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 Magnetic resonance imaging is a non-invasive imaging modality that is used to 

produce detailed images of soft tissues within the human body. Typically, MRI scanners 

used in the clinical setting are high field systems because they have a magnetic field 

strength greater than 1.5 Tesla. The high magnetic field offers the benefit of high spatial 

resolution and high SNR.  However, low filed systems can also produce high resolution 

MR images with the added benefit of imaging stiffer samples. In this study, a low field 

0.5 T MR system was used to image various samples to demonstrate the capability of the 

low field system in acquiring MR images with resolution comparable to high field 

systems. Furthermore, the MR system was modified to one capable of performing low 

field MR Elastography (MRE), a technique that can non-destructively measure the 

mechanical properties of soft samples.  Agarose gel phantom of 0.5% wt. and 1.0% wt. 

were used to validate the MRE system.  Additionally, a rat brain was used to assess the 

sensitivity of the MRE system in measuring the mechanical properties of small tissues. 
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The results illustrated that the low field MR system can acquire high resolution images 

and provide sufficient tissue contrast (e.g through long TE times (80 ms), which is not 

possible with high field systems). MRE results on gel phantoms illustrated the capability 

of the low field system to accurately measure the mechanical properties and the MRE 

testing of rat brain demonstrated the potential of the system to study biological tissues.  

Finally, the capability of low field MRI and MRE to assess the growth of tissue 

engineered bone has the potential to transform the field of tissue engineering. 
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Introduction 

Introduction to MRI 

MRI is an imaging modality that is used to produce detailed images of the tissues 

within the human body.  Unlike CT and X-ray, MRI does not rely on radiation, making it 

a safer imaging technique. The advantages of MRI over other imaging techniques are its 

noninvasive nature, excellent tissue contrast, and the ability to image in any direction. 

The technique relies on the fact that tissues have varying magnetic susceptibilities. That 

is, each tissue has a different degree of magnetization when placed in a magnetic field. 

This difference serves as a means of identifying the unique tissues within the body based 

on their contrast in the images.   For example, MRI can distinguish between fat and water 

containing tissues.

The human body is made of mostly water and water is essential for all living cells 

within the body (Jéquier & Constant, 2010).  Water molecules are composed of two 

hydrogen atoms covalently bonded to one oxygen atom. The hydrogen atom exists in the 

body in the form of an ion that is commonly referred to as a “proton”. Every human cell 

contains water and therefore contains the protons and these protons have a spin property. 

This spin property generates a small magnetic field which causes protons to behave like 

small magnets.  Although there are many protons in the body, their random orientations 

causes their magnetization to cancel out.  However, when the patient is placed within a 

strong magnetic field (B0), the protons attempt to align either parallel or anti-parallel to 
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the magnetic field, with a majority favoring alignment in the parallel direction (low 

energy).  This results in the generation of a “net magnetization” that is parallel to the 

magnetic field (Figure 1). This net magnetization is responsible for the signal that 

produce MR images. 

 

Figure 1: Alignment of protons in a magnetic field. When no external magnetic field is 

applied, the protons have random alignment which results in zero net magnetization. 

However, when an external magnetic field (B0) is applied, the protons align either 

parallel (lower energy state) or antiparallel (higher energy state) to the magnetic field. 

Since most protons align parallel to the magnetic field, it results in a net magnetization 

parallel to the main magnetic field (“MRI at a Glance, 2nd ed,” 2012). 

In the presence of the magnetic field, the protons attempt to align. However, 

complete alignment is not achieved due to mechanical forces of the protons’ individual 

components which cause the protons to rotate around in the direction of the magnetic 

field; this motion is called precession.  The frequency at which a proton precesses is 

found through the Larmor equation which states that the angular frequency is 

proportional to the magnetic field strength such that  
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 𝜔 =  𝛾𝐵0 (1) 

The constant 𝛾 is the gyromagnetic ratio and is specific to the nuclei used.  Table 1 gives 

the values for the gyromagnetic ratio of several nuclei found in the human body. 

Table 1: Values for the gyromagnetic ratio for common ions found in the human tissues. 

Notice that the ratio is highest for the hydrogen nucleus which is also the most abundant 

nucleus in the body (Balter, 1987). 

Nuclei Net spin 
𝜸

𝟐𝝅
 (MHz/T) 

Molar 

concentration 

(mol/L) 

Relative 

sensitivity 

1H 1/2 42.58 99.0 1 

13C 1/2 10.71 0.10 0.016 

14N 1 3.08  1.6 - 

19F 1/2 40.08  0.0066 0.830 

23Na 3/2 11.27  0.078 0.093 

31P 1/2 17.25  0.35 0.066 

Samples placed in a magnet have small atomic dipoles that combine to form a net 

magnetic moment termed M, which grows exponentially. However, since the protons do 

not precess with the same phase, it is impossible to measure their net magnetization.  For 

measuring their net magnetization, the protons would need to precess with the same 

phase and the signal would need to be tipped from the direction of the magnetic field into 

the transverse plane.   This can be done by sending a Radio Frequency (RF) pulse that is 

at the Larmor frequency of the protons, which tips the net magnetization into the 
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transverse plane and synchronizes the atomic dipoles.  Once the atomic dipoles are 

synchronized, the RF pulse is removed.  When the RF pulse is removed, the protons 

return to their relaxed state (relaxation) by releasing energy which is used to produce an 

image.  The relaxation process for hydrogen protons occurs by two main mechanisms: 

spin-lattice (T1) relaxation and spin-spin (T2) relaxation. Variations in these two 

mechanism gives contrast to MR images. 

