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Lung cancer leads in mortality among all types of cancer in the US and Non-small cell 

lung cancer (NSCLC) is the major type of lung cancer.  Immuno-compromised mice bearing 

xenografts of human lung cancer cells represent the most common animal models for studying 

lung cancer biology and for evaluating potential anticancer agents.  However, orthotopic lung 

cancer models based on intrapulmonary injection of suspended cancer cells feature premature 

leakage of the cancer cells to both sides of the lung within five days, which generates a quick 

artifact of metastasis and thus belies the development and progression of lung cancer as seen in 

the clinic.   

Based on intrapulmonary inoculation of multicellular spheroids (MCS), we have 

developed the first orthotopic xenograft model of lung cancer that simulates all four clinical 

stages of NSCLC progression in mice over one month: Stage 1 localized tumor at the inoculation 

site; Stage 2 multiple tumor nodules or larger tumor nodule on the same side of the lung; Stage 3 

cancer growth on heart surface; and Stage 4 metastatic cancer on both sides of the lung.  The 

cancer development was monitored conveniently by in vivo fluorescent imaging and validated by 

open-chest anatomy, ex vivo fluorescent imaging, and histological studies.  The model enjoys 
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high rates of postoperative survival (100%) and parenchymal tumor establishment (88.9%).  The 

roughness of the inoculated MCS is associated negatively with the time needed to develop 

metastatic cancer (p=0.0299).   

In addition, we have constructed a co-culture MCS that consisted of A549-iRFP lung 

cancer cells and WI38 normal human fibroblast cells.  The pro-proliferation effect and the high 

expression of α-smooth muscle actin (α-SMA) by the co-cultured WI38 cells indicated their 

transformation from normal fibroblasts to cancer-associated fibroblasts (CAFs).  The 

morphology of the co-culture MCS features a round shape, a tight internal structure, and quicker 

development of roughness.  The large roughness value of co-culture MCS suggests that small co-

culture MCS could be inoculated into mice lung with a small needle to reduce the surgical 

trauma.   

Taken together, a new orthotopic model of NSCLC has been developed, which would 

facilitate future development of medications against lung cancer. 
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Chapter 1: Introduction 

1.1.  Lung Cancer  

In 2019, there are 228,150 estimated new cases and 142,670 estimated deaths from lung 

cancer in the US.  Among all oncological diseases, lung cancer claims the highest mortality 

(23.5%) in the US and the most new cases in developing countries [1].  Based on histological 

features, lung cancer is classified either as non-small cell lung cancer (NSCLC), which is the 

most prevalent type (85%), or small cell lung cancer (SCLC) [2].  Tobacco smoking is the main 

etiology for lung cancer in countries where smoking is common.  Small-Cell lung cancer (SCLC) 

is more common in smokers compared with never-smokers, and is characterized as highly 

aggressive, poorly prognosed and widely metastatic [3, 4].  The 5-year survival rate of SCLC is 

only 7%, much lower than NSCLC (23%) [5].   

In NSCLC, lung adenocarcinoma, squamous cell carcinoma and large cell carcinoma are 

the common subtypes.  Lung adenocarcinoma carries the histological features of acinar papilla 

and solid adenocarcinoma with mucin, and accounts for 40% of NSCLC.  Lung adenocarcinoma 

tends to develop as a solid tumor in smaller airways, such as bronchioles and is usually located 

more along the outer edges of the lungs.  About 25% of lung cancers are squamous cell 

carcinomas, which carries a squamous morphology and tends to be found in the central lung near 

the bronchi and tracheal [6].  In the clinic, NSCLC is categorized into 4 stages according to its 

progression: Stage 1 primary tumor localized in one side of the lung; Stage 2 multiple tumors 

within one side of the lung or a single tumor larger than 5 cm in diameter; Stage 3 cancer that has 

spread into the lymph nodes, heart surface and/or chest wall; and Stage 4 cancer that has 

metastasized to both sides of the lung, the fluid in the chest and/or other organs [5].   
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The treatment of NSCLC includes surgery, radiotherapy, first-line cytotoxic therapy 

(platinum drugs), targeted therapy (based on the patient's genetic alterations), and 

immunotherapy.  According to the pathological features, patients diagnosed with squamous cell 

carcinoma will be given platinum-based chemotherapy or pembrolizumab when PD-L1 is largely 

expressed (>50% in cancer cells).  For patients diagnosed with lung adenocarcinoma, the 

treatment varies in targeted chemotherapy, such as erlotinib (EGFR mutation) and crizotinib 

(ALK mutation), and immunotherapy [7].  According to the clinical stage, patients diagnosed 

with Stage 1 or 2 will be suggested with surgery to remove the tumor followed by adjunct 

therapy.  For the clinical Stage 3, patients will be given chemo and radiotherapy.  For patients 

with advanced lung cancer, chemotherapy, targeting-therapy, and immunotherapy will be given 

based on the molecular pathology of the tumor [5].  Therefore, the diagnosis of histological 

subtypes and the four stages of NSCLC progression are critical for designing the treatment. 

In recent years, the critical role of the tumor microenvironment (TME) in tumorigenesis, 

angiogenesis and metastasis has been established.   In the TME of human lung adenocarcinoma, 

the heterogeneity of many components such as cancer-associated fibroblasts (CAFs), vasculature 

system, extracellular matrix (ECM) and tumor-infiltrating immune cells are associated with poor 

prognosis [8].   

In a solid tumor, collagens, proteoglycans, and fibronectin mainly constitute the ECM.  

These proteins not only build up a dense barrier to limit drug penetration, but also mediate the 

interactions between cancer cells and stromal cells to promote carcinogenesis.  In LKB1 (tumor 

suppressor gene) deficient mice, collagen deposition and ECM remodeling contribute to a 

pathological transformation from human lung adenocarcinoma to squamous cell carcinoma [9].   
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CAFs have been studied in many types of cancer, including NSCLC, where the pro-

tumor effects of CAFs have been shown in cancer proliferation, invasion and metastasis.  

Although the origin of CAFs is still unknown, the cancer cells have been known to re-educate 

normal fibroblasts to CAFs.  For example, after being co-cultured with human lung cancer cells, 

the normal human fibroblast WI38 cells assumed the ability to promote cancer cell invasion [10].  

CAFs, after being isolated from human lung cancer specimen, also facilitated cancer metastasis 

by secreting interleukin-6 (IL6) to activate the STAT3 cell signaling pathway [8, 11].   In a 

clinical study, the higher level of podoplanin-positive CAFs was significantly associated with 

higher 5-year recurrence rate in patients of Stage 1 lung adenocarcinoma [12].  Taken together, 

CAFs play an important role in the TME of NSCLC to stimulate the cancer growth. 

Despite the basic research on NSCLC and the advances in therapeutic standards in the 

clinic, no general platform which reflects the features of tumor progression has been adopted for 

screening drug candidates.  The currently available models in pre-clinical research serve specific 

needs, such as high-throughput drug screening or studies on tumorigenesis mechanisms.  Among 

them, mouse models are designed to mimic the complex human cancer biology and are widely 

used in drug development.  Mouse model in oncology research will be briefly reviewed in the 

next section. 

1.2 Mouse Cancer Models in Pre-clinical Research 

Mouse models play an essential role in pre-clinical oncology research.  Whether to 

evaluate drug efficacy or to study the pathological mechanisms of cancer, mouse models serve to 

eventually benefit clinical outcomes.  Mouse models are being continually optimized since the 

first allografts mouse model was developed in the 1960’s, which helped discover the anticancer 

agent vincristine [13].  To date, there are four different categories of mouse models in oncology 
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research, namely the cell-line derived xenografts (CDX), patient-derived xenografts (PDX), 

environmentally induced mouse models, and genetically engineered mouse models (GEMM). 

1.2.1 Cell-derived xenograft (CDX).  CDX were developed in the 1980s when 

researchers transplanted human tumor cells into immunodeficient mice [14].  CDX quickly 

replaced allograft mouse models as the tool for evaluating drug candidates.  The development of 

the NCI60 panel provides a valuable resource for CDX and further facilitated its application 

[15].  The predominant CDX is a subcutaneous xenograft, where the tumor develops under the 

skin.  This tractable model has advantages such as low-cost, easy techniques, and high 

reproducibility.  The potential of cancer metastasis in CDX is dependent on both the intrinsic 

characteristics of the tumor cells and their environment in the host, which can differ between 

tissues and organs [16].  Indeed, the anatomical site where the human cancer cells are injected 

influences cancer progression.  The microenvironment surrounding the subcutaneous tumors 

does not meet the conditions for metastasis [17], whereas orthotopic implantation can better 

mimic the disease microenvironment.  In orthotopic xenografts, cancer cells are injected into the 

organ of its origin to study the metastasis pattern.  The cancer growth in an orthotopic xenograft 

features local tissue invasion.  Moreover, subcutaneous xenografts possess unfaithful vasculature 

that limits cancer metastasis, which in turn limits the model’s ability to predict drug response in 

the clinic [18].  For example, hydralazine was shown to enhance the effect of reducing blood 

flow in a subcutaneous xenograft.  However, the effect later was shown to be ineffective as a 

therapeutic strategy to inhibit the blood flow both in the clinic and an orthotopic rodent model 

[19]. 

Compared to subcutaneous xenografts, the main disadvantages of orthotopic xenograft 

models are the complex surgical procedures and the difficulty in tracking tumor growth.  The 
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technical difficulties vary by an disease.  Injection of human breast cancer cells into the 

mammalian fat pad to build orthotopic breast cancer model is readily achievable in most 

laboratories that carry out animal studies [20].  However, the construction of orthotopic lung 

cancer and glioblastoma models need  well-trained operators and specialized equipment [21].  

Many clinically used imaging methods such as small animal CT/PET, MRI, ultrasound, x-ray 

can also be used to monitor tumor growth on mice.  However, these methods require expensive 

instruments, a relatively long-time for each scan, and some also involve unhealthy radiation [22].  

In order to trace the cancer progression, invasion and metastasis efficiently in orthotopic 

xenografts, researchers have developed “labeled” tumor cell lines.  These cells carry proteins 

which could be illuminated, such as green fluorescence protein (GFP), red fluorescence protein 

(RFP), or firefly luciferase.  These proteins are activated either by fluorescent light or an 

enzymatic reaction to locate the cancer cells by their emission light.  The advantages of labeled 

tumor cells are that the progress/response of the tumor can be tracked with efficient imaging, the 

internal tumors can be measured, and cancer metastasis can be monitored [23]. 

1.2.2 Patient-derived xenograft (PDX).  As a useful tool for personalized medicine, 

patient-derived xenograft (PDX) models can faithfully recapture the histological and genetic 

features of a particular patient’s cancer.  Typically, PDX are constructed in mice by 

subcutaneously inoculating a fresh tumor graft that is surgically derived from a patient [24].  

This model is better aligned with the disease condition compared to CDX.  PDX in mice can 

maintain the same molecular and pathological characteristics of a patient’s cancer over limited 

passage expansion.  Moreover, the remaining stromal cells in the tumor graft can be retained 

over several passages, providing an accurate tumor microenvironment [25].  By selectively 
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implanting the tumor grafts, PDX is currently the only model that could reflect the hypermutant 

tumor progression and the intra-tumor heterogeneity [26]. 

PDX show great potential in precisely predicting drug response.  A high-throughput 

screening study to predict drug response by employing the PDX model shows reproducibility 

and clinical translatability.  Almost 1000 PDX models across six types of cancer have been 

developed, their genotype and drug response analyzed, and their corresponding clinical outcomes 

correlated [27].   

Despite PDX’s encouraging advances, its’s application is limited by the high cost and the 

large variations in tumor growth.  The lack of collaboration between clinics and research labs 

prohibits most research labs from utilizing PDX to evaluate therapeutic agents.  Moreover, the 

engraftment rate of PDX varies by tumor types, level of gene mutations, and molecular 

complexity.   Another limitation of PDX is that the inoculation site of the patient-derived graft is 

mainly subcutaneous.  The technical challenges in the grafting and the following imaging have 

so far restricted the studies on PDX in academia [15, 25, 28]. 

