-8-oxooctanoic acid, HATU, DIEA, DMF rt, 43%; (b) 

NaOH, THF/H2O (1/1), rt, 65%; (c) ) tert-butyl (3-amino-[1,1'-biphenyl]-4-yl)carbamate, HATU, 

DIEA, DMF rt, 86%; (d) 4M HCl in dioxane, rt, 51%. 
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Scheme 13. Synthesis of HDAC Inhibitor CF-L13 

 

Reagents and conditions: (a) 8-Methoxy-8-oxooctanoic acid, HATU, DIEA, DMF rt, 46%; (b) 

NH2OH (50 wt% in water), NaOH, DCM/MeOH (1/2), rt, 39%.    

 

Scheme 14. Synthesis of HDAC Inhibitor CF-L14 

 

Reagents and conditions: (a) 8-Methoxy-8-oxooctanoic acid, HATU, DIEA, DMF rt, 82%; (b) 

NH2OH (50 wt% in water), NaOH, DCM/MeOH (1/2), rt, quantitative yield; (c) 1M HCl in EtOAc, 

rt. quantitative yield.  
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Scheme 15. Synthesis of HDAC Inhibitor CF-L15 

 

Reagents and conditions: (a) 8-Methoxy-8-oxooctanoic acid, HATU, DIEA, DMF rt, 83%; (b) 

NH2OH (50 wt% in water), NaOH, DCM/MeOH (1/2), rt, 96%; (c) 1M HCl in EtOAc, rt. 

quantitative yield.  

 

Scheme 16. Synthesis of HDAC Inhibitor CF-L16 

 

Reagents and conditions: (a) Methyl 7-aminoheptanoate hydrochloride, HATU, DIEA, DMF rt, 

88%; (b) tert-butyl (2-aminoethyl)carbamate, NaBH4, MeOH, rt, 89%;  (c) NH2OH (50 wt% in 

water), NaOH, DCM/MeOH (1/2), rt, 67%; (d) 1M HCl in EtOAc, rt. 92%.  
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Scheme 17. Synthesis of HDAC Inhibitor CF-L17 

 

Reagents and conditions: (a) Ethyl 7-bromoheptanoate, K2CO3, ACN, reflux, 54%; (b) tert-butyl 

(2-aminoethyl)carbamate, NaBH4, MeOH, rt, 91%;  (c) NH2OH (50 wt% in water), NaOH, 

DCM/MeOH (1/2), rt, 75%; (d) 1M HCl in EtOAc, rt. 92%.  

 

Scheme 18. Synthesis of HDAC Inhibitor CF-L18 

 

Reagents and conditions: (a) Methyl (E)-3-(4-formylphenyl)acrylate, NaBH4, MeOH, rt; (b) 

NH2OH (50 wt% in water), NaOH, DCM/MeOH (1/2), rt, 28% overall yield 
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Scheme 19. Synthesis of HDAC Inhibitor CF-L19 

 

Reagents and conditions: (a) Ac2O, TEA, DCM, rt, overnight, 80%; (b) Fuming HNO3, Ac2O, 

DCM, 0 °C, 1 h, 84%;  (c) NaOH, MeOH, rt, 84%; (d) 48% HBr, reflux, 6 h, 74%; (e) Boc2O, 

NaOH, THF, rt, overnight, 87%; (f) methyl acylate, Pd(OAc)2, Ph3P, TEA, anhydrous ACN, 90 

°C, 20 hr, 51%; (g) 1M HCl in EtOAc, rt. overnight, 86%; (h) ACN, K2CO3, reflux, overnight, 

69%; (i) Fe powder, NH4Cl, EtOH/H2O (2/1), reflux, 54% (j) NH2OH (50 wt% in water), NaOH, 

DCM/MeOH (1/2), rt, 25% 
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APPENDIX B: NMR SPECTRA DATA 

 

 

1H NMR spectrum of TCPP in D2O 
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13C NMR spectrum of TCPP in D2O 
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195Pt NMR spectrum of TCPP in D2O 



141 

 

 

1H NMR spectrum of Pt-1 in DMF-d7 



142 

 

 

13C NMR spectrum of Pt-1 in DMF-d7 
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195Pt NMR spectrum of Pt-1 in DMF-d7 
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1H NMR spectrum of Pt-2 in DMF-d7 
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13C NMR spectrum of Pt-2 in DMF-d7 



146 

 

 