Relaxation Times.  At equilibrium, the net magnetization vector lies along the 

direction of the applied magnetic field (B0) and is termed the equilibrium magnetization 

(M0).  In this configuration, there is no transverse magnetization (MX and MY) and the net 

magnetization, MZ, is equal to equilibrium magnetization M0. It is possible to change the 

net magnetization vector by applying energy of a specific frequency, a 90° RF pulse for 

example, to the nuclear spin system. If enough energy is applied, then the longitudinal 

magnetization can be decreased to zero.  As the magnetization returns to equilibrium, the 

longitudinal magnetization grows according to  

 𝑀𝑧(𝑡) = 𝑀0 (1 − 𝑒
−

𝑡
𝑇1) . (2) 

The time constant that describes how the longitudinal magnetization returns to its 

equilibrium value is the longitudinal or spin-lattice relaxation time ( T1 ).  The 

longitudinal relaxation time can be viewed as the time required for the longitudinal 

magnetization (MZ) to reach 63% of its maximum value ( 

Figure 2). This occurs due to the transfer of energy between neighboring spins as 

they move at random and their environment as collisions occur. The T1 relaxation time 
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varies between different tissues which allows for specialized sequences to produce 

contrast between the images ( T1-weighted images). 

 

Figure 2: Recovery of the longitudinal magnetization for two different tissues. Tissue A 

has a shorter T1 relaxation time than Tissue B which gives contrast between the two 

tissues. 

Another important relaxation parameter is the spin-spin relaxation time, T2. After 

the 90° RF pulse, the net magnetization tips by 90° and lies in the transverse plane.   This 

net magnetization is composed of the contributions from numerous protons which precess 

at the Larmor frequency.  When the 90 RF pulse is applied, the protons are in phase and 

remain in phase immediately after the RF pulse.  However, do the interactions of local 

nuclei (spin-spin interactions), the magnetic field in the immediate environment of a 

proton is not homogeneous.  This means that each nucleus has a slightly different Larmor 

frequency, which causes the dephasing of the transverse magnetization.  The degree of 
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dephasing is dependent on the elapsed time; with a longer elapsed time corresponding to 

greater phase difference. This makes the transverse magnetization decay exponentially 

according to  

 𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦𝑒
−

𝑡
𝑇2  . (3) 

In addition to the dephasing caused by spin-spin interactions, the decay of the 

transverse magnetization is also affected by the small inhomogeneities in the magnetic 

field (B0), chemical shift, and magnetic susceptibility that is termed T2′. Therefore, the 

signal decays faster than it would for pure T2  ( 

 

Figure 3).  The cumulative effect of this phenomenon is termed T2 * and is given 

by the equation, 

 
1

𝑇2
∗ =

1

𝑇2
+

1

𝑇2
′ . (4) 

Like T1, T2  relaxation time varies between tissues and can serve as a means for finding 

contrast between MR images. 
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Figure 3: Comparison of signal decay for pure T2 and T2
∗. Due to inhomogeneities in the 

main magnetic field, chemical shift, and magnetic susceptibility, the spin-spin relaxation 

decays at a faster rate. 

 Although T1  and T2  relaxation times are discussed separately, they in fact occur 

simultaneously.  The dephasing of the transverse magnetization leads to its decay 

(governed by T2) but results in the growth of the longitudinal magnetization (governed by 

T1). 

Imaging Sequences.   As discussed, after the 90° RF pulse, the net magnetization 

begins to dephase in the transverse plane.  However, after a certain amount of time, a 

180° RF pulse can be applied that causes the spins to rotate over to the opposite axis and 

results in the rephasing of the net magnetization.  The rephrasing of the spins forms an 

“echo” termed a spin echo and the time between the 90° RF pulse and the peak of this 

echo is called the echo time (TE).  TE along with several other parameters can be used to 

control the timing of the RF pulse and the magnetic field gradients which ultimately helps 

to achieve contrast in the image.   These parameters are grouped into what is known as an 

imaging sequence. A typical spin echo imaging sequence is illustrated in  

Figure 4.  In the sequence, three gradients, frequency encoding (GX), phase 

encoding (GY), and slice select (GZ) are used to perform spatial localization of protons.  
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Figure 4: Typical spin echo imaging sequence. The repetition time (TR) is shown as the 

time it takes to go through the sequence once. The time of the echo is shown as TE. This 

sequence uses a 90° RF pulse followed by a 180° RF pulse to rephrase the spins and form 

an echo. 

 The TE and the repetition time (TR) can be adjusted to control for the weight of 

the T1 and T2 effects in the image. Table 2 presents relaxation values of varying tissues 

that comprise the human brain obtained at a magnetic field of 1 T. While T1 and T2 

values depend on the nuclear properties of the proton, proton density weighted imaging 

makes use of the relative density of the protons in the tissues; this gives the technique 

features of the both T1 and T2 relaxation times. 
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Table 2: Typical values for T1 and T2 relaxation times for various tissues within the 

human body obtained at a magnetic field strength of 1 T (Prince & Links, 2006).  