1.2.3 Environmentally induced mouse model.  The environmentally induced mouse 

models have two main applications in testing potential carcinogens for human and in studying 

the causes of cancer.  Such models started with coal tar to induce skin cancer 100 years ago and 

have now included many environmental carcinogens, such as chemicals, radiation and pathogens 

[29].   Animal models of a variety of cancers, including skin [30], lung [31], liver [32] and colon 

cancer [33], have been established in this manner.  These models closely mimic the genetic and 

molecular heterogeneity of the corresponding human cancer.  A comparison of gene variations 

between urethane-induced lung cancer mouse model and human lung adenocarcinoma revealed 

an overlap of the oncogene mutations.  Many of the frequently mutated genes in human lung 
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cancer, such as Arid1b, ALK, APC, JAK2, Mll2, Rb1, were also mutated in environmentally 

induced mouse tumors [31]. 

However, the environmentally induced mouse models are criticized for their long latent-

period and large variations in tumor growth.  A relatively large animal number is needed for the 

study design [25].  Therefore, the application of this type of model remains limited in current 

cancer research. 

1.2.4 Genetically engineered mouse model (GEMM).  Transgenic mice were first 

generated in the 1980s by injecting the recombinant oncogenes MK into mouse eggs [25].  

Subsequently, tumor suppressor gene (p53) knockout mice were developed in 1992 [34].   

However, in the oncomice or tumor suppressor gene (TSG) knockout mice, the genetic mutations 

exist in all cells of the animal.  This wide expression of transgenes causes early death of the 

transgenic mice and thus prohibits the normal progress of cancer [35].  To address these 

problems, more complex mouse models that carry mechanisms of TSG inactivation or oncogene 

activation have been developed.  Such conditional GEMM can induce gene mutations at a 

specific tissue based on a site-specific recombinase system, such as Cre-loxP, Cre-ERT, Flp-

FRT, and Tet-on/off.  Intratracheal or intranasal administration of adenovirus can deliver Cre 

recombinase that activates Kras to build a non-small cell lung cancer model.  The tumor 

formation and progression starts 2–3 weeks after administration, and the median survival rate 

was around 150 days.  The cancer was initiated at multiple places and progressed sequentially 

according to a four-stage grading system.  Another more aggressive model of NSCLC was 

created by combining the knockout of the tumor suppressor gene p53 with the activation of the 

oncogene Kras [36].  For another example, a dual-recombinase system that combined Cre-loxP 

and Flp-FRT allowed a multistep genetic manipulation in mice.  This sequential induction of 
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gene mutations mimicked the increase of mutation burden during the progression of pancreatic 

cancer [37].  Overall, GEMM represent valuable tools in studying cancer initiation and 

progression. 

GEMM have made reliable predictions in evaluating targeted anticancer therapy.  

Compared to first-line chemotherapy alone, combining the chemotherapy with an anti-vascular 

endothelial growth factor (VEGF) antibody, Bevacizumab increased the median overall survival 

(OS) in NSCLC patients by 2 months.  In a corresponding study on a Kras mutated GEMM 

model of NSCLC, the combination showed a similar improvement (2.5 months) of OS, thus 

demonstrating that GEMM could retrospectively reproduce patients’ response to an oncological 

treatment in clinic [38]. 

Despite many advantages of GEMM both in drug development and in basic oncological 

research, several drawbacks limit its application.  First, early deaths from the burden of multiple 

primary tumors per animal in GEMMs hamper their simulation of cancer metastasis.  Secondly, 

one or two genetic variations dominate in GEMM, resulting in less tumor heterogeneity.  Third, 

GEMM is time-consuming and expensive, which limit its application in many labs [25, 35]. 

1.2.5 Status quo and future challenges.  A statistical study on a total of 949 oncology 

publications found that 65% of them utilized mouse models.   CDX was used in 82%, GEMM in 

24%, PDX in 7%, and environmentally induced mouse model in 6% of these publications (Fig.1) 

[25].  109 studies used more than one type of the mouse models, the percentages added up to 

more than 100%.  Overall, the CDX was by far the most widely used animal models in pre-

clinical research. 
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Figure 1: Percentage of usage by different types of tumor models in pre-clinical studies that were 

published in 2016 [25] 

 

 

 

Different mouse models are used at different frequencies for different types of cancers.  

The CDX model is used predominantly in melanoma (95%), breast cancer (93%) and brain 

cancer (91%).  On the other hand, 60% of pancreatic cancer models are GEMM.  This is 

probably because of the successful identification of the genes that can enhance the development 

of pancreatic cancer in GEMM.  Environmentally induced model is used in liver cancer and 

colon cancer because of the easy administration of the carcinogens into the digestive system 

[25].  (Fig.2) 
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Figure 2: Frequency distribution of cancer models for eight common solid tumor types.  [25] 

 

 

 

 One of the major concerns of mouse tumor models is the precise reflection of cancer 

progression.  In general, cancer initiates with neoplastic cells, then grows into a small tumor 

nodule, then invades the surrounding tissue and develops its vasculature, and eventually 

metastasizes.  The de novo growth of tumors in GEMM and environmentally induced mouse 

model reflects tumorigenesis, but the primary tumors are multi-focal, which leads to early organ 

failure and substantially shortens the lifespan of the mice.  Thus, these two models primarily 

mimic cancer metastasis [39].  As to the PDX and CDX models, the subcutaneous implantation 

of tumors leads to a non-autochthonous growth of cancer.  The site of engraftment significantly 

influences the metastasis potential of the tumor, and for many types of cancer cells, the 

subcutaneous xenografts in mice rarely progress to metastasis.  In contrast, orthotopic 

transplantation models are supported by a relevant tumor microenvironment and tend to well 

reflect cancer metastasis [40]; however, the CDX model is mainly limited by its unreliable 

prediction of targeted therapy [15]. 

 The main challenges of constructing a reliable pre-clinical mouse cancer model to benefit 

drug development are: (1) development of a single focal primary tumor; (2) recapitulation of 
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cancer progression and metastasis; (3) convenient imaging to track the cancer growth; and (4) 

high efficiency and low cost that would facilitate usage for laboratory research. 

1.3 CDX Model of NSCLC  

 The establishment of the NCI60 panel has facilitated the development of CDX models.  

Around 200 cell lines for NSCLC have been reported in biomedical research.  Allograft models 

that were constructed from murine lung cancer cells showed aggressive growth and distant 

metastasis.  Mice that were subcutaneously injected with Lewis lung carcinoma cells showed 

multiple tumor nodules in the lung [41].  However, the molecular and pathological differences 

between the human cancer cells and murine cancer cells mislead the assessment of efficacy of 

drug candidates.  Hence, xenograft models using human cancer cells were developed in the 

1990s [25].  For NSCLC, there are four methods of constructing a CDX model that will be 

introduced as below. 

 First, human cancer cells or grafts can be inoculated subcutaneously into 

immunodeficient mice.  Due to its easy technique (no anesthesia, easy injection) and convenient 

tumor measurement, 58% of the CDX models in literatures were based on subcutaneous 

engraftment [25].  In NSCLC, hypoxia and angiogenesis both play a major role in solid tumor 

progression; however, in  subcutaneous xenografts, cancer progresses differently because of the 

irrelevant host microenvironment.  CDX models from subcutaneous injection of A549 cells 

showed strong hypoxia conditions compared with either the orthotopic implantation models or 

the spontaneous genetic models.  Interestingly, the average oxygen levels of lung tumors are 

higher than those of other solid tumors in patients, which would yield a less hypoxic condition in 

the clinic than the subcutaneous models reflect [42].   
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 To address this shortcoming, orthotopic lung cancer models have been developed either 

by surgical implantation of tumor grafts, or by direct injection of suspended cancer cells into the 

lung [43].  Surgical implantation utilizes tumor fragments from fresh tumors or subcutaneously-

grown tumors of NSCLC cells.   One tumor graft was inserted into the lung parenchyma of each 

mouse through the open chest surgery.   The tumor graft can be inoculated at the desired site to 

mimic the tumor initiation and the histological analysis showed a confined tumor nodule in the 

lung.  Despite the advantages of the surgical implantation method, the technical difficulties, 

specialized facilities (ventilator) limit the application of this model [44].   

 Transpleural injection of cancer cell suspensions is another method to build orthotopic 

lung cancer xenografts.  A small incision on the skin is cut on the back side of the mice, after 

separation of the muscle and fat, the cancer cell suspension is injected into the lung parenchyma 

through the intercostal space [45, 46].  This approach avoids the complicated thoracotomy and 

special requirement of equipment.  Moreover, this method has a significantly lower postoperative 

mortality rate (3%) than the surgical transplantation (60%), and therefore requires fewer mice to 

finish the study [43]. 

 One problem with pleural seeding [43] is that when the needle penetrates the pleural 

cavity, it is unknown whether the needle is inserted into the lung parenchyma.  Therefore, the 

location where the cell suspension was injected is either in the lung parenchyma or in the 

thoracic cavity.  Furthermore, because of the fluidity of the suspension and the respirational 

movements of the lung tissue, the cancer cells tend to prematurely leak from the injection site to 

both sides of the lung within five days.  Such leakage generates a quick artifact of metastasis and 

thus belies the development and progression of lung cancer as seen in the clinic [43, 45, 47, 48].  

To overcome this problem, a very small volume of cell suspension has been injected by the same 
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method.  500 Lewis lung carcinoma cells were suspended in 2 µl volume PBS, and the cell 

suspension was injected into the left lung of mice.  The open chest anatomy showed a confined 

localized tumor nodule on the left lung.  The same experiment was performed using A549, a 

human lung adenocarcinoma cell, at a seeding density of 104 cells suspended in 1µl volume.  The 

tumor nodule can be observed in 6 weeks after injection, and no distant metastasis has been 

found [49].  The model mimics an early stage of NSCLC and can be utilized to study cancer 

progression.  However, because of the small volume, the cells require multiple times of 

concentration in preparing the suspension.  Furthermore, the xenograft establishment needs a 

relatively longer time, which limits the model’s efficiency for drug discovery in industry.   

 Injection of suspended cancer cells into the blood circulation can quickly generate mice 

carrying cancer metastasis.  Intracardiac injection of A549 cell suspension into mice showed a 

significant high potential of cancer metastasis [50].  Although such an experimental model offers 

an efficient way to study cancer metastasis, it belies the primary tumor initiation and therefore 

fails to reflect the typical cancer metastasis in the clinic [51]. 

 In summary, there are four approaches to construct the CDX model of NSCLC.  Despite 

the convenience in building a subcutaneous xenograft, its lack of clinical relevance turns us to 

studying the orthotopic xenograft model.  Further, we need to find an imaging method to track 

the cancer progression in an orthotopic lung cancer model.  There are several imaging methods 

to monitor cancer growth in small animals, such as CT/PET, bioluminescence, fluorescence, 

MRI, ultrasound, and X-Ray.  Some of these methods will be introduced below. 

1.4 Fluorescent Protein in Small Animal Imaging  
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 A noninvasive in vivo imaging method can greatly enhance oncology research.  The size 

and location of tumors can be shown precisely by radiation imaging systems such as a small 

animal PET imaging system, which provides a three-dimensional measurement of tumors in live 

animals [52].  However, the use of radioactive contrast agents could endanger the animal health, 

along with other ethical issues. 

As an alternative, optical imaging is much safer and highly versatile.  Green fluorescent 

protein (GFP) lighted up the oncological research in the laboratory in visualizing and 

understanding cancer progression.  The inventor of GFP was awarded the Nobel Prize in 

chemistry in 2008 [53].  Whereas the fluorescent signal of GFP is typically used for intravital 

microscopy, deep tissue imaging of live animal (>500 μm) requires the use of near-infrared light 

(NIR) [54].  Compared to other light signals, NIR (650 nm to 900 nm in wave length) is 

absorbed less by hemoglobin and water, [55] and enjoys low body autofluorescence, making  it 

an excellent choice for small animal imaging [56].  The development of GFP-like fluorescent 

proteins, which have NIR fluorescence, promotes research in studying metastatic cancer by 

whole-body imaging in real time. 

 An NIR fluorescent protein (iRFP) was developed in 2011 from bacterial phytochrome 

photoreceptors, with an excitation wavelength at 690 nm and emission wavelength at 713 nm.  