195Pt NMR spectrum of Pt-2 in DMF-d7 
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1H NMR spectrum of Pt-3 in DMF-d7 
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13C NMR spectrum of Pt-3 in DMF-d7  
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195Pt NMR spectrum of Pt-3 in DMF-d7 
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1H NMR spectrum of Pt-4 in DMF-d7  
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13C NMR spectrum of Pt-4 in DMF-d7  
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195Pt NMR spectrum of Pt-4 in DMF-d7 
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1H NMR spectrum of Pt-5 in DMF-d7  
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13C NMR spectrum of Pt-5 in DMF-d7  
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HMQC NMR spectrum of Pt-5 in DMF-d7 (
13C δ 30.81, 30.87 overlaps with solvent residual 

peak) 
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195Pt NMR spectrum of Pt-5 in DMF-d7 
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1H NMR spectrum of Pt-6 in DMF-d7  
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13C NMR spectrum of Pt-6 in DMF-d7  
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195Pt NMR spectrum of Pt-6 in DMF-d7 
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1H NMR spectrum of Pt-7 in DMF-d7  
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13C NMR spectrum of Pt-7 in DMF-d7  
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195Pt NMR spectrum of Pt-7 in DMF-d7 
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1H NMR spectrum of Pt-8 in DMF-d7  



164 

 

 

13C NMR spectrum of Pt-8 in DMF-d7  



165 

 

 

195Pt NMR spectrum of Pt-8 in DMF-d7 
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1H NMR spectrum of Pt-9 in DMF-d7  
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13C NMR spectrum of Pt-9 in DMF-d7  
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HMQC NMR spectrum of Pt-9 in DMF-d7 (
13C δ 24.21, 24.17 overlap) 
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195Pt NMR spectrum of Pt-9 in DMF-d7 
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1H NMR spectrum of Pt-10 in DMF-d7  
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13C NMR spectrum of Pt-10 in DMF-d7  
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195Pt NMR spectrum of Pt-10 in DMF-d7 
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1H NMR spectrum of Pt-11 in DMF-d7  
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13C NMR spectrum of Pt-11 in DMF-d7  
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HMQC NMR spectrum of Pt-11 in DMF-d7 (
13C δ 154.00, 127.53 represents 2 aromatic 13C 

respectively) 
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195Pt NMR spectrum of Pt-11 in DMF-d7 
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1H NMR spectrum of Pt-12 in DMF-d7  
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13C NMR spectrum of Pt-12 in DMF-d7  
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HMQC NMR spectrum of Pt-12 in DMF-d7 (The 13C peak signals between 127.30 and 130.15 

ppm represent 6 aromatic 13C) 
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195Pt NMR spectrum of Pt-12 in DMF-d7 
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1H NMR spectrum of Pt-13 in DMSO-d6 
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1H NMR spectrum of Pt-14 in DMSO-d6 
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1H NMR spectrum of Pt-15 in DMSO-d6 
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1H NMR spectrum of Pt-16 in DMSO-d6 
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1H NMR spectrum of CF-L01-2 in CDCl3 
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13C NMR spectrum of CF-L01-2 in CDCl3 
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1H NMR spectrum of CF-L01 in CD3OD 
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13C NMR spectrum of CF-L01 in CD3OD 
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1H NMR spectrum of CF-L02-3 in CDCl3 
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13C NMR spectrum of CF-L02-3 in CDCl3 
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1H NMR spectrum of CF-L02 in CD3OD 
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13C NMR spectrum of CF-L02 in CD3OD 
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1H NMR spectrum of CF-L03-1 in CDCl3 



194 

 

 

13C NMR spectrum of CF-L03-1 in CDCl3 
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1H NMR spectrum of CF-L03 in DMSO-d6 
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13C NMR spectrum of CF-L03 in DMSO-d6 
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1H NMR spectrum of CF-L04-1 in CDCl3 
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13C NMR spectrum of CF-L04-1 in CDCl3 
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1H NMR spectrum of CF-L04 in DMSO-d6 
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13C NMR spectrum of CF-L04 in DMSO-d6 
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1H NMR spectrum of CF-L05-1 in DMSO-d6 
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13C NMR spectrum of CF-L05-1 in DMSO-d6 
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1H NMR spectrum of CF-L05 in CD3OD 
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13C NMR spectrum of CF-L05 in CD3OD 
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1H NMR spectrum of CF-L06-1 in CD3OD 
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13C NMR spectrum of CF-L06-1 in CD3OD 
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1H NMR spectrum of CF-L06 in CD3OD 
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13C NMR spectrum of CF-L06 in CD3OD 
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1H NMR spectrum of CF-L07-1 in DMSO-d6 



210 

 

 