 T1 (ms) T2 (ms) Proton 

density White matter 510 67 0.61 

Gray matter 760 77 0.69 

Cerebrospinal Fluid 

FFlFluid 

2650 280 1.00 

Using the differences between these components, contrast can be produced in the 

image. For a T1 weighted image, a short TR is selected to optimize the T1 contrast and a 

short TE is selected to minimize the influence of T2 and maximize the intensity of the 

signal.  For T2 weighted images, a long TR and a long TE are used but a long TE implies 

a reduction in the signal intensity and therefore a reduction in the single to noise ratio.  

For the proton density weighted imaging, a long TR and a short TE are used which 

minimizes the effects of T1 and T2 while maximizing the signal.  Figure 5 lists examples 

of images obtained through these three differing contrast mechanisms.  It is however, 

important to note that aside from these, other contrast mechanisms do exist; for example 

magnetic resonance elastography (MRE).  
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Figure 5: Images of the bran obtained with the different contrast mechanisms: proton 

density weighted, T2 weighted, and T1 weighted obtained at a field strength of 1 T (Prince 

& Links, 2006).  

Introduction to MRE 

A major goal of medicine is to measure the integrity of tissues without invasive 

procedures. Current methods of detecting cancerous or diseased tissue involves 

rudimentary techniques such as palpation or extensive lab tests and biopsies.  Tissue is 

extracted from the patient and analyzed under a microscope for signs of tumor growth, 

and therefore, the patient needs to undergo surgery for the tissue extraction.  This results 

in patient discomfort and higher medical costs.  Palpation is a clinical examination tool 

that has been used for centuries to detect abnormalities in parts of the human body that 

are easily accessible by assessing the changes in the stiffness of tissues (R. Muthupillai et 

al., 1995).   The elasticity of tissues in the human body is well known and therefore, a 
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change in elasticity may indicate the presence of disease (Doyley & Parker, 2014).  

Recent advancement of medical technology has allowed use of imaging techniques for 

analyzing the tissues within the human body. X-ray imaging has come to be a significant 

means of detecting bone damage; CT imaging has allowed for the volumetric imaging of 

various areas of the body; and MRI has provided enhanced soft-tissue contrast with no 

harmful radiation.  However, these techniques fail to quantify the changes in the 

mechanical properties of the tissues due to disease.  Mechanical properties like the shear 

modulus of tissues vary more than 5 orders of magnitude while other tissue properties 

assessed by traditional imaging modalities vary much less (Figure 6). This gives the 

measurement of the shear wave modulus significant diagnostic potential. For example, 

palpation is one method used for testing the relative hardness of tumors in cases of breast 

cancer (Hawley et al., 2017).  However, palpation is subjective and limited to areas of the 

body that are easily accessible.  Therefore, new technologies are needed to address the 

limitations of palpation while non-destructively providing quantitative information about 

tissue properties.  MRE is a technique that can be used to determine the mechanical 

properties of samples by analyzing the visual and temporal strains caused by the 

propagation of mechanical shear waves (Raja Muthupillai & Ehman, 1996).  
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Figure 6: Example of different imaging modalities and the contrast spectrum they use. 

The shear modulus shows the largest variation with a range of values that span over 5 

orders of magnitude (Faruk, Islam, Arefin, & Haq, 2015; Mariappan, Glaser, & Ehman, 

2010). 

MRE Principles.  MRE has become a useful tool in investigating various 

diseases within the body based on the mechanical properties of diseased tissues. There 

are three main steps involved in MRE: 

i. Producing cyclic shear motion in the sample via a mechanical actuator. 

ii. Using a modified pulse sequence that contains motion-sensitizing 

gradients (MSG) to monitor shear wave motion through the sample. 

iii. Using an inversion algorithm to evaluate the local values of the 

mechanical properties. 



13 

 

 

The mechanical waves used in MRE are typically of a single frequency and are 

generated by an external waveform generator. The electronic signal is triggered by the 

modified pulse sequence and fed into a signal amplifier before stimulating a mechanical 

actuator.  The following section will discuss the theoretical basis of MRE. 

Theoretical Basis of MRE.  MRE is a phase-contrast MRI technique that 

measures the displacement of spins subjected to cyclic mechanical excitations (R. 

Muthupillai et al., 1995). Typically, in MR acquisition, the phase image is not useful 

because it is contaminated by system imperfections such as magnetic susceptibility 

(Brown, Haacke, Cheng, Thompson, & Venkatesan, 2014).  However, useful data can be 

obtained if the phase images are represented as phase difference images, which plot the 

difference between the phases of two data sets.  Assuming images A and B, this could be 

represented as  

 𝜙(𝑥, 𝑦) = 𝜙𝐴(𝑥, 𝑦) − 𝜙𝐵(𝑥, 𝑦) . (5) 