The iRFP carries high stability and low cytotoxicity, and provides a strong fluorescent signal that 

can penetrate as deep as 18.1 mm in mice.  iRFP later have been utilized in many research fields 

to broaden the applications of noninvasive imaging in vivo [56]. 

1.5 Three-dimensional Multicellular Tumor Spheroids (MCS) 
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Recently, three-dimensional multicellular spheroids (MCS) have emerged as an attractive 

in vitro model of cancer.  Compared to cancer cell monolayers, MCS better mimic the 

microenvironment inside solid tumors [57, 58].  The monolayer cells are inadequate in reflecting 

the unique solid structure and tumor microenvironment, such as cell-cell interaction, which are 

essential for the functions of tumors.  In contrast, MCS of sufficient size assumes a hypoxic and 

necrotic core similar to that in solid tumors in vivo, which also plays a key role in solid tumors’ 

resistance against anticancer drugs [58].   

In pre-clinical research, MCS have been developed to bridge between conventional 2D 

cell models and in vivo tumor models.  Further, MCS have been inoculated into mice to construct 

orthotopic models of breast cancer and prostate cancer [59, 60].  Patient-derived MCS have been 

transplanted into mice to construct PDX model of prostate cancer.  The PDX showed metastasis 

and osteosclerosis when tumor spheroids were implanted orthotopically [59].  However, no 

literature has been found to date on the construction of orthotopic animal models of lung cancer 

using MCS.   

1.6 Statement of Problems and Hypothesis 

The traditional NSCLC xenografts based on inoculation of human lung cancer cells in 

suspension feature premature leakage of cancer cells from the injection site, which generates a 

quick artifact of metastasis and thus belies the development and progression of lung cancer as 

seen in the clinic.  Such a model does not simulate the clinical stages of NSCLC, and therefore 

may misguide the pre-clinical discovery of potential drugs against lung cancer.  In contrast, 3D 

MCS carries a tight solid texture, which could minimize the premature leakage of cancer cells 

from the injection site after being inoculated into the lung.  Moreover, MCS better mimic the 

TME, which would allow its orthotopic xenograft to better establish and progress in vivo.  
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Intrapulmonary inoculation of MCS would also allow the development of only one primary 

tumor per lung.  Taken together, we hypothesize that MCS of human cancer cells can be 

inoculated orthotopically into mice to construct a xenograft model that better simulates NSCLC 

in the clinic than orthotopic injection of cancer cells in suspension. 

 

 

 

 

Figure 3: Schematic illustration of study design 
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Chapter 2: In Vitro Characterization of Multicellular Tumor Spheroids (MCS) Using 

A549-iRFP Cell 

 

2.1 Introduction 

In pre-clinical research, anticancer drug candidates need to be evaluated for efficacy, 

toxicity, and safety before being considered for clinical trial.  The in vitro screening of 

therapeutic agents is the first step in this process.  Typically, 2D monolayer cell culture has been 

used as a platform for testing of treatments, but the data from such platforms often poorly predict 

outcome of the following clinical studies [61].  The following are some major reasons for such 

poor predictions.  First, a 2D cell culture lacks certain features of a solid tumor that causes their 

resistance against anticancer agents [62], which allows many ineffective agents to be passed on 

for further in vivo studies.  For example, the lack of appropriate physiological barriers in 

monolayer cell culture limit its prediction of intratumoral drug penetration.  Secondly, the lack of 

cell-cell interaction, and somatic cells in the traditional 2D cell culture reflects an incomplete 

tumor microenvironment.  Therefore, an in vitro model that can capture more physiological 

features of solid tumors than the conventional 2-D culture is needed for pre-clinical studies to 

better predict  drug effects in the clinic. 

In 1971 Sutherland et al.  first introduced tumor spheroids as a model for nodular 

carcinoma research [63].  Since then, various multicellular tumor spheroids (MCS) such as 

scaffolds, scaffold-free MCS, and microfluidics provide new models for screening therapeutic 

agents [58].  Many unique characteristics of MCS have been discovered, including cellular 

heterogeneity and interactions, 3D architecture, internal metabolic heterogeneity, extracellular 

matrix deposition, hypoxia and the presence of cancer stem cells [62].  All these characteristics 
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have been found in clinical studies of solid tumors.  Taking these advantages into consideration, 

3D MCS not only mimic the physiological features of a solid tumor but also serve as better 

models to predict the clinical behavior of anticancer agents. 

Although spheroids are often used to mimic the in vivo environment of the solid tumor, 

they can also be inoculated into the animal in order to study angiogenesis and tumor/stroma 

interaction.  Recently, human glioblastoma spheroids have been implanted into immunodeficient 

rats to study cancer invasion and tumoral vasculature formation [64].  The development of 

patient derived xenograft (PDX) models benefit personalized medicine.  However, the limited 

tumor tissues from patients hinder the application of PDX model in pre-clinical studies [25].  

Construction of MCS from patients’ tumor tissue followed by their inoculation into animals can 

further expand the utilization of PDX models.  Researchers at Stanford University have 

transplanted 136 patient-derived prostate cancer MCS into mouse to promote personalized 

treatment [59].  However, no literature has been found to date on the construction of orthotopic 

animal models of lung cancer using MCS.  The construction and characterization of A549-iRFP 

MCS are reported in this Chapter in order to later inoculate such MCS into mice lung.  The 

spheroid can form a tight and round shape with 15 days growth.  The fluorescent signal shows a 

strong linear correlation with the spheroid viability and volume.  The MCS also presents with a 

necrotic core. 

2.2.  Materials and Methods 

2.2.1.  Cell line and reagents.  Human lung adenocarcinoma A549-iRFP (λex =690 nm, 

λem = 713 nm) was purchased from Imanis Life Sciences (Rochester, MN).  Cell culture reagents, 

if not specified, were purchased from Corning Life Science.  A549-iRFP was grown in DMEM 

cell culture media with 10% Fetal bovine serum (Gemini Bio-Products, CA), 1% penicillin-
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streptomycin (Corning Life Science, US), and 1 µg/ml puromycin (Alfa Aesar, US).  All cells 

were maintained at 37℃ and 5% CO2.  Falcon® 96-well Black/Clear Flat Bottom Microplate 

and 96-well Spheroid Microplate were purchased from Coring Life Science.  Tumor spheroids 

were constructed with collagen, which was purchased from Fisher Scientific (Pittsburgh, PA).  

Cell viability was measured using CellTiter 96® AQueous One Solution Cell Proliferation Assay 

(Promega Corporation, US).  The spheroid viability was measured by CellTiter-Glo® 3D 

Reagent (Promega Corporation, US).  Invitrogen™ LIVE/DEAD™ Viability/Cytotoxicity Kit 

were purchased from Thermo-fisher.  4% formaldehyde in PBS for tissue fixation was purchased 

from Fisher Scientific.  Paraplast was purchased from Sigma (St.  Louis, MO) for tissue 

embedding.  Hematoxylin and Eosin were purchased from VWR International, (Radnor, PA). 

2.2.2.  Fluorometric characterization of A549-iRFP monolayer cells.  A549-iRFP 

cells were seeded onto Falcon™ 96-Well flat-bottom tissue culture microplates (Corning Life 

Science, US) at 0, 1000, 2000, 4000, 6000, 8000, 10000, and 12000 cells/well.  The fluorescent 

signal (λex =685 nm, λem = 700 nm) was monitored by an Odyssey® Infrared Imaging 205 

System (LI-COR® Biosciences, Lincoln, NE, USA) at the 700 nm channel.  The cell viability 

was measured using the CellTiter 96® AQueous One Solution Cell Proliferation Assay 

(Promega Corporation, US).  The UV absorbance at 490 nm was recorded on a Synergy HTX 

microplate reader (BioTek, US).   

2.2.3.  Construction of MCS using A549-iRFP cell.  A549-iRFP cells were seeded onto 

96-well Corning spheroid microplate (Corning Life Science, US) at 4000 cells/well in 100 

µl/well of the aforementioned growth medium that was supplemented with 0.3% collagen 

(Gibco, US).  The microplate was centrifuged at 300 × g for 7 minutes on an Eppendorf 

Centrifuge 5810R.  The cells were cultured for 48 hours and then supplemented with another 100 
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µl/well growth medium without collagen.  Every two days thereafter, 100 μL of the growth 

medium in each well was replaced with 100 µl fresh growth medium without collagen. 

2.2.4.  In vitro Characterization of A549-iRFP MCS.  The growth and morphology of 

MCS were monitored by a Keyence (US) BZ-X700 fluorescence microscope.  The volume of 

spheroids was calculated every two days from their bright-field images using the ReVisP 

software from MATLAB.  To calculate the roughness of an MCS, the outline of its bright-field 

image was traced by two concentric ovals, where the outer oval includes the edged of the MCS 

outline and inner oval excluded them.  To calculate the roughness of an MCS, the outline of its 

bright-field image was carefully traced by a line (outer line, OL) to enclose the MCS image with 

the rough edges; the base of the rough surface was traced by another line (inner line, IL) to 

enclose the MCS image except for the rough edges.  The roughness of MCS was calculated by 

the equation: Roughness (mm) = (AOL-AIL) / LIL, where AOL is the area enclosed by OL, AIL is 

the area enclosed by IL, and LIL is the length of IL.  The fluorescence of living MCS was 

recorded by an Odyssey® Infrared Imaging 205 System (LI-COR® Biosciences, Lincoln, NE, 

US) at the 700 nm channel.   

For the viability assay, each MCS was suspended in 100 µl growth medium, transferred 

into a well in an opaque-walled 96-well microplate, and mixed with 100 µl CellTiter-Glo® 3D 

Reagent (Promega Corporation, US).  The microplate was covered with aluminum foil, agitated 

for 5 minutes, and incubated at room temperature for an additional 25 minutes.  The 

luminescence was then recorded by a Synergy HTX microplate reader (BioTek, US).   

2.2.5.  Imaging of live and dead cells in A549-iRFP MCS.  MCS were cultured in 96-

well spheroids microplate until the diameter reached 500 µm.  MCS were transferred to a glass 

Petri dish and incubated with a LIVE/DEAD™ Cell Imaging Kit (ThermoFisher, US) for 45 
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minutes at 37 °C.  The spheroids were then washed 3 times with PBS and imaged on a Leica 

DMIRE2 confocal microscope (λex= 491 nm, λem= 513 nm for live cells, λex= 561 nm, λem= 607 

nm for dead cells).  Images were analyzed using the ImageJ software. 

2.2.6.  Histological analysis of A549-iRFP MCS.  MCS were transferred into 6-well 

plates three days, six days and twenty days after seeding and washed 3 times with PBS.  MCS 

were fixed with 4% formaldehyde at room temperature for 1 hour.  After fixation, MCS were 

washed with PBS and dehydrated sequentially with 70%, 80%, 95%, and absolute alcohol for 1 

hour each.  After dehydration, MCS were incubated with Safeclear II (Xylene substitute) for 1 

hour before being embedded into paraffin.  MCS were then submerged into melted paraffin at 60 

ºC for 1 hour.  The MCS was embedded into the paraffin and quickly solidified for 10 minutes in 

the fridge.  MCS were then cut into 10 µm-thick sections by a HM 325 Rotary Microtome and 

stained with H&E based on standard protocol.  The histological images were then obtained on 

the Keyence fluorescence microscope BZ-X700 (US). 

2.2.7.  Standard protocol of H&E staining.  Slides containing paraffin sections were 

first deparaffinized and rehydrated.  Slides were submerged in Safeclear II for 5 mins then 

blotted excess Safeclear II.  Slides were rehydrated sequentially with 100% ethanol (3 times), 

95% ethanol, 80% ethanol, deionized water for 5 mins each.   Then slides were submerged in 

Hematoxalin for 3 mins and follow rinsed with tap water to allow stain to develop for 3 mins.  8-

12 drops of acid ethanol (1ml concentrated HCI in 400ml 70% ethanol) were quickly dipped.  

Slides were rinsed with tap water again for 1 min then rinsed with deionized water for 2 mins.  

Slides were submerged in Eosin for 40 seconds then washed with 95% ethanol for 5 mins each.  