13C NMR spectrum of CF-L07-1 in DMSO-d6 
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1H NMR spectrum of CF-L07 in CD3OD 
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13C NMR spectrum of CF-L07 in CD3OD 
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1H NMR spectrum of CF-L08-1 in DMSO-d6 
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13C NMR spectrum of CF-L08-1 in DMSO-d6 
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1H NMR spectrum of CF-L08 in CD3OD 
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13C NMR spectrum of CF-L08 in CD3OD 
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1H NMR spectrum of CF-L09 in CD3OD 
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13C NMR spectrum of CF-L09 in CD3OD 
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1H NMR spectrum of CF-L10 in CD3OD 
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13C NMR spectrum of CF-L10 in CD3OD 
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1H NMR spectrum of CF-L11 in CD3OD 
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13C NMR spectrum of CF-L11 in CD3OD 
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1H NMR spectrum of CF-L12 in CD3OD 
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13C NMR spectrum of CF-L12 in CD3OD 
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1H NMR spectrum of CF-L13-1 in CDCl3 
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13C NMR spectrum of CF-L13-1 in CDCl3 
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1H NMR spectrum of CF-L13 in DMSO-d6 
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13C NMR spectrum of CF-L13 in DMSO-d6 
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1H NMR spectrum of CF-L14-1 in DMSO-d6 



230 

 

 

13C NMR spectrum of CF-L14-1 in DMSO-d6 
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1H NMR spectrum of CF-L14-2 in DMSO-d6 
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13C NMR spectrum of CF-L14-2 in DMSO-d6 
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1H NMR spectrum of CF-L14 in DMSO-d6 
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13C NMR spectrum of CF-L14 in DMSO-d6 
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1H NMR spectrum of CF-L15-1 in DMSO-d6 
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13C NMR spectrum of CF-L15-1 in DMSO-d6 
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1H NMR spectrum of CF-L15-2 in DMSO-d6 
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13C NMR spectrum of CF-L15-2 in DMSO-d6 
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1H NMR spectrum of CF-L15 in DMSO-d6 
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13C NMR spectrum of CF-L15 in DMSO-d6 
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1H NMR spectrum of CF-L16-1 in CDCl3 
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13C NMR spectrum of CF-L16-1 in CDCl3 
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1H NMR spectrum of CF-L16-2 in DMSO-d6 
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13C NMR spectrum of CF-L16-2 in DMSO-d6 
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HMQC NMR spectrum of CF-L16-2 in DMSO-d6 (
13C δ 39.95 overlaps with solvent residual 

peak) 
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1H NMR spectrum of CF-L16-3 in DMSO-d6 
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13C NMR spectrum of CF-L16-3 in DMSO-d6 
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HMQC NMR spectrum of CF-L16-3 in DMSO-d6 (
13C δ 39.12, 39.97 overlaps with solvent 

residual peak) 
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1H NMR spectrum of CF-L16 in DMSO-d6+ D2O (2-3 drops) 
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13C NMR spectrum of CF-L16 in DMSO-d6+ D2O (2-3 drops) 
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HMQC NMR spectrum of CF-L16 in DMSO-d6+ D2O (13C δ 39.30 overlaps with solvent 

residual peak) 
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1H NMR spectrum of CF-L17-1 in CDCl3 
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13C NMR spectrum of CF-L17-1 in CDCl3 
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1H NMR spectrum of CF-L17-2 in DMSO-d6 
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13C NMR spectrum of CF-L17-2 in DMSO-d6 



256 

 

 

HMQC NMR spectrum of CF-L17-2 in DMSO-d6+ D2O (13C δ 39.93 overlaps with solvent 

residual peak) 
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1H NMR spectrum of CF-L17-3 in DMSO-d6 
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13C NMR spectrum of CF-L17-3 in DMSO-d6 
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HMQC NMR spectrum of CF-L17-3 in DMSO-d6 (
13C δ 39.95 overlaps with solvent residual 

peak) 
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1H NMR spectrum of CF-L17 in D2O 
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13C NMR spectrum of CF-L17 in D2O 



262 

 

 

HMQC NMR spectrum of CF-L17 in D2O 
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1H NMR spectrum of CF-L18 in CD3OD 
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1H NMR spectrum of CF-L19-1 in CDCl3 



265 

 

 