This phase difference is typically used to correct for system imperfections and 

MR nuances. However, the information provided by the phase difference can be used to 

generate contrast related to motion by intentionally introducing controlled motion 

artifacts into a phase image and studying these phenomena related to motion by magnetic 

field gradient sensitization. Since the spins in a magnetic field possess a phase that is 

dependent on the strength of the magnetic field and the applied magnetic field along the 

direction of the spin motion, the phase equation is correlated to spin motion by 

 𝜙 = 𝛾 ∫ 𝐵0
⃗⃗⃗⃗ ∙ 𝑟 (𝑡)𝑑𝑡

𝜏

0

+ 𝛾 ∫ 𝐺𝐸
⃗⃗ ⃗⃗  ∙ 𝑟 (𝑡)𝑑𝑡

𝜏

0

+ 𝛾 ∫ 𝐺𝑟
⃗⃗⃗⃗ (𝑡) ∙ 𝑟 (𝑡)𝑑𝑡 ,

𝜏

0

 (6) 
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where 𝛾 is the gyromagnetic ratio characteristic of the nuclei, 𝐵0
⃗⃗⃗⃗  is the static magnetic 

field strength, 𝐺𝐸
⃗⃗ ⃗⃗  (𝑡) is one of the encoding gradient vectors, 𝑟 (𝑡) is the spin motion 

vector, and 𝐺𝑟
⃗⃗⃗⃗ (𝑡) is the bipolar gradient vector that is collinear to the encoding gradient 

and used for spin motion filtering. This gradient is also known as the motion sensitizing 

gradient (MSG) (Brown et al., 2014).  

 When the difference between the phase images is taken, the phase due to the 

encoding gradient and the static magnetic field is assumed to be constant through the 

bipolar measurements and can be eliminated by the subtraction.  However, the motion 

induced by the bipolar gradients can be reversed which makes it doubled.  Consequently, 

only the third term of equation (6) remains and is used for motion detection, so that  

 𝜙 = 𝛾 ∫ 𝐺𝑟
⃗⃗⃗⃗ (𝑡) ∙ 𝑟 (𝑡)𝑑𝑡

𝜏

0

 (7) 

 A cyclic induced displacement will cause a temporal spin motion vector governed 

by 

 𝑟 (𝑡) = 𝑟0⃗⃗  ⃗ + 𝜉 (𝑟 , 𝑡), (8) 

where 𝑟0⃗⃗  ⃗ represents the initial location of the spin at time t = 0, and 𝜉 (𝑟 , 𝑡) is the cyclic 

displacement of the spin about its mean position caused by the mechanical excitation.  If 

the MSG, with multiple bipolar pairs N and duration 𝜏, is synchronized at the same 

frequency with the induced spin motion, 𝜉 (𝑟 , 𝑡), and turned on for a duration 𝜏 so 

that ∫ 𝐺𝑟
⃗⃗⃗⃗ (𝑡) ∙ 𝑟0⃗⃗  ⃗𝑑𝑡 = 0

𝜏

0
, then the dynamic phase shift of the moving magnetization, 

equation (7), can be rewritten as 
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 𝜙 = 𝛾 ∫ 𝐺𝑟
⃗⃗⃗⃗ (𝑡) ∙ 𝜉 (𝑟 , 𝑡)𝑑𝑡

𝜏

0

 (9) 

The cyclic displacement vector 𝜉 (𝑟 , 𝑡) can be further written as 

 𝜉 (𝑟 , 𝑡) = 𝜉0
⃗⃗  ⃗ 𝑒(𝑗[𝑘⃗ ∙𝑟 −𝜔𝑡+𝜓]) (10) 

where 𝜉𝑜
⃗⃗  ⃗ is the peak displacement of the spin from the mean position, 𝑘⃗  is the wave 

vector, 𝜔 is the angular frequency of the mechanical wave excitation, and 𝜓 is the 

introduced phase offset between the bipolar gradient pulses and the wave. 

The phase difference depends on the shape of the bipolar gradient and typically, 

the biopolar gradient is set to be a sinusoidal, 𝐺𝑟
⃗⃗⃗⃗ (𝑡) = 𝐺0

⃗⃗⃗⃗ 𝑐𝑜𝑠(𝜔𝑡), which reduces 

equation (10) to a phase constant that is a function of position and phase shift given by 

 

𝜙(𝑟 , 𝜓) = 𝛾 ∫ 𝐺0
⃗⃗⃗⃗ cos(𝜔𝑡) ∙ 𝜉0

⃗⃗  ⃗ 𝑒(𝑗[𝑘⃗ ∙𝑟 −𝜔𝑡+𝜓])𝑑𝑡
𝜏

0

=
𝛾𝑁𝑇(𝐺0

⃗⃗⃗⃗ ∙ 𝜉0
⃗⃗  ⃗)

2
cos(𝑘⃗ ∙ 𝑟 + 𝜓)  

(11) 

where the MSG duration is written as 𝜏 = 𝑁𝑇, 𝑁 being the number of bipolar pairs and 

𝑇 = 2𝜋 𝜔⁄ . Equation (11) shows that the measured phase magnitude is dependent on the 

number of bipolar pairs 𝑁, the dot product of the amplitude of the bipolar gradient and 

the peak displacement spin amplitude motion (𝐺0
⃗⃗⃗⃗ ∙ 𝜉0

⃗⃗  ⃗) modulated by the cosine function. 

From the dot product relationship, it is determined that the bipolar gradient acts as a filter 

extracting its collinear displacement. Furthermore, there is a relation between the 

measured phase shift and the initial phase offset 𝜓 so by varying 𝜓, it is possible to study 

the temporal behavior of spin displacements.  
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A typical spin-echo based MRE pulse sequence is shown in  

Figure 7, with the RF pulse waveform, slice-selection (Gz), phase-encoding 

gradient (GY), and the frequency-encoding gradient (GX). 