Slides were submerged in absolute ethanol three times for 5 mins each follow with Safeclear II 

20 mins.  Slides were covered with Permount and dried overnight.   
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2.3.  Results 

2.3.1.  The near-infrared fluorescent signal of A549-iRFP monolayer cells correlated 

with the seeding number and the cell viability.  As the fluorescent signal of the A549-iRFP 

cells will be used to monitor the progression of their xenograft tumors in vivo, we elected to first 

test the correlation between the fluorescent signal caught by the Odyssey Infrared Imaging 205 

System and the growth of A549-iRFP cells.  Increasing numbers of A549-iRFP cells were 

seeded into wells of a black microplate and both the fluorescence and the viability (MTS assay) 

of each well were measured (Fig.  4A).  The fluorescent signal increased as the cell density 

increased (R2=0.958, Fig.  4B).  Figure 4C shows a strong linear correlation between the 

fluorescent signal and the cell viability (R2 = 0.9753) as long as the seeding number falls into the 

linear range of both assays (< 12000 cells/well). 

 

 

 

 

Figure 4: The fluorescent signal of monolayer A549-iRFP shows strong correlation with the cell 

density and cell viability.  (Mean±S.D, N = 6). 

 

 

 

2.3.2.  A549-iRFP cells formed tight round-shaped tumor spheroids in the presence 

of collagen.  A549-iRFP cells were elected to construct the MCS as lung cancer xenografts 
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because they were derived from the commonly used NSCLC cell line A549 and express a near 

infrared fluorescent protein for convenient imaging of the subsequent cancer progression in vivo.   

In order to promote the cell-cell adhesion that is needed for MCS formation, the A549-iRFP cells 

were seeded with 0.3% collagen in the growth medium and with centrifugation at 300 × g.  The 

resultant A549-iRFP MCS showed a round shape, tight structure and smooth surface in the first 

15 days (Fig.  5A).  The volume and 3D re-construction of MCS was measured using Revisp 

computational modeling software.  The increasing volume showed a linear relationship with time 

(R2=0.9622, Fig.  5B).   

 

 

 

 

Figure 5: The morphology and volume of A549-iRFP MCS under brightfield microscope.  

(Mean±S.D, N = 6).  (Scale bar=500µm). 
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2.3.3.  Correlation between the fluorescence and the growth of A549-iRFP cells in 

MCS.  In order to evaluate the capacity of the fluorescent signal of MCS to represent cancer 

progression, we also measure the fluorescent signal, volume and viability of MCS at different 

days.  Similar to the monolayer results, the fluorescent signal has a strong proportional 

correlation with both the volume (R2=0.9805, Fig.  6A) and the viability (R2=0.9191, Fig.  6B) of 

MCS, indicating that the fluorescent signals of the A549-iRFP cells on the fluorescent imaging 

system would reflect the growth of A549-iRFP MCS in vivo. 

 

 

 

 

Figure 6: The cell viability and volume of MCS based on their bright-field images showed strong 

linear correlation with the fluorescent signal of MCS.  (Mean±S.D, N = 6). 

 

 

 

2.3.4.  The morphology of A549-iRFP MCS showed rough and unclear edge after 15 

days culture.  The A549-iRFP MCS showed a round shape, tight structure and smooth surface 

in the first 15 days.  As the culturing continued, the A549-iRFP MCS assumed rough edges on 

the surface, similar to the morphology of invasive cancers in the clinic.  Moreover, some of the 

cancer cells were no longer tethered to MCS but dispersed into the culture medium.  To define 
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and calculate the roughness of an MCS, we developed the equation: Roughness (mm) = (AOL-

AIL) / LIL [65], where AOL is the area enclosed by OL, AIL is the area enclosed by IL, and LIL is 

the length of IL.  As the culturing time increased, the roughness of MCS increased (Fig.  7). 

 

 

 

 

Figure 7: The roughness of A549-iRFP MCS increased with the culturing time.  (Mean±S.D, N = 

6). 

 

 

 

2.3.5.  Immunofluorescence imaging of live/dead cells showed a necrotic core in 

A549-iRFP MCS.  In order to validate that the core of A549-iRFP MCS developed cell necrosis, 

we performed immunofluorescence staining using the Live/Dead cell viability assay.  The green 

color (calcein-positive) represents live cells and the red color (ethidium-positive) represents dead 

cells.  The plot of fluorescent intensity at two channels showed the heterogeneous distribution of 

live and dead cells in the A549-iRFP MCS.  The images were taken 200 µm from the bottom of 
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the MCS.  In the merged image, ethidium signal was stronger at the center of the MCS, which 

indicates accumulation of dead cells in the core.  On the other hand, less live cells were shown 

by the calcein signal at the center of the MCS (Fig.  8).  Taken together, the images demonstrate 

necrosis of cancer cells in the center of A549-iRFP MCS. 

 

 

 

 

Figure 8: Immunofluorescence imaging confirms a core of necrotic cells in A549-iRFP MCS.  

(Scale bar=200 µm, N = 3) 

 

 

 

2.3.6.  Histological studies on the structure of A549-iRFP MCS using H&E staining.  

To illustrate the tissue structure of A549-iRFP MCS, they were subjected to histological 

analysis.  MCS were embedded in Paraffin three days, six days and twenty days after seeding 

and stained with Hematoxylin (blue) and eosin (red).  Due to the size limitation of the samples, 
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MCS which were fixed at three days were cultured from cells that were seeded at 20000 

cells/well density; MCS which were fixed at six days and twenty days were from cells that were 

seeded at 3000 cells/well density.  The H&E staining reflected the basic tissue structure, where 

the blue color represents the nuclei and red color represents the cytoplasm.   

The resultant images showed a very dense structure at the peripheral of MCS.  

Additionally, less nuclei were stained at the core of MCS.  These observations confirm the 

presence of necrotic cells in the core of A549-iRFP MCS.   

 

 

 

 

Figure 9: H&E staining of A549-iRFP MCS confirmed their necrotic core.  (Scale bar=200 µm) 
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2.4 Discussion 

3D MCS have been utilized not only in evaluating the therapeutic efficacy of drug 

candidates but also in studying the microenvironment of the solid tumor.  In this chapter, the 

MCS that was constructed using A549-iRFP cells, which are human lung adenocarcinoma cells 

with stable fluorescent protein expression, showed a tight, round shape.  The addition of 0.3% 

collagen into the culture media during the seeding process promoted the growth of MCS in low-

attachment 96-well plates.  The fluorescence from the stably expressed near-infrared protein 

iRFP was correlated strongly with the cell viability in monolayer, indicating that the fluorescent 

signal could represent the number of live cancer cells in vivo.  Similarly, the fluorescent signal of 

A549-iRFP MCS was proportional to the spheroid viability, indicating that such fluorescent 

signal can be used to monitor the growth of live cancer cells in vivo.   

The morphological change of A549-iRFP MCS from a smooth surface to a rough edge 

warrants our attention because it indicated that the peripheral cancer cells started to grow beyond 

the surface, to form a serrated edge, and to assume invasive growth.  Because the local tissue 

invasion is the first step of cancer metastasis, the formation of the serrated edges on the MCS 

may represent the potential of cancer metastasis.  We defined roughness to evaluate and quantify 

this morphological feature.   

Such a morphological change probably resulted from the cell-cell interactions in the 

MCS.  As cancer cells went through apoptosis in the necrotic core, they secrete many cytokines 

and chemokines into the extracellular matrix, such as those of the tumor necrosis factor (TNF) 

receptor superfamily.  These cytokines and chemokines promote the cancer cells’ invasion into 

the surrounding culture medium [66, 67].   
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The histology studies and the confocal immunofluorescence imaging confirmed the 

necrotic core inside the MCS.  Due to the limited penetration of the photons, only images up to 

200 μm depth from the bottom of the MCS showed acceptable resolution while images from 

deeper z-sections lost focus.  In the merged images, the clear ethidium signal at the center of the 

core indicated the dead cells.  Moreover, the H&E staining illustrated the inner structure of MCS 

after being cultured for different durations.  A dense H&E staining of cancer cells at the 

peripheral of MCS and less nuclear staining in the core of the MCS validated the finding of a 

necrotic core by the confocal immunofluorescence imaging. 
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Chapter 3: Intrapulmonary Inoculation of Multicellular Tumor Spheroids to Construct an 

Orthotopic Lung Cancer Xenograft Model 

 

3.1.  Introduction 

Ideally, mouse models for cancer should faithfully recapitulate the tumorigenesis, 

progression, invasion, and metastasis as well as predict response to treatment [68].  A broad 

category of mouse models, including xenograft, syngeneic, carcinogen-induced and genetically 

engineered mouse model (GEMM), have been developed to assist pre-clinical oncology research.  

In lung cancer research, GEMM precisely simulates the gene mutation and recaptures the 

histological feature of NSCLC.  It is highly useful in studying tumorigenesis and genetic 

mutations in cancer development [35, 36].  However, the high cost in time and money of 

developing GEMM limits its application in evaluating therapeutics [25].  Xenograft mouse 

models allow quick in vivo assessment of a potential anticancer treatment (usually within 8 

weeks), whereas GEMM takes a relatively long time.  Moreover, the conditional GEMMs that 

rely on viral activation give rise to multiple tumor nodules in the lung, bypass the usual pattern 

of caner progression and metastasis, and induce early death of the animal [69].   

Cell-line derived xenografts (CDX) represent the major type of animal model for use in 

anticancer drug development because of the mature technique and the relatively low cost.  Most 

xenograft tumors have been developed subcutaneously because of the convenience in measuring 

the tumor growth.  However, the rapid, non-indigenous growth of such tumors poorly reflects the 

microenvironment of the corresponding cancer in the clinic and does not meet the conditions for 

metastasis [15, 25].  In order to address this shortcoming, the orthotopic lung cancer xenograft 

has been developed by either injecting cancer cell suspension or implanting tumor graft in the 

lung.  Although such cancer is developed in the organ of origin, the use of such methods can 
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cause extensive premature leakage at the injection site.  Within five days, the cancer cells are 

found to spread to both sides of the lung, most probably due to the anatomy and respirational 

movements of the lung [43, 45, 48].  Therefore, this orthotopic model based on the injection of 

suspended cancer cells cannot adequately reflect cancer progression. 

The surgical implantation of a tumor graft can potentially address issues of cancer cell 

leakage during pleural tumor seeding.  Such a technique starts by harvesting the tumor which has 

grown subcutaneously in donor mice.  The tumor is then cut into pieces, which were then 

transplanted into mice by surgically opening the chest.   The models using this method carry 

meaningful advantages including a well-established solid tumor structure and a precise insertion 

site in the lung parenchyma.  However, this method is technically difficult, needs a ventilator, 

and requires dedicated operators with the expertise.  Moreover, high postoperative mortality of 

this method  raises ethical concerns about the number of animals that are to be used [43].   

Combining the advantages of transpleural injection and tumor graft implantation, we 

designed and developed a novel orthotopic lung cancer mouse model where MCS of fluorescent 

human lung cancer cells (A549-iRFP) were developed in culture and then inoculated into the left 

lung of mice.  The MCS had a tight round morphology and a necrotic core, which reflected the 

essential characteristics of a solid tumor.  This procedure enjoys high rates of postoperative 

survival (100%) and tumor establishment in/on the lung parenchyma (88.9%).  The primary 

xenograft MCS mimicked the initiation of NSCLC, and progressed through distinct phases that 

closely mimicked all the four clinical stages of NSCLC over one month, and eventually spreads 

into both sides of the lung. 
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Table 1: Comparison of NSCLC Mouse Models.   