13C NMR spectrum of CF-L19-1 in CDCl3 
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1H NMR spectrum of CF-L19-2 in CDCl3 
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13C NMR spectrum of CF-L19-2 in CDCl3 
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1H NMR spectrum of CF-L19-3 in DMSO-d6 
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13C NMR spectrum of CF-L19-3 in DMSO-d6 
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1H NMR spectrum of CF-L19-4 in CDCl3 
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13C NMR spectrum of CF-L19-4 in CDCl3 
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1H NMR spectrum of 2-(4-bromophenyl)pyrrolidine in DMSO-d6 (couldn’t differentiate 

enantiomers) 
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13C NMR spectrum of 2-(4-bromophenyl)pyrrolidine in DMSO-d6 (couldn’t differentiate 

enantiomers) 
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1H NMR spectrum of CF-L19-5 in DMSO-d6 (two sets of signals indicate diastereomers) 
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13C NMR spectrum of CF-L19-5 in DMSO-d6 (two sets of signals indicate diastereomers) 
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1H NMR spectrum of CF-L19-6 in CDCl3 (two sets of signals indicate diastereomers) 
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13C NMR spectrum of CF-L19-6 in CDCl3 (two sets of signals indicate diastereomers) 



278 

 

 

1H NMR spectrum of CF-L19-7 in D2O 
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13C NMR spectrum of CF-L19-7 in D2O 
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1H NMR spectrum of CF-L19-8 in DMSO-d6 
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13C NMR spectrum of CF-L19-8 in DMSO-d6 (EtOAc peaks also exist) 
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1H NMR spectrum of CF-L19 in DMSO-d6 



283 

 

 

1H NMR spectrum of CF-101 in DMF-d7 
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13C NMR spectrum of CF-101 in DMF-d7 
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195Pt NMR spectrum of CF-101 in DMF-d7 
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1H NMR spectrum of CF-102 in DMF-d7 
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13C NMR spectrum of CF-102 in DMF-d7 
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HMQC NMR spectrum of CF-102 in DMF-d7 (
13C δ 153.78, 115.72 represents 2 aromatic 13C 

respectively) 
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195Pt NMR spectrum of CF-102 in DMF-d7 
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1H NMR spectrum of CF-103 in DMF-d7 
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13C NMR spectrum of CF-103 in DMF-d7 
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HMQC NMR spectrum of CF-103 in DMF-d7 (
13C δ 26.17 represents two 13C) 



293 

 

 

195Pt NMR spectrum of CF-103 in DMF-d7 
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1H NMR spectrum of CF-104 in DMF-d7 
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13C NMR spectrum of CF-104 in DMF-d7 
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HMQC NMR spectrum of CF-104 in DMF-d7 
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195Pt NMR spectrum of CF-104 in DMF-d7 
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1H NMR spectrum of CF-201 in DMF-d7 
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1H NMR spectrum of CF-202 in DMF-d7 
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APPENDIX C: MASS SPECTRA DATA 

 

 