 

 

Figure 7: A typical MRE spin-echo sequence. The motion sensitizing gradient (MSG) is 

shown with a positive sinusoid. 𝜓 is the delay between the motion waveform and the 

MSG. Adapted from (Boulet, Kelso, & Othman, 2011). 

By manipulating the axis on which the MSGs are applied, the motion occurring in 

any direction can be encoded in the phase of an MR image.  Two phase images are 
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collected, one with a positive MSG and the other with a negative MSG, and a phase-

difference image is calculated by subtraction or complex division, removing all phase 

information not related to the imparted motion.  The phase offsets 𝜓 are evenly 

distributed over a period of the mechanical excitations to acquire time-dependent data 

showing the propagation of the wave through the tissue of interest. The motion-encoding 

capability of this technique is sensitive enough to detect motion on the order of 100 

nanometers (Raja Muthupillai & Ehman, 1996).  

The data obtained from a complete MRE acquisition in a single plane is 

composed of several images that are evenly distributed over one cycle of the mechanical 

excitations. These images are grouped into a three-dimensional dataset (2 spatial and 1 

temporal dimensions) depicting shear wave propagation. Each image typically contains 

128 x 128 pixels whose intensity corresponds to the magnitude of the measured 

displacement in the direction of the motion sensitizing gradient. The last step in MRE is 

to calculate local values of mechanical properties from this measured displacement field. 

This can be done by performing a direct algebraic inversion of the governing equations 

under certain simplifying assumptions, details of which are explained in (Boulet et al., 

2011). 

MRE Applications 

 Due to its noninvasive nature, MRE has found many applications and has 

transformed medical imaging.  MRE has been used to test various organs within the body 

including liver, kidney, brain, breast, and bone (Kruse et al., 2008; Shah et al., 2004; L. 

Xu, Lin, Xi, Shen, & Gao, 2007; Yin et al., 2007). 
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One of the main applications of MRE in the clinical setting is the diagnosis of 

liver disease (Rouvière et al., 2006; Yin et al., 2007). Severe damage to the liver can 

result in the tissue fibrosis (scarring of the tissue) which can further advance to 

irreversible cirrhosis (diseased liver tissue).  MRE is used to assess the disease 

researchers have demonstrated that fibrosis causes an increase in the liver tissue stiffness 

(Batheja et al., 2015; Besa et al., 2017).  Furthermore, MRE has been shown to be 

sensitive enough to assess the progression of fibrosis, with a cutoff stiffness of 2.93 

kilopascals (kPa) signifying onset of the disease, as shown in Figure 8.  Other 

noninvasive modalities like conventional MRI, CT, and US are able to detect advanced 

cirrhosis but have low sensitivity for the, early, fibrotic stages of the disease, which limits 

treatment options (Faria et al., 2009).  
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Figure 8: MRE of a healthy liver and a diseased liver. The left column shows anatomic 

images of a healthy liver as compared to a liver with grade 4 fibrosis. The middle column 

shows the shear wave data of the liver and spleen superimposed on the anatomical 

images. The far right column shows the elastograms. The shear wave images show an 

increased wavelength in the fibrotic liver. The elastograms show an increased mean shear 

stiffness in the fibrotic liver as compared to the normal liver. (12.1 ± 1.2 kPa vs 1.8 ± 0.3 

kPa, respectively) (Yin et al., 2007).  

 Investigation of the brain requires noninvasive procedures since the brain is 

encased in the skull.  While conventional MRI or CT can be used for the detection of 

brain injury or disease, they provide limited information.  MRE, however, is well suited 

for this application.  MRE has shown promise in studying the effects of traumatic brain 

injury (TBI) and can be used to diagnose neurodegenerative disorders (Boulet et al., 

2011; Lipp et al., 2018; Murphy et al., 2016). TBI causes significant compression of the 

brain tissue which triggers specific biological responses (edema, death of neuronal cells, 

and activation of glial cells), that can change the elasticity of the tissue which is 
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measurable by MRE.  Conventional MRI can give detailed images of the injured site but 

does not provide quantitative information on the extent of the injury.  

 Efforts have been made to assess brain tissue mechanical properties with MRE 

with the goal of using the technique as a potential diagnostic tool for studying 

neurodegenerative diseases like Alzheimer’s disease (AD).  AD is a major 

neurodegenerative disorder that is characterized by the progressive impairment of 

cognitive function.  The impairment of the cognitive function occurs due to the 

degeneration of the nerve fibers in the brain, which effect the frontal, parietal, and 

temporal lobes.  MRE has been used to detect changes in stiffness in the frontal, parietal, 

and temporal lobes which correlates with the known pathology of the disease. (Murphy et 

al., 2016)   

 A significant application MRI and MRE is to study the development of 

engineered tissues. It is essential to that engineered tissues possess mechanical properties 

like the natural tissues they are meant to replace. The growth of tissue engineered 

cartilage has been studied using MRE in an ectopic mouse model. Human Mesenchymal 

Stem cells were differentiated on silk, collagen and gelatin scaffolds and implanted 

subcutaneously in mice and imaged at 9.4 T (Khalilzad-Sharghi, Han, Xu, & Othman, 

2016).  As shown in Figure 9, MRE characterized the development of the cartilage tissue 

and provided a quantitate measure of the growth. The findings of this study were 

significant because it demonstrated the capability of assessing tissue engineered construct 

growth in an in vivo mouse model.  
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Figure 9: Tissue engineered cartilage evaluated over an 8-week study. From left to right, 

a magnitude image obtained through a spin echo sequence, T2 relaxation maps, 

displacement fields, and stiffness maps of the constructs. The figure shows the capability 

of MRI and MRE conducted at 9.4 T to assess the growth of engineered tissues in an in 

vivo model (Khalilzad-Sharghi et al., 2016). 