 Implantation 

route 

Tumor origin Technical 

Feasibility 

 

Natural 

Metastasis 

 

Tumor 

Initiation 

 

Capability of 

measure tumor 

growth 

 

Tumor 

Growth 

Variation 

 

Economical 

Adaptability 

Reference 

CDX sc Cell suspension Easy No Single  Easy Small High [43] 

CDX Orthotopic Cell suspension Easy No  Multiple  Difficult  Small High [43, 47] 

CDX Surgical 

implantation  

Tumor graft Hard No Single Difficult Small High [43] 

Experimental 

metastasis 

iv Cell suspension Easy No  Multiple Difficult Large High [50, 70] 

Carcinogen 

induced  

ip; iv; 

intratracheal  

Carcinogen 

induced mutation 

Easy No Multiple Difficult Large High [25, 71, 

72] 

PDX sc Tumor graft from 

patients 

Easy No Single Easy Large Low [15, 25] 

GEMM Intratracheal; 

intranasal  

K-ras activation Easy Distant 

metastasis 

Multiple Difficult Medium Low [15, 25, 

36] 

GEMM Intratracheal; 

intranasal   

p53 inactivation Easy Distant 

metastasis 

Multiple Difficult Medium Low [73] 

CDX Orthotopic  Tumor spheroid Easy Intrathoracic 

metastasis 

Single Easy Small High  

CDX: Cell line-derived xenograft; PDX: patient derived xenograft; GEMM: genetically engineered mouse model; sc: subcutaneous; iv: intravenous; ip: intraperitoneal;  

 

 

 

3.2.  Materials and Methods 

3.2.1.  Cell line and reagents.  Human lung adenocarcinoma A549-iRFP was obtained 

from Imanis Life Sciences.  A549-iRFP was cultured in DMEM growth media with 10% FBS, 

1% pen/strep, and 1 µg/ml puromycin.  3D MCS were grown using 96 wells Spheroid 

Microplate from Coring life science.  20-gauge and 31-gauge needles were purchased from 

VWR.  100 µl Hamilton syringe was purchased from Fisher.  BD™ U-100 Insulin Syringe 31-

gauge × ½ was purchased from Patterson Veterinary (USA).  Surgical instruments were 

purchased from Fisher and Fine Science Tool.  Matrigel was purchased from Corning Life 
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Science.  Ketamine, Xylazine, and Isoflurane were obtained from Patterson Veterinary (USA).  

Ophthalmic ointment, Buprenorphine, and Antibiotic ointment were purchased from Patterson 

Veterinary (USA). 

 3.2.2.  Animals.  5 to 6 weeks old male Athymic Nude Mice were purchased from 

Simonsen Labs Inc (CA, US).  All mice were fed with AIN-93M Mature Rodent Diet from 

Research Diet (NJ, US).  The in vivo study was performed based on the animal protocol (No.  

18R01) which was approved by the Institutional Animal Care and Use Committee (IACUC), 

University of the Pacific.  The mice (5-6 weeks old) were kept in sterilized cages and provided 

with sterilized rodent diet and water, and under controlled lighting cycle.  The mice were 

allowed to acclimate to the environment for one week in the facility before the start of the 

experiment.   

 3.2.3.  Construction of MCS using A549-iRFP cell.  A549-iRFP cells were seeded in 

the 96-well spheroid plate at the density of 4000 cells/well.  MCS were developed with the 

methods described in Chapter 2.  The MCS were generally cultured for 19 days, when the rough 

edge of MCS could be observed, MCS were transferred into a petri dish with ice cold PBS ready 

for inoculation.    

3.2.4.  Injection of cell suspension into the left lung of mice.  Nine mice were 

anesthetized by an intraperitoneal injection of anesthesia cocktail (Ketamine 100 mg/kg, xylazine 

15 mg/kg).  After sterilizing the skin, a 0.5 cm incision was made at the tail-side of the left 

scapula.  The muscle and fat were gently separated with forceps to expose the rib bone.  After 

visualization of the motion of the left lung, a 31-gauge needle-attached syringe, which contained 

1×106 A549-iRFP cancer cells suspended in a 50 μl mixture of PBS and Matrigel (PBS: Matrigel 

= 1:1) was injected into the left lung parenchyma through the sixth intercostal space at a depth of 
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~3 mm of eight mice.  One mouse was injected with a 50 μl mixture of PBS and Matrigel (PBS: 

Matrigel = 1:1) without A549-iRFP cells.   

3.2.5.  Inoculation of MCS into the mice lung.  To inoculate MCS, A549-iRFP cells 

were first cultured into MCS of desirable morphology (size, roughness) as defined in prior 

sections.  MCS were transferred into 5 mL ice-cold PBS in a sterilized Petri dish (60 mm ×15 

mm).  Twenty mice were anesthetized by an intraperitoneal injection of anesthesia cocktail 

(Ketamine 100 mg/kg, xylazine 15 mg/kg).  After sterilizing the skin, a 0.5 cm incision was 

made at the tail-side of the left scapula.  The muscle and fat were gently separated with forceps 

to expose the rib bone.  One 20-gauge needle attached to a 100-μl syringe was used to first take 

up 20 μl mixture of PBS and Matrigel (1/1 in volume) on ice, and then to take up one MCS in 

minimal volume of PBS in order to keep the MCS inside the needle but not in the syringe.  The 

needle was then inserted into the lung through the sixth intercostal space, followed by slow 

injection of the MCS into the left lung of eighteen mice.  Two mice were inoculated 20 μl 

mixture of PBS and Matrigel (1/1 in volume) without MCS.  The wound was then treated with 

triple antibiotic and sealed with a surgery clip, which was removed seven days later. 

 3.2.6.  In vivo fluorescent imaging of lung cancer progression.  Animals that had been 

inoculated with suspended A549-iRFP cells or MCS were imaged every three days on a Pearl® 

Trilogy small animal imaging system and an Odyssey® Infrared Imaging 205 System at the 700 

nm channel.  Animals for imaging on the Pearl® Trilogy system took postures of four directions 

- left, right, ventral and dorsal.  Animals were maintained under anesthesia by breathing 

isoflurane.   

The tumor growth after MCS inoculation was quantified from the left-posture images 

using the Image Studio Lite Ver 5.2 software.  For each image, the fluorescent intensity within a 
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rectangle (height × width = 176 × 107) that covered the thoracic cavity was recorded as the gross 

cancer fluorescence and then subtracted by the fluorescent intensity within a rectangle (height × 

width = 24 × 44) that covered the left thigh as the background from autofluorescence.  The mean 

and SEM of six mice are reported. 

 3.2.7.  Open-chest anatomy and ex vivo imaging.  After animal sacrifice by anesthetic 

overdose, the thorax was carefully opened with a midline incision.  The diaphragm and the 

lateral chest walls were then removed to expose the lungs and to confirm the location of the 

xenograft tumor, which possessed a lighter color than the surrounding tissue.  A 25-gauge needle 

attached to a syringe was used to make a cardiac puncture and to inject 5 mL PBS into the right 

cardiac ventricle in order to flush the lung vasculature.  The lung was then carefully dissected 

from the chest and washed with ice-cold PBS before being transferred onto the Pearl® Trilogy 

system for imaging at the 700 nm channel. 

 3.2.8.  Lung fixation.  Mice in stage 4 of NSCLC were euthanized by anesthetics 

overdose.  The ventral side of the trachea was surgically exposed, and a small cut was made to 

insert a 20-gauge needle tip.  Upon insertion, the needle tip was tied to the trachea with a suture.  

The thorax was carefully opened with a midline incision to expose the lungs.  The right cardiac 

ventricle was injected with 5 mL of PBS to flush the lung vasculature using a 25-gauge needle.  

The needle in the trachea was then infused with 2 to 3 ml 4% formaldehyde in PBS (Fisher 

Scientific, US) to inflate the lung.  After 20 minutes the lung was carefully dissected and 

immerged in formaldehyde overnight. 

 3.2.9.  Histological analysis of fixed lung tissue using H&E staining.  The lung tissue 

from healthy mice, mice injected with suspended cancer cells, and mice inoculated with MCS 

were subjected to histology studies.  After fixation, the lung tissues were embedded with 
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paraffin, cut into 5 µm-thick sections by an HM 325 Rotary Microtome, and stained with H&E 

for microscopic imaging on a Keyence (US) BZ-X700 fluorescence microscope. 

3.3 Results 

3.3.1.  Postoperative mortality rate and tumor establishment rate.  The MCS were 

cultured long enough to display rough edges before the inoculation, minimal volume of liquid 

and needle size were used to transfer the MCS, and the needle was filled with a 20 l of Matrigel 

before the uptake of the MCS so that it can be inoculated sufficiently deep into the lung tissue.  

After such procedural optimization, the survival rate after A549-iRFP MCS inoculation reached 

100% (18/18), compared to 87.5% (7/8) survival rate after injecting the suspended A549-iRFP 

cells by our hands.  The in vivo fluorescent imaging and anatomical observation were carried out 

to confirm the successful inoculation of MCS.  All mice injected with cell suspension developed 

cancer in 3 to 6 days as shown by fluorescent signals from both sides of the lung (7/7).  Among 

mice inoculated with MCS, 88.9% (16/18) of the animals either clearly displayed tumor nodule 

on the left lung by anatomical observations or eventually showed cancer metastasis to both sides 

of the lung by in vivo fluorescent imaging (Table 2). 

 

 

 

Table 2: Postoperative Mortality Rate and Tumor Establishment Rate. 

 Cell suspension MCS 

Postoperative survival rate 87.5% 100% 

Tumor establishment rate 100% 88.9% 
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3.3.2.  Rapidly increasing fluorescent signal in both sides of the lung indicates a 

severe leakage of cancer cell suspension 3 days after injection.  Within 3 days, the fluorescent 

signal was seen in both sides of the lung in mice that were injected with the A549-iRFP cell 

suspension (Fig.  10), which indicated the premature leakage of cell suspension from the 

injection site.  Further, the fluorescent signal was stable from 9 days to 30 days after the injection 

of suspended cancer cells failing to reflect the cancer progression in clinic.  After euthanasia and 

opening the chest, massive tumor aggregates were seen floating inside the thorax.  The minimum 

survival days for mice after injection of cancer cell suspension is 5-6 weeks, most probably due 

to the heavy tumor burden. 

 

 

 

 

Figure 10: The in vivo imaging of mice injected with A549-iRFP cell suspension.  The red color 

from the 700 nm channel represents the cancer cells.  The grey color from the 800 nm channel 

represents the body autofluorescence.  (N = 7) 
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3.3.3.  In vivo fluorescent imaging of cancer progression in MCS-inoculated mice.  

After MCS inoculation, the development of the corresponding xenograft tumor was monitored 

by fluorescent imaging on both the left side and the ventral side.  Between 3 and 9 days after the 

surgery, condensed fluorescence in the left lung was observed, indicating the establishment of a 

localized tumor in the left lung that mimicked Stage 1 NSCLC in clinic.  Between 9 and 15 days 

after surgery, the fluorescence substantially increased in intensity and/or split to multiple 

locations in the left lung, indicating the presence of tumor(s) that mimicked Stage 2 NSCLC in 

clinic.  The fluorescent signal detected from the ventral side imaging kept increasing, suggesting 

a Stage 3-like development of the xenograft.  At about 21 days after the surgery, perfused 

fluorescence was detected on both sides of the lung, indicating the metastasis of the cancer, 

which mimicked the Stage 4 NSCLC in clinic (Fig.  11). 

 

 

 

 

Figure 11: In vivo imaging of MCS-inoculated nude mice.  The left side (Inoculation side) and 

ventral side of nude mice were detected using Pearl® Trilogy Small Animal Imaging System at 

700 nm channel.  The yellow arrow indicates the tumor location, cancer growth and metastasis are 

based on the fluorescent signal.  (N = 9)  
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3.3.4.  Characterization of MCS-inoculated mice by ex vivo fluorescent imaging and 

anatomical observation.  To further characterize the xenograft cancer progression, three mice 

were sacrificed 8, 11, 18, and 27 days after MCS inoculation followed by open-chest anatomy 

and ex vivo fluorescent imaging of the dissected organs (Fig.  12).  Both the anatomy and the ex 

vivo fluorescent imaging showed that the tumor was confined in the inoculation site at day 8, 

which mimicked a primary solid tumor at Stage 1 NSCLC.  On day 11, the increase of 

fluorescent signal indicated tumor growth in the left lung, reminiscent of Stage 2 NSCLC.  On 

day 18, both the anatomy and the ex vivo fluorescent imaging showed confined tumor growth in 

the left lung.  The anatomy and the ex vivo imaging also detected tumor growth on the surface of 

the heart, which is a key indicator for Stage 3 NSCLC in clinic.  As further validation, the in vivo 

and ex vivo fluorescent images were highly correlated in showing the shape and location of the 

tumors.  Interestingly, fluorescent lymph nodes were not clearly observed on day 18, which 

could be attributed to the immune deficiency of the nude mice.  On day 27, the fluorescent 

imaging showed heavy tumor burden whereas the open-chest anatomy showed perfuse tumor 

growth in both sides of the lung, the heart, the trachea, and the major blood vessels, 

demonstrating the cancer metastasis that mimicked Stage 4 NSCLC. 
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Figure 12: Cancer progressed through four clinical-like stages in the MCS-inoculated mice model.  