ESI-MS mass spectrum of TCPP   
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ESI-AccuTOF mass spectrum of Pt-1  
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ESI-AccuTOF mass spectrum of Pt-2 
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ESI-AccuTOF mass spectrum of Pt-3 
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ESI-AccuTOF mass spectrum of Pt-4 
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ESI-AccuTOF mass spectrum of Pt-5 
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ESI-AccuTOF mass spectrum of Pt-6 
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ESI-AccuTOF mass spectrum of Pt-7 
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ESI-AccuTOF mass spectrum of Pt-8 
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ESI-AccuTOF mass spectrum of Pt-9 
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ESI-AccuTOF mass spectrum of Pt-10 
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ESI-AccuTOF mass spectrum of Pt-11 
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ESI-AccuTOF mass spectrum of Pt-12 
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ESI-AccuTOF mass spectrum of Pt-14 
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ESI-AccuTOF mass spectrum of Pt-15 
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DART-AccuTOF mass spectrum of CF-L01-2  
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DART-AccuTOF mass spectrum of CF-L01 
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DART-AccuTOF mass spectrum of CF-L02-3 
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DART-AccuTOF mass spectrum of CF-L02 
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DART-AccuTOF mass spectrum of CF-L03-1 
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DART-AccuTOF mass spectrum of CF-L03 
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DART-AccuTOF mass spectrum of CF-L04-1 
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DART-AccuTOF mass spectrum of CF-L04 
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DART-AccuTOF mass spectrum of CF-L05-1 
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DART-AccuTOF mass spectrum of CF-L05 
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DART-AccuTOF mass spectrum of CF-L06-1 
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DART-AccuTOF mass spectrum of CF-L06 
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DART-AccuTOF mass spectrum of CF-L07-1 
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DART-AccuTOF mass spectrum of CF-L07 
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DART-AccuTOF mass spectrum of CF-L08-1 
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DART-AccuTOF mass spectrum of CF-L08 
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DART-AccuTOF mass spectrum of CF-L09 
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DART-AccuTOF mass spectrum of CF-L10 
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DART-AccuTOF mass spectrum of CF-L11 
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DART-AccuTOF mass spectrum of CF-L12 
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DART-AccuTOF mass spectrum of CF-L13-1 
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DART-AccuTOF mass spectrum of CF-L13 
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DART-AccuTOF mass spectrum of CF-L14-1 
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DART-AccuTOF mass spectrum of CF-L14-2 
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ESI-AccuTOF mass spectrum of CF-L14-2 
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ESI-AccuTOF mass spectrum of CF-L14 
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DART-AccuTOF mass spectrum of CF-L15-1 
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DART-AccuTOF mass spectrum of CF-L15-2 
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ESI-AccuTOF mass spectrum of CF-L15-2 
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DART-AccuTOF mass spectrum of CF-L15 
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ESI-AccuTOF mass spectrum of CF-L15 
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DART-AccuTOF mass spectrum of CF-L16-1 
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DART-AccuTOF mass spectrum of CF-L16-2 
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DART-AccuTOF mass spectrum of CF-L16-3 
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DART-AccuTOF mass spectrum of CF-L16 
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DART-AccuTOF mass spectrum of CF-L17-1 
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DART-AccuTOF mass spectrum of CF-L17-2 
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DART-AccuTOF mass spectrum of CF-L17-3 
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ESI-AccuTOF mass spectrum of CF-L17 
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Varian 320 ESI mass spectrum of CF-L18 
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DART-AccuTOF mass spectrum of CF-L19-1 
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DART-AccuTOF mass spectrum of CF-L19-2 
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DART-AccuTOF mass spectrum of CF-L19-3 
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DART-AccuTOF mass spectrum of CF-L19-4 
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DART-AccuTOF mass spectrum of CF-L19-5 
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DART-AccuTOF mass spectrum of CF-L19-6 
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DART-AccuTOF mass spectrum of CF-L19-7 
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DART-AccuTOF mass spectrum of CF-L19-8 
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DART-AccuTOF mass spectrum of CF-L19-9 
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ESI-AccuTOF mass spectrum of CF-L19 
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ESI-AccuTOF mass spectrum of CF-101 
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ESI-AccuTOF mass spectrum of CF-102 
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ESI-AccuTOF mass spectrum of CF-103 
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ESI-AccuTOF mass spectrum of CF-104 
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APPENDIX D: X-RAY DATA 

 

 

            

                X-ray structure of TCPP                                      X-ray structure of Picoplatin   

 

 

                  

               X-ray structure of Pt-2                                              X-ray structure of Pt-3 
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                     X-ray structure of Pt-4                                   X-ray structure of Pt-5 

 

     

            X-ray structure of Pt-12 
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X-ray structure of CF-L09  

 

 

X-ray structure of CF-L10  
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APPENDIX E: BIOSTUDY DATA 

 

 

A2780 cells (20 ×) with round shape morphology 

 

A2780cis cells (20 ×) with fibroblastic morphology 

 

 



373 

 

 

Thermal ESI-LTQ mass spectrum of pure DNA with 7 negative charges. 
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Thermal ESI-LTQ mass spectrum of DNA-cisplatin adduct with 7 negative charges. 
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Thermal ESI-LTQ mass spectrum of DNA-Pt-1 (picoplatin)adduct with 7 negative charges. 
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Thermal ESI-LTQ mass spectrum of DNA-Pt-3 adduct with 7 negative charges. 
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Thermal ESI-LTQ mass spectrum of DNA-Pt-4 adduct with 7 negative charges. 
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Thermal ESI-LTQ mass spectrum of DNA-CF-101 adduct with 7 negative charges. 
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IC50 curve of CF-L01 to CF-L12 in HCT-116 
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IC50 curve of CF-L01 to CF-L12 in A549 
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DNA gel electrophoresis of cisplatin, Pt-1, Pt-2, Pt-3 and Pt-4 (left to right) with three runs for 

each. 

 

 

DNA gel electrophoresis of cisplatin, Pt-5, Pt-6, Pt-7 and Pt-8 (left to right) with three runs for 

each. 
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DNA gel electrophoresis of cisplatin, Pt-9, Pt-10, Pt-11 and Pt-12 (left to right) with three runs 

for each. 

 

 

DNA gel electrophoresis of cisplatin and CF-101 (left to right) with three runs for each. 
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DNA gel electrophoresis of cisplatin, CF-102, CF-103, CF-104 and SAHA (left to right) with 

three runs for each. 
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