Thesis Objective 

The objective of this study is to show the ability of low field MRI to acquire images 

with high spatial resolution and show its potential use in determining the mechanical 

properties of samples through MRE. 
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Methods 

MR Imaging System 

MR images were acquired on a novel, table-top low field MR imaging system as 

shown in Figure 10. Image acquisition conducted at 21 MHz in a 45-cm vertical bore 

magnet (Magritek, Aachen, Germany) with a magnetic strength of 0.5 T, a five-cm RF 

solenoid coil with triple axis gradients (maximum strength of 0.25T/m) giving maximum 

isotropic resolution of 200 micrometers. 

MR Imaging Procedure 

MR images were acquired for a variety of different samples such as fruit and 

tissue samples. The samples were limited by the dimensions of the sample holder, shown 

in Figure 10b. The MR acquisitions were performed with typical parameters such as, TR 

of 1 s, TE of 10 – 80 ms, and number of averages (NEX) of 2-128. The field of view 

(FOV) was adjusted based on the sample geometry and the desired sample resolution. 

Solid samples were typically saran wrapped prior to placement in the holder. This 

facilitated holder cleaning process. Samples that required liquid medium were simply 

placed in the holder with the required medium; afterwards the holder was cleaned 

thoroughly to prevent contamination of other samples. 
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Figure 10: a) Table top low field MRI system used in this study. b) Sample holder and 

maximum sample dimensions. 

MRE System Setup 

MR Sequence Modification.  For MRE experiments, a traditional spin echo 

sequence was modified to include the MSG gradient frequency, number, and strength.  

The native system imaging software PROSPA (Magritek, Aachen, Germany) gave the 

user the ability to set the MRE parameters.  The spin echo sequence used in MRE 

experiments is illustrated in  

Figure 7.  The choice of gradient for the pulse sequence was a sinusoidal pulse 

because the inversion algorithm used specified the use of sinusoidal waveform. The MSG 

gradient was placed along the phase encoding gradient. 
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Actuator Characterization.  For all experiments, a piezoelectric bending 

actuator (Piezo systems, inc., Woburn, MA) provided the displacement for the system 

and was synchronized with the spin echo pulse sequence.  The actuator was driven by 

signal produced by waveform generator (DG1000Z, Rigol, Beaverton, OR) and amplified 

by a linear amplifier (EPA-104-115, Piezo systems, inc., Woburn, MA).  The actuator 

was coupled with the sample via a thin needle approximately the size of an electronic pin 

that was soldered onto the non-fixed end of the actuator. 

To ensure the optimal performance, a Laser Doppler Vibrometer was used to 

characterize the actuator under loading conditions (Figure 11).  When a laser beam is 

projected on the surface of the actuator, the reflected signal indicates the actuator’s 

displacement.  This allows for the determination of the actuator’s resonance frequency, 

the frequency that produces the greatest displacement.  The resonance frequency can be 

found by driving the actuator at 20 VPP with band limited noise input sweeping from 0.02 

– 1 kHz in 10 ms cycles.  Once the resonance frequency was found, the waveform 

generator was used to drive the actuator at that frequency to determine the displacement.  

Once it was verified, that the specific frequency produced the greatest displacement, that 

frequency was selected for the MRE experiment.  Depending on the loading condition, 

the resonance frequency was found to be 370-420 Hz with a displacement of 145 – 200 

microns.  
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Figure 11: Setup to characterize the resonance frequency of the actuator. 1a) Band-

limited white noise was input into the actuator. 1b) The actuator response was measured 

and the frequency that produced the greatest displacement was determined. 2a) A 

sinusoidal wave at the resonance frequency was input to the actuator. 2b) The maximum 

displacement with the sinusoidal wave was determined. 

MRE Experimental Setup 

First MRE was tested with a gel phantom of 0.50% wt. concentration. The gel was 

made by mixing 0.5 g of agarose gel (SeaKem, Lonza, Rockland, ME) in 100 ml of 

deionized water and heating it in a microwave oven on high power for 2.5 minutes. The 

gel was placed in the sample holder and allowed to cool to room temperature. MRE 

acquisition of the 0.50% wt. gel phantom was executed with the following parameters: 

TR of 2 ms, TE of 30-60 ms, slice thickness of 10 mm, a FOV of 90 x 90 mm, and with 8 

MSG at a frequency of 300 Hz.  
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Second, MRE was tested with a sample made from two gels of different 

concentrations.  The top layer was made with a concentration of 0.5% wt. and the bottom 

layer was made with a concentration of 1.0% wt.  The gel phantom was tested with the 

modified spin echo sequence with the following parameters: TR of 2 s, TE of 30 ms, slice 

thickness of 10 mm, a FOV of 90 x 90 mm, and with 8 MSG at a frequency of 400 Hz.  