Mice that were inoculated with MCS were euthanized at day 8, 11, 18 and 27 later.  The ex vivo 

imaging and anatomical observations showed the tumor growth and indicate the cancer progressed 

in all the four stages.  The yellow arrow points out the tumor on lung and heart.  (N = 3) 

 

 

 

3.3.5 Effects of MCS morphology on the time needed to develop cancer metastasis in 

the thorax.  The fluorescence of iRFP was used to semi-quantitatively monitor the tumor growth 

and cancer progression.  Specifically, the left-posture images were analyzed, where the 

fluorescent intensity within the same shape of rectangle that covered the thorax of the mouse for 

each image was used to represent the gross signal of the cancer cells.  This number was then 

subtracted by the fluorescent intensity within another rectangle that covered the left thigh of the 
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mouse to be corrected for the body autofluorescence.  The corrected fluorescent intensity was 

recorded over time to represent the tumor growth.  As shown in Fig.  13A, the tumor growth was 

relatively slow and stable in the first 20 days but accelerated afterwards, indicating a quicker 

proliferation of cancer when the tumor reached a larger size. 

To improve the consistency of the lung cancer model under our study, we explored 

possible correlations between morphological features of the inoculated MCS and the pace of 

cancer progression after inoculation.  Several morphological features of each A549-iRFP MCS 

were recorded right before inoculation, including the fluorescent signal, the volume, and the 

roughness.  The roughness was defined by the equation, Roughness (mm) = (AOL-AIL) / LIL, 

where AOL is the area enclosed by OL, AIL is the area enclosed by IL, and LIL is the length of IL.  

The time when the fluorescent signal was first detected in both sides of the lung after inoculation 

was also recorded as the time needed to develop metastatic cancer that mimicked Stage 4 

NSCLC.  The Roughness of MCS right before inoculation (Fig.  13B, p=0.0299, R2=0.5134), but 

not the fluorescence (Fig.  13C, p=0.9915, R2=0.00012), nor the volume (Fig.  13D, p=0.837, 

R2=0.00647), was associated significantly with the time needed to develop metastatic cancer.  

Specifically, the higher the value of roughness, the less the time needed to reach metastasis.   
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Figure 13: The morphology of MCS influence the time needed for cancer metastasis to both sides 

of the lung.  (A) Quantitation of tumor growth over time by the fluorescent intensity at thorax 

(large rectangle) subtracted by the background fluorescent intensity at the left leg (small rectangle).  

(Data are mean±SEM, n=6).  The time needed to develop into metastasis correlated with the 

roughness (B, p<0.05, N=9) of the inoculated MCS but not the fluorescent intensity (C) nor the 

volume (D).   

 

 

 

3.3.6.  Histological analysis of lung tissues after MCS inoculation.  Post-metastasis 

mice were dissected to isolate the lungs for histological studies using the hematoxylin and eosin 

(H&E) staining to visualize the lung and the tumor tissue structure (Fig.  14).  Lung tissues from 

mice inoculated with A549-iRFP MCS showed a dense, round nodule surrounded by thin-walled 

alveoli, confirming that the MCS was successfully established inside the lung parenchyma.  In 

comparison, lungs from mice injected with A549-iRFP cells in suspension showed massive and 
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dense tumor tissue that occupied the majority of the lung, confirming the perfusion of cancer 

cells as indicated by fluorescent imaging.  As the healthy control, mice without cancer cell 

inoculation gave normal lung tissue consisting only of thin-walled alveoli and bronchiole with 

ample air space. 

 

 

 

 

Figure 14: Histological imaging of mice lung tissue after H&E staining.  (A) Healthy lung tissue.  

(B) The lung tissue of mice that injected with cancer cell suspension.  (C-D) The lung tissue of 

mice that inoculated with MCS.  (Scale bar=500µm) 
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3.4 Discussion 

This Chapter reports a novel orthotopic lung cancer model based on intrapulmonary 

inoculation of MCS made of human lung cancer cells.  The xenograft MCS progressed through 

distinct phases that closely mimicked all the four clinical stages of NSCLC.  The progression 

lasted about one month, which is a commonly used time frame to evaluate anticancer drugs in 

animal models.  In comparison with the cell suspension injection methods, the MCS better 

mimiced the condensed morphology of primary solid tumors that presents a barrier for drug 

penetration.  The MCS inoculation also prevented the leakage and the pleural seeding problems 

that are common in the xenograft lung cancer models based on injection of a cancer cell 

suspension.  Compared with GEMM, this model carries the advantage of starting with only one 

solid MCS per animal, a light burden of lung cancer to enhance the long-term survival of the 

animals after surgery.  Therefore, the novel model described herein opens many doors to 

evaluate anticancer agents that could be developed to treat different stages of lung cancer in the 

clinic. 

Starting from the in vitro construction of MCS using commercially available human lung 

cancer cell line A549-iRFP, it took about three weeks to culture hundreds of MCS on 96-well 

plates for the inoculation, similar to the time needed to culture enough suspended cells for 

common mouse models of tumor xenografts.  Each MCS inoculation took about 20 minutes, 

which allowed one experienced researcher to inoculate 20 mice per day.  After establishing the 

correlation between the fluorescence and the viability of A549-iRFP cells and their MCS, the 

progression of the xenograft lung cancer can be conveniently imaged because of the low tissue 

absorbance of the infrared fluorescence and the low body autofluorescence at the same 

wavelength.  For each posture of the mouse, imaging at two different wavelengths took only 30 
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to 40 seconds to complete, much shorter than the time needed for CT/PET scans.  Overall, the 

efficiency and low cost of the new lung cancer model would favor its large-scale use in 

preclinical drug development. 

Large variations in tumor growth between individual animals represents a significant 

challenge in animal cancers models.   For example, xenograft tumors from inoculation of 

suspended cancer cells can differ largely in size due to variations in the volume of the cancer cell 

suspension that actually retains at the injection site.  Differences in the tissue disruption between 

injections could also lead to differences in the settlement of the inoculated cells, and thus in the 

resultant tumor shape.  In this study, efficient culturing allowed us to select MCS of highly 

consistent size, density, shape, and roughness so that the following cancer development was 

more consistent.  The significant correlation between the roughness of the MCS and the time 

needed for metastasis further suggest that the progression of lung cancer in this model could be 

well controlled by monitoring the morphological features of the MCS.   

One limitation of this model is that occasionally the xenograft tumor was developed on 

the surface of the lung rather than inside the lung parenchyma.  This problem is probably due to 

the relatively thick 20-gauge needles that sometimes did not penetrate the lung tissue during 

inoculation.  The following is a possible solution to this deviation.  First, a smaller but more 

aggressive MCS can be cultured and inoculated into the lung.  20-gauge needles with a 610 µm 

inner diameter can pick up MCS with diameter around 750 µm.  Therefore, a smaller needle can 

be utilized to inoculate the smaller MCS into the lung parenchyma, such as a 25-gauge needle 

with a 500 µm inner diameter.  To construct such smaller and more aggressive MCS, we are 

currently developing MCS that consist of lung cancer cells and fibroblast cells.   
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Another limitation of this model at its current stage of development is the lack of 

metastasis to remote organs.  Although brain and liver are two major sites of lung cancer 

metastasis in clinic, no significant fluorescence increase was detected in these organs during the 

course of our studies.  This was probably due to the athymic mice’s partial immune function, 

which would clear the A549-iRFP cells from blood circulation before any invasion into brain or 

liver tissues. 
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Chapter 4: In Vitro Characterization of Co-Culturing MCS that Consist of A549-iRFP Cell 

with WI38 Fibroblasts 

 

4.1.  Introduction 

Drug resistance, lethal metastasis and cancer recurrence are the key issues in cancer [74].  

Recent investigations have shed light on the tumor microenvironment (TME) that can potentially 

impose these challenges and thus hampers the prognosis of many types of cancer.  TME is 

composed of various stromal cells, including fibroblasts, macrophages, endothelial cells and 

lymphocytes, which are surrounded by the extracellular matrix (ECM) [8].  Cancer-associated 

fibroblasts (CAFs) are one of the abundant stromal cells in the TME, especially in solid tumors.   

 Normally fibroblasts cells remain quiescent until being activated to reactive fibroblasts 

during the wound-healing process.  In TME, the tumor has been recognized as a wound that does 

not heal, which is thought to keep the fibroblasts activated.   Moreover, hypoxia and oxidative 

stress inside the solid tumors further stimulate the local fibroblasts.  Therefore, TME can re-

educate normal fibroblasts into CAFs [75]. 

Numerous animal and cell culture studies have demonstrated that CAFs can promote 

cancer progression, invasion, metastasis, and drug resistance [76].  The high capacity of CAFs in 

synthesizing ECM proteins such as collagens, fibronectins and laminins helps remodel the TME 

to support cancer cell growth [77].  Moreover, by secreting cytokines and chemokines, CAFs 

promote tumor progression in many aspects including tumorigenesis, angiogenesis and 

metastasis.  For example, inoculation of activated fibroblasts with human mammary epithelial 

cell in mice have been shown to boost neoplasia.   For another example, the overexpression of 

transforming growth factor beta (TGF-̰ꞵ) and hepatocyte growth factor (HGF) by CAFs facilitate 

tumorigenesis [78].  CAFs can also recruit endothelial cells by secreting stromal cell-derived 
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factor 1 (SDF1) to promote the formation of new vasculature, which supplies oxygen and 

nutrition for the cancer cells [79].  CAFs also foster cancer metastasis in multiple steps.  

Chemokines that are secreted by CAFs, such as SDF1, promote breast cancer metastasis to bone 

marrow [80].  Notably, tumor never metastasized in fibroblast-deficient mice [81]. 

Co-culturing of SV80 cells (human fibroblasts) with A549 MCS enhanced the adherent 

tissue structure, elevated the hypoxic condition and promoted the epithelial-to-mesenchymal 

transition (EMT) [82].  This result suggests that MCS from co-culturing cancer cells with 

fibroblast cells would generate a more relevant TME to promote tumor growth.  Another study 

showed that WI38 human lung fibroblasts could be re-educated to CAFs by indirect co-culturing 

with A549 monolayer cells.  The re-educated WI38 promoted the invasion of A549 cells in a 

transwell assay [10].  Therefore, we have selected the WI38 fibroblast cells as the stromal cells 

to be co-cultured with A549-iRFP in order to construct more aggressive MCS.   

4.2.  Material and Methods 

4.2.1.  Cell line and reagents.  A549-iRFP cancer cells were cultured as reported in 

Section 2.2.1.  The human lung fibroblast cell line WI38 was obtained from ATCC.  WI38 was 

grown in EMEM (Corning Life Science, US) cell culture medium with 10% FBS, 1% Penicillin-

Streptomycin, and additional L-glutamine.  Falcon® 96-well Black/Clear Flat Bottom 

Microplate and 96-well Spheroid Microplate were purchased from Coring life science.  M-

PER™ Mammalian Protein Extraction Reagent was purchased from Thermo Fisher.   Hoechst 

33342 was purchased from Thermo Fisher.  The α-Smooth Muscle Actin antibody and Anti-

Mouse IgG2a (γ2a)-CF™568 antibody were purchased from Sigma-Aldrich.  4% formaldehyde 

in PBS was purchased from Fisher Scientific for fixation.  Paraplast was purchased from Sigma 



65 

 

 

 

(St.  Louis, MO) for tissue embedding.  Hematoxylin and Eosin were purchased from VWR 

International, (Radnor, PA). 

 4.2.2.  Co-culture of A549-iRFP with WI38 cell in monolayer.  A549-iRFP cancer 

cells and WI38 lung fibroblast cells were seeded in 6-well microplates at ratios 1:1 and 1:2.  

After reaching 80% confluence, the cells were lysed with the M-PER protein extraction buffer.  

The total protein was extracted and centrifuged at 14000 × g for 10 mins.  The supernatant was 

transferred into a black wall 96-well plate with 100 µl per well, each group have 6 replicates.  

The fluorescent signal was measured under Odyssey® Infrared Imaging 205 System 

(Channel:700nm). 

 4.2.3.  Construction of co-culture 3D MCS using A549-iRFP and WI38 cells.  The 

MCS were cultured as described in Sections 2.2.3.  Co-culture MCS were constructed at 

different ratios of cancer cells to fibroblast cells (A549-iRFP:WI38 = 4000:4000, 4000:2000, and 

4000:500).  The seeding density of A549-iRFP cells was 4000 cells/well.  The fluorescent signal 

was measured by Odyssey® Infrared Imaging 205 System (Channel: 700 nm), and the 

morphology of MCS was observed under Keyence fluorescence microscope BZ-X700.  The 

roughness of MCS was calculated using the equation: Roughness (mm) = (AOL-AIL) / LIL, as in 

Chapter 2 

 4.2.4.  Immunofluorescence study on co-culture monolayer cells.  Cancer cells and 

fibroblast cells were seeded in 6-well microplates in different groups: A549-iRFP cells only, 

WI38 cells only, A549-iRFP:WI38 = 1:1, A549-iRFP:WI38 = 1:2, and WI38 cells with 

conditional medium.  WI38 cells were cultured with the conditional growth medium, which was 

changed every day.  The conditional growth medium was prepared by mixing the medium from 

the A549-iRFP cells only group and that from the WI38 cells only group at 1:1 ratio, followed by 
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centrifugation of the mixture at 500 × g.  The resultant supernatant was then stored at -20 °C as 

the conditional growth medium.  After five days in culture, the different cell groups were fixed 

with 4% formaldehyde in PBS for 10 min at room temperature and washed with PBS three times.  

The cells were then permeabilized by incubation for 10 min with PBS containing 0.25% 

TritonX-100.  The cells were then washed in PBS three times and incubated with 5% milk 

powder in PBST (PBS with 0.1% Tween 20) for 30 min to block non-specific binding.  The cells 

were then incubated with the 5 µg/ml primary antibody (Anti-Actin, α-Smooth Muscle antibody, 

Mouse Monoclonal) in PBST with 1% milk powder for 1 hour at room temperature.  The 

antibody solution was decanted and the cells were washed three times in PBS, 5 min each wash.  

The cells were then incubated with the secondary antibody for 1 hour at room temperature.  The 

antibody solution was decanted and the cells were washed with PBS three time for 5 min each in 

darkness.  The cells were then incubated with 1µg/ml Hoechst 33342 for 5 min in darkness at 

room temperature and washed with PBS three times before imaging.  The images were recorded 

using Keyence fluorescence microscope BZ-X700 (λex=361 nm, λem=486 nm for Hoechst, 

λex=562 nm, λem=583 nm for α-SMA). 

 4.2.5.  The live/dead imaging of co-culture MCS by confocal microscopy.  MCS were 

cultured in 96-well spheroids microplate until the diameter reached 500 µm.  MCS were 

transferred to a glass bottom Petri dish and incubated with a LIVE/DEAD™ Cell Imaging Kit 

(ThermoFisher, US) for 45 minutes at 37 °C.  The MCS were washed with PBS 3 times after 

incubation and imaged under Leica DMIRE2 confocal microscope (λex= 491 nm, λem= 513 nm 

for live cell, λex= 561 nm, λem= 607 nm for dead cell).  Images were analyzed using the ImageJ 

software. 
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 4.2.6.  Immunohistochemistry (IHC) and H&E staining of co-culture MCS.  The 

protocol of paraffin-embedding and histology staining were described in Section 2.2.6.  A549-

iRFP and WI38 cells were seeded at 1:1 ratio on the 96-well spheroid microplate.  The histology 

section was de-paraffined using Safeclear II and rehydrated with different concentrations of 

alcohol.  The H&E staining method was described in Section 2.2.6.  The immunofluorescent 

staining protocol was described in Section 4.2.4.  The slides were incubated with 5 µg/ml 

primary antibody (Anti-Actin, α-Smooth Muscle antibody, Mouse Monoclonal) overnight at 

4 °C instead of 1 hour at room temperature.   

4.3.  Results 

4.3.1.  Co-culturing with WI38 fibroblasts promoted proliferation of A549-iRFP 

cells in monolayer.  The fluorescent signal of A549-iRFP cells can represent the cell viability as 

we showed in Chapter 2.  We utilized the fluorescent intensity to semi-quantify the number of 

cancer cells in co-culture with WI38 fibroblasts.  The fluorescent signal was measured using the 

Odyssey Infrared Imaging 205 System at 700 nm channel.  Each well was monitored under the 

microscope to ensure the cell confluence was under 80% before extracting the total protein.  The 

results showed a significant difference in the A549-iRFP cell alone and the co-culture (1:1) 

group (Fig.  15, p=0.0095, N=6, mean±SD). 
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Figure 15: Increased growth of A549-iRFP cells after being co-cultured with WI38 fibroblasts.  

(Mean±S.D, N = 6) 

 

 

 

4.3.2.  Elevated expression of α-SMA indicated that WI38 fibroblasts were re-

educated to cancer-associated fibroblasts.  Cancer-associated fibroblasts (CAFs) are 

characterized by the upregulated expression of -smooth muscle actin (α-SMA).  It has been 

reported that normal fibroblast cells WI38 can be activated to CAFs after being co-cultured with 

A549 cells.  The relatively high expression of α-SMA was illustrated by immunofluorescence 

and western blot.  Therefore, we utilized α-SMA as the biomarker to validate that A549-iRFP 

cells could also re-educate normal fibroblasts to CAFs (Fig.  16).  After co-culturing at different 

seeding densities for 5 days in the 6-well plate, the monolayer A549-iRFP cells were fixed by 
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4% formaldehyde followed by immunofluorescence.  The red color represents the expression of 

α-SMA which was read at 568 nm on Keyence fluorescence microscope BZ-X700.  The nucleus 

was stained with Hoechst which read at 405 nm to locate the cells.  The immunofluorescence 

assay revealed that WI38 cells that had been co-cultured with A549-iRFP cells expressed a 

higher level of α-SMA compared with WI38 cells alone.  Moreover, WI38 which had been 

cultured with conditional medium also had a positive expression of α-SMA.  To semi-quantify 

the α-SMA expression, the grey value of 6 cells at 568 nm in each image was quantified using 

the ImageJ software (Fig.  17).  The co-culture group and conditional medium group showed a 

significant increase of α-SMA expression compared with WI38 cells alone. 
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Figure 16: The immunofluorescence assay revealed that A549-iRFP re-educated WI38 cells to 

CAFs.  The α-SMA was imaged in TexasRed channel (λex = 560 nm, λem = 630 nm) with 7 sec 

exposure time.  The nucleus was imaged in DAPI channel (λex = 360 nm, λem = 460 nm) with 1 

sec exposure time. 
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Figure 17: The semi-quantification showed significant increase of α-SMA expression in the co-

culture groups and conditional medium group.  (* indicates p<0.05, ** indicates p< 0.01, 

mean±SD, N = 6). 

 

 

 

4.3.3.  Co-culture of A549-iRFP cells with fibroblasts formed MCS with a tight, 

round shape and rough edges.  A549--iRFP cells were seeded at 4000 cells/well together with 

0, 500, 2000, 4000 WI38 cells/well to construct the co-culture MCS.  The procedure to build the 

co-culture MCS was the same as in Chapter 2, except that the co-culture medium is EMEM 

(10% FBS, 1% pen/strep) instead of DMEM (10% FBS, 1% pen/strep, L/ml puromycin).  The 

morphology of the co-culture MCS and the A549-iRFP MCS showed no significant difference 

before day 7.  At day 7, the co-culture MCS at 1:1 ratio started to show rough edges rather than 

the smooth edge as seen in A549-iRFP MCS.  The rough edges indicated that the cancer cells 
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were no longer totally tethered by the MCS.  This physiological feature was significantly 

associated with the time the MCS needed to develop metastasis cancer after inoculation in mice.  

Such rough edges typically were displayed by A549-iRFP MCS after much longer culturing time 

(>15 days).  At day 17, the A549-iRFP MCS in this experiment started to show rough edges but 

at much less level than the co-culture MCS.  These results serve as strong evidence that the WI38 

cells had been re-educated to CAFs and were able to promote the cancer cell invasion from MCS 

(Fig.  18). 

 

 

 

 

Figure 18: Morphology of A549-iRFP MCS and co-culture MCS.  MCS in four groups were 

monitored every two days under the bright field microscope.  Each group has 24 MCS.   
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4.3.4.  Faster growth and higher roughness of Co-culture MCS than MCS of only 

the A549-iRFP cancer cells.  The in vitro characterization of co-culture MCS was using the 

same methods as in Chapter 2.  The MCS were scanned every two days on the Odyssey® 

Infrared Imaging 205 System.  The volume was calculated by the ReVisp software using the 

brightfield images which were taken by a Keyence (US) BZ-X700 fluorescence microscope.  

The roughness was calculated using the equation Roughness (mm) = (AOL-AIL) / LIL, where AOL 

is the area enclosed by OL, AIL is the area enclosed by IL, and LIL is the length of IL.   

The co-cultured MCS had higher fluorescent intensity compared to A549-iRFP alone.  

However, the fluorescent signal in MCS of only A549-iRFP cells and the co-culture MCS 

became more similar after the 15 days of culturing, which could be attributed to the relative 

slow-down of the growth of co-culture MCS compared to MCS with only A549-iRFP cells.   

This phenomenon could be attributed to the depletion of the WI38 cells in the co-culture MCS.  

In general fibroblasts have a lower proliferation rate than the cancer cells and the MCS 

microenvironment limited the fibroblasts’ access to nutrients of the culture medium.   

Alternatively, the slowdown of co-culture MCS growth could also be caused by more severe 

necrosis in the co-culture MCS. 

The initial differences between the volumes of MCS associated with seeding number, 

where MCS of higher seeding number of cells had a larger volume.  However, although the 

seeding number of co-culture 1:1 group started with two fold as many as seeded cells as MCS of 

only the A549-iRFP cells alone, the difference in volume on day three after the seeding was less 

than two fold and not statistically significant.  This is probably due to a tighter structure of the 

co-culture MCS.   
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The calculated values of roughness showed the same trend as their morphology under the 

microscope.  The unclear, rough edge showed up in the co-culture (1:1) MCS at as early as day 

5, when other groups still had smooth surfaces.  The co-culture MCS (1:2) displayed remarkable 

roughness later at day 7.  Roughness values of the co-culture MCS (1:1) turned out to be 

significantly larger than that of the MCS of only A549-iRFP cells.  The elevated roughness of 

MCS may result from the pro-cancer effects of CAFs.  Moreover, the higher seeding number of 

fibroblasts cells lead to higher roughness values, which indicates a positive association between 

the density of fibroblasts cells in the MCS and the MCS’ roughness.   
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Figure 19: The in vitro characterization of co-culture MCS.  The fluorescent signal (A), volume 

(B) and roughness (C) of MCS increase with time.  (Fig.  A-B mean±S.D, n=24; Fig.  C, *** 

indicates p≤0.001, mean±S.D, N = 6) 
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4.3.5.  Immunofluorescence staining of live/dead cells followed by confocal 

microscopy to characterize the necrotic core of co-culture MCS.  To validate that the co-

cultured MCS have a necrotic core, both the live and dead cells of the MCS were detected with a 

immunofluorescence assay.  The A549-iRFP cells were co-cultured with WI38 fibroblasts to 

form MCS at 4000 cells/well density for both A549-iRFP and WI38 cells.  The MCS of a 

diameter around 500 µm were stained at day 5 after seeding.  The fluorescent intensity plot for 

both the green (live cells) and the red (dead cells) channels show the uneven distribution of live 

and dead cells in the co-culture MCS (Fig.  20).  The images showed a necrosis core inside the 

co-culture MCS, similar to that of MCS of only the A549-iRFP cells. 