The sequence was run with a MSG offset ranging from 0 to 2π at an interval of 
1

8
𝜋.  

Upon the collection of the motion encoded images, the files were loaded into Matlab 

2016 and complex division was used to produce the phase difference images. These 

images were saved as Matlab data files and imported into the inversion algorithm 

developed by Thomas Boulet.  This algorithm uses the three-dimensional dataset (two 

spatial, 1 temporal) to derive the shear wave speed, wave attenuation, shear stiffness, 

shear elasticity, shear viscosity, etc. 

Third, MRE was tested with a rat brain sample. The brain was placed on top of an 

agarose gel of 1.0% concentration and surrounded by agarose gel of 0.25% wt. 

concentration.  The test was performed with the following parameters: TR of 4 s, TE of 

60 ms, slice thickness of 10 mm, FOV of 90 x 90 mm, and 8 MSG with a frequency of 

400 Hz. 
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Results 

MRI Testing 

High Resolution Images 

 

Figure 12: a) Sagittal MR image of a mushroom showing high spatial resolution is 

possible with a low field system. Image taken with a spin echo sequence with an in-plane 

resolution of 0.703 mm, 40 mm slice thickness, TR of 1 s, TE of 5 ms, and NEX of 1. b) 

Axial MR slice of a kiwi showing high spatial resolution and ability of MRI to show 

internal structure of the fruit. Image in-plane resolution of 0.703 mm, 10 mm slice 

thickness, TR of 1 s, TE of 5 ms, and NEX of 1.
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Ex Vivo Brain Imaging: Effect of Increased Number of Averages 

 

Figure 13: Transverse MR images of an ex vivo rat brain in formalin taken with a spin 

echo sequence with a TR of 4 s, TE of 45 ms, slice thickness of 10 mm and in plane 

resolution of 0.390 mm. a) Image taken with 16 averages. b) Image taken with 256 

averages. These images show an increase in number of averages leads to an increase in 

resolution of the image.  
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Ex Vivo Brain Imaging: T2 effect 

 

Figure 14: MR images of the brain taken with two different echo times (TE) to show the 

effect of T2 on the image. The image obtained with a higher echotime of 80 ms shows 

more spatial detail of the brain than the image with the lower echotime. Image taken with 

a spin echo sequence with an in-plane resolution of 0.195 mm, 10 mm slice thickness, TR 

of 4 s, and NEX of 512. 

MRE Validation 

Agarose gel of 0.50% wt. Concentration.  MRE was validated through two gel 

phantom experiments. In the first experiment, a gel phantom of 0.50% wt. was used to 

determine if indeed, the MRE can successfully be implemented with a low field system.  

Figure 15 shows the resulting magnitude and shear wave images and the vertical 

line profile through the sample. The phase difference image shows the propagation of the 

shear waves through the sample.  The line profile shows the sinusoidal wave through the 

sample and gives the wavelength.  The wavelength for the wave was found to be 

approximately 7 mm. 
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Figure 15: MRE validation through a 0.50% wt. gel phantom test. The image is taken 

with a spin echo based MRE sequence with an in-plane resolution of 0.703 mm, a slice 

thickness of 10 mm, TR of 2 s, TE of 30 ms, NEX of 1, with 8 MSG at a frequency of 

300 Hz.  a) Magnitude image of gel phantom with sufficient resolution. b) Phase 

difference image showing the shear wave through the sample. c) A vertical line profile 

through the sample illustrating the sinusoidal wave and showing that the wavelength is 

approximately 7 mm. 
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Two Layered Agarose Gel.  Following the testing of a sample consisting of a gel 

of 0.5% wt. stiffness, MRE was tested with a sample containing gels of two stiffnesses 

(0.50% and 1.0% by wt.).  Figure 16 shows the resulting phase difference map, line 

profile, and the stiffness map.  The phase difference image shows that as the waves travel 

from the less stiff gel of 0.5% wt. to the stiffer 1.0% wt. gel, the wavelength changes.  

This is evident in the line profile, where the waves through the 0.5% wt. gel had a 

wavelength of 7 mm whereas the wavelength increased to 14 mm in the stiffer gel.  The 

stiffness map provides both quantitative and qualitative information of the stiffness. The 

stiffness is approximately 25 kPa for the 1.0% wt. gel and 10 kPa for the 0.50% wt. gel.  



32 

 

 

 

Figure 16: MRE performed on a gel phantom consisting of gels of two different 

stiffnesses (0.50 % on top and 1.0 % on bottom). The image is taken with a spin echo 

based MRE sequence with an in-plane resolution of 0.703 mm, a slice thickness of 10 

mm, NEX of 2, TR of 2 s, TE of 30 ms, and with 8 MSG at a frequency of 400 Hz.  a) 

Phase difference image showing the shear wave through the gel phantom of two 

stiffnesses. b) A vertical line profile through the sample illustrating the sinusoidal wave 

and showing the change in wavelength as the wave travels from the less stiff (0.5% wt.) 

to the stiffer (1.0% wt.) gel. c) A stiffness map showing the stiffness of the sample on a 

pixel-by-pixel basis. The map approximates the stiffness of the 0.5% wt. gel to be 10 kPa 

and the stiffness of the 1.0% wt. gel to be 25 kPa. 
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Rat Brain Sample.  MRE was extended to study brain tissue.  A brain was 

dissected from a laboratory rat and placed in the sample holder on top of agarose gel of 