 

 

 

  

Figure 20: Immunofluorescence imaging of live and dead cells in the co-culture MCS confirmed 

its necrotic core.  Red color indicates dead cells, green color indicates live cells.   
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4.3.6.  Histological studies on co-culture MCS using H&E staining indicates the 

depletion of fibroblast cells after 6 days of co-culturing.  In order to characterize the inner 

structure of the co-culture MCS, the MCS were constructed by co-culturing A549-iRFP and 

WI38 cells at the same density of 4000 cells/well.  The MCS were grown for 6 days and fixed 

with 10% formalin, followed by H&E staining as described in Section 2.2.6.  However, the inner 

structure of co-cultured MCS showed no apparent difference with MCS of only A549-iRFP cells.  

Both co-culture and MCS of only cancer cells showed a loose internal structure, which is 

consistent with the presence of a necrotic core after 6 days of culture (Fig.  22).  Co-cultured 

MCS 3 days after the seeding were also fixed and stained with H&E (Fig.  21).  As the MCS 

needed to be visualized during the embedding process in the histology study, A549-iRFP and 

WI38 cells were both seeded at higher density of 10000 cells/well to construct such MCS of 

shorter growth time.  MCS of only A549-iRFP cells at 20000 cells/well seeding density was 

characterized as a control for comparison.  Without being co-cultured with fibroblast cells, the 

MCS showed a loose inner structure, which is similar to previous results.  In contrast, the co-

cultured MCS showed a dense internal structure in the center.  The yellow arrows point out cells 

of spindle-like morphology, which are fibroblast cells.  The fibroblast cells were aggregated at 

the center of the MCS and showed a skeleton-like structure.  The slower proliferation of 

fibroblast cells would explain why WI38 cells were only present at the core of MCS.  Taken 

together, these results confirm the initial presence of the fibroblast WI38 cells in the co-culture 

MCS, followed by their depletion after being cultured for 3-6 days, which, as mentioned before, 
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would explain the slowdown in the increase of fluorescence and the volume of the co-culture 

MCS.   

 

 

 

Figure 21: Histological Imaging (H&E staining) of co-culture and single culture MCS after being 

cultured for 3 days.   



79 

 

 

 

 

 

 

 

Figure 22: Histological Imaging (H&E staining) of co-culture and single culture MCS after being 

cultured for 6 days. 

 

 

 

4.3.7.  Attempted Identification of CAFs in co-culture MCS by 

Immunohistochemistry (IHC).  To confirm the existence of CAFs in the co-cultured MCS, an 

immunohistochemistry assay was performed day 3 after seeding on both the co-culture MCS and 

MCS of only cancer cells.  MCS were constructed as described in Section 4.2.4.  The 

immunofluorescence staining on paraffin-embedded samples was optimized with overnight 

incubation of the primary-antibody.   However, in both co-culture MCS and MCS of only the 

A549-iRFP cells, there was no positive fluorescent signal at 568 nm that would represent the a-

SMA (Fig.  23).  This result contradicted with the H&E staining of co-culture MCS, which 
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clearly showed fibroblast-like cells in the center of MCS.  One possible reason for this 

observation is that during the paraffin-embedding process, the binding sites for the antibody have 

been blocked, which is a common problem of IHC assay on the paraffin-embedded samples. 
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Figure 23: Immunohistochemistry (IHC) assay on MCS to identify the existence of CAFs. 
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4.4 Discussion 

In this chapter, we first identified the pro-proliferation effect and positive results of the 

biomarker study which indicated a transformation of normal fibroblasts to cancer-associated 

fibroblasts (CAFs) in monolayer cells.  Then, we constructed a co-cultured MCS that consisted 

of A549-iRFP lung cancer cells and WI38 normal human fibroblast cells.  The 3D MCS showed 

higher fluorescent intensity in the co-culture group than the group of only the A549-iRFP cancer 

cells, indicating that CAFs promoted tumor growth.   

The morphology of the co-cultured MCS features a round shape, a tight structure, and 

quicker development of roughness.  Co-culturing the A549-iRFP cells and WI38 cells at the 

same seeding density started to show the rough edges on the 5th day after seeding, which is 

much earlier than the time for MCS of only the A549-iRFP cells.  The inner structure of co-

cultured MCS was illustrated by histological studies using the H&E staining.  Interestingly, there 

were no clear, spindle-like cells in the co-cultured MCS after 6 days of growth.  The depletion of 

fibroblasts cells was speculated, which lead me to study the structure of the co-cultured MCS at 

an earlier time.  Thus the co-culture MCS that were grown for only 3 days were fixed, and 

stained with H&E.  At this earlier time point, a much denser structure and the fibroblasts-like 

cells were observed at the center of the co-culture MCS, compared to MCS of only the A549-

iRFP cells.  However, there was no positive staining in the immunohistochemistry assay that 

would have detected the presence of CAFs in the co-cultured MCS.  One possible reason for this 

discrepancy is that the paraffin embedding blocked the binding sites of α-SMA to give a false 

negative result.  Overall, the co-cultured fibroblasts inside the MCS under our studies were 

shown to promote the cancer proliferation and invasion.   
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The fluorescent signal of A549-iRFP cells reflected the tumor promoting effect of CAFs.  

In the monolayer studies, the co-culture group showed significantly larger fluorescent signal 

compared monolayers of only A549-iRFP cells.  The WI38 cells alone as a control did not have a 

fluorescent signal in the 700 nm wavelength.  In 3D MCS, the co-cultured MCS showed higher 

fluorescent signal and larger volume than MCS of A549-iRFP alone over the first 15 days of 

MCS culturing.  The higher fluorescent signal of the co-cultured MCS at day 5 also specifically 

indicated a tumor-promoting effect of CAFs in the early days.  After 15 days, the fluorescent 

signal of all the MCS groups trended toward the same level, which can be explained either by the 

depletion of fibroblasts or by a more severe necrosis in the core of MCS.  Overall, the co-culture 

studies illustrated a pro-tumor effect of CAFs both in monolayer and in MCS. 

An immunofluorescence assay was used to detect α-SMA, which is the biomarker of 

CAFs.  In the monolayer study, 6 cells randomly selected to semi-quantify the presence of α-

SMA in co-culture, share medium and WI38 alone groups.  The significantly higher grey value 

of α-SMA in the co-culture and the shared medium groups confirmed the existence of CAFs.  

These results indicate that the re-education of normal fibroblasts to CAFs took place both in 

direct and indirect co-cultures.  The results of our study are consistent with a previous study 

where WI38 and A549 cells were grown separately but shared medium in a fluid set up [10].  

However, in the MCS study, no α-SMA signal was detected in the co-cultured MCS by the 

immunohistochemistry.  This is probably due to the potential blocking of the anti-body binding 

sites by the paraffin.  An additional target retrieval procedure may help overcome the blocking 

effect [83]. 

The most important finding of our co-cultured MCS study is the earlier formation of the 

rough edge in the co-culture MCS compared to MCS of A549-iRFP cells only.  In Chapter 3, the 



84 

 

 

 

roughness of the inoculated MCS was shown to correlate negatively with the time needed to 

develop metastatic cancer (p=0.0299) in the MCS inoculated mice.  Therefore, the co-culture 

MCS with a relatively small volume but a large roughness value can be inoculated into mice with 

a smaller needle.  This potential optimization would further reduce the surgical trauma caused by 

MCS inoculation into the lung parenchyma.  Further, the large roughness value of the co-culture 

MCS in this study indicated that they maintained a high invasive capacity over 20 days of 

culturing, which in turn suggest that such co-cultured MCS, upon inoculation into mice, would 

manifest four-stage cancer progression that is similar to what is reported in Chapter 2. 
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Chapter 5: Summary 

 

Lung cancer xenograft serves as one of the most useful tools in evaluating therapeutic 

efficacy and understanding lung cancer biology.  Subcutaneous xenografts are typically the 

predominant model in screening drug candidates of chemotherapy, but its use is associated with 

the unfaithful prediction due to the lack of reflection of cancer metastasis [25, 39].  The 

utilization of orthotopic lung cancer model has resulted in an improved reflection of the tumor 

microenvironment, such as hypoxia.  However, the current method of constructing orthotopic 

lung cancer xenograft features premature leakage of the cancer cells to both sides of the lung 

within five days, which generates a quick artifact of metastasis and thus belies the development 

and progression of lung cancer as seen in the clinic [43, 45, 47, 48].   In order to better optimize 

this model, a novel implantation method based on intrapulmonary inoculation of multicellular 

spheroids (MCS) is developed and present in this thesis. 

A549-iRFP MCS have been constructed and its volume, viability, morphology and 

fluorescent signal have been characterized.   Compared to suspended cells, the MCS better 

mimic the condensed morphology of primary solid tumors that present a barrier for drug 

penetration.  The A549-iRFP MCS showed strong correlation with the volume and viability of 

MCS, which indicates the potential of using the fluorescent signal to reflect the cancer growth.  

Since the bright and stable signal from near-infrared fluorescent protein that expressed in A549-

iRFP cells has low absorbance and less light scattering, which allows the non-invasive in vivo 

imaging.  Therefore, the fluorescent signal of A549-iRFP MCS can be utilized to reflect the 

cancer growth.   
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The inoculation procedure is similar to the time needed to inject suspended cells to build 

tumor xenografts in mice.  Each MCS inoculation took about 20 minutes, allowing one 

experienced researcher to inoculate 20 mice per day.  Since the location of primary lung 

adenocarcinoma is typically in the periphery of lung parenchyma, the inoculation of A549-iRFP 

MCS mimics the initiation location of the primary solid adenocarcinoma.  For squamous cell 

carcinoma, which generally grows in the center of the lung, tracheal intubation could help in 

delivering MCS into the lung [5]. 

In this study, the association between the MCS roughness and the time needed for 

metastasis suggests that the more invasive morphology of MCS can lead to an early intrathoracic 

metastasis of orthotopic lung cancer model.  The equation of calculating these rough edges is 

derived from the equation of quantifying invasiveness [65, 84].  The value of roughness indicates 

the average length of these rough edges.  The higher length of roughness represents the farther 

distance of cancer cells invasive into the surrounding medium.  By associating with the in vivo 

results that mice inoculated MCS with larger roughness value showed fluorescent signals on both 

sides of the lung earlier than mice inoculated with MCS with less roughness.  From both in vitro 

morphology changes and in vivo early metastasis, these rough edges could reflect a more 

aggressive cancer growth.  A series of biological studies will be done to demonstrate the MCS 

with rough edges exhibit greater cell growth potential than MCS without rough edges. 

Organoid implantation has been reported in constructing a colorectal cancer model in 

many literatures [85].  GEMM have featured with the reliable prediction of targeting therapy and 

faithful recapitulation of genetic variations.  However, the anatomical location of the primary 

tumor in GEMM of colon cancer is incorrect.  This is because traditional GEMMs harboring 

germline Apc mutations frequently develop small intestinal, rather than colonic lesions.  By 
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engrafted genetically engineered organoid into the mucosal layer of the mouse colon, a novel 

orthotopic colon cancer model was developed.  The ex vivo modification of human organoid 

provides a flexible, fast, and low-cost platform to study colorectal cancer development.  By 

accurately transplanted the genetically modified organoids into the mucosal layer of mouse 

colon, it avoids the incorrect location that tumor initiate [86].  The combination of genetic tools 

and surgical approaches could further facilitate the development of the mouse model.  In our 

study, we first developed the method to inoculate sphere-like cancer cell aggregate into the mice 

lung.  This approach is also easily adapted for the orthotopic engraftment of lung cancer 

organoids for the production of histopathologically accurate pre-clinical human cancer models. 

In summary, a novel lung cancer model was constructed based on orthotopic inoculation 

of MCS of fluorescently labeled human lung cancer cells.  The surgical procedure for the model 

achieved high postoperative survival rate and allowed cancer development that mimicked four 

clinical stages of NSCLC.  Collectively this new animal model will help drive the development 

of small molecules for against the metastatic non-small cell lung cancer. 
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