1.0% wt. and surrounded by 0.25% wt gel.  The gel of a lower concentration ensured the 

propagation of the shear waves through the tissues. Figure 17 illustrates the magnitude 

image, the phase difference map, and the resulting line profile showing the propagation 

of the shear waves through the sample.  
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Figure 17: MRE extended to study a rat brain showing the potential to determine 

mechanical properties. The sample was placed on top of agarose gel of 1.0% wt. 

concentration and surrounded by agarose gel of 0.25% wt. concentration. a) MR 

magnitude image of sample with a spin echo based MRE sequence with an in-plane 

resolution of 0.703 mm, slice thickness of 10 mm, TR of 4 s, TE of 30 ms, NEX of 2, 8 

MSG at a frequency 400 Hz. b) Phase difference image showing shear waves. c) A line 

profile showing change in wavelength as the wave passes through the brain sample.
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Discussion

MRI 

The MRI results show the capability of the low field system in producing high 

resolution MR acquisition.  MRI is a non-invasive modality that can produce high 

resolution images of the internal structures within the body. Typical systems used in the 

clinical setting have high fields ranging from 1.5 – 3 T.  These systems are expensive, 

require constant maintenance, and need special storage.  However, the low field system is 

relatively inexpensive, does not need constant maintenance (i.e. replacement of cooling 

fluid), and does not need special storage. This makes it powerful in studying various 

tissues within the lab. Figure 12 shows two images that were acquired with two different 

samples, a mushroom and a kiwi. Both samples are water abundant and therefore provide 

strong detectable MR signals. Figure 12a shows the capability of the low field system to 

produce images that show the physical structure of the sample, whereas Figure 12b shows 

the capability to image the internal structure of samples non-invasively by capturing a 

slice at any location in the sample which gives the structural information at that location. 

Multiple images can be taken, each at a different slice, and can be used to create a 3D 

animation showing the entire internal structure of the sample. 

High field MRI is known for their ability to acquire high resolution images. However, 

high resolution images can also be obtained at a low magnetic field. This is accomplished 

by increasing the number of acquisitions. The SNR is proportional to the square root of 
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the number of acquisitions and therefore a high number of averages results in higher SNR 

and a better image. Figure 13 shows two images of a rat brain ex vivo with different 

number of acquisitions.  Figure 13a is obtained with 16 averages and Figure 13b is 

obtained with 256 averages. In the first image, the anatomy of the rat brain is 

indistinguishable whereas in the second image, with the higher a resolution, the anatomy 

is clearly visible. 

Two main image contrast mechanisms are explained in the section Relaxation Times. 

Contrast is obtained in images by varying the echo time (TE) and the repetition time 

(TR).  Figure 14 shows contrast obtained in a rat brain by controlling the transverse 

magnetization (T2) effects. Biological specimens fixed in preservatives like formalin are 

difficult to image due to the signal given by the preservative. This decreases the contrast 

in the sample taken with lower echo times. In Figure 14a, the brain is hardly visible 

because the contrast between the fixed brain tissue and the formalin is minimal. Since 

formalin has a shorter T2 relaxation time than the brain tissue, increasing the TE from 45 

ms to 80 ms, creates contrast between the formalin and the brain tissue as shown in 

Figure 14b. This experiment demonstrated the capability of the low field system in 

acquiring images with longer echo times, an advantage over high field systems.  

MRE 

 Agarose gel phantoms with high water content produce good MR signals.  

Furthermore, the concentration of the agarose gel can easily be modified to create 

samples with different mechanical properties, the values of which are documented in the 

literature.  These properties can be tailored to mimic tissues within the body. Due to these 
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advantages, agarose gel phantoms are perfect for testing MRE pulse sequences and the 

inversion algorithm.   

 The first experiment was conducted with a gel phantom of 0.5% wt. stiffness. As 

shown in Figure 15, shear waves were transferred in the gel phantom. This validated the 

developed MRE. The wavelength for the experiment was found to be 7 mm.  From the 

wavelength, the speed at which the waves traveled through the gel phantom can be 

calculated.  At excitation frequency of 300 Hz, the wave speed was calculated to be 

approximately 2.1 m/s, similar to the published literature (Othman, Xu, Royston, & 

Magin, 2005).  

 In the second experiment, MRE was conducted on gel phantom made of two 

stiffnesses to assess the techniques ability to differentiate between the two gel 

concentrations. Theoretically, waves traveling through softer materials have a shorter 

wavelength and waves traveling through stiffer materials have longer wavelengths. In 

terms of speed, this translates to faster waves in stiffer materials than softer materials. For 

example, knocking on one side of a table top causes the vibrations on the other side of the 

table instantly.  This is illustrated in Figure 16, where the waves in the softer 0.5% wt. gel 

(top) have a short wavelength (7 mm) than the waves in the stiffer 1.0% wt. (bottom) gel 

(14 mm).  Thus, the waves are traveling at a faster speed in the stiffer gel; at 

approximately 5.6 m/s as opposed to 2.8 m/s for the soft gel.  This is further confirmed by 

Figure 16c, a stiffness map produced through the inversion algorithm. The gel on the 

bottom has a longer wavelength which means that it is stiffer, demonstrated by the 

stiffness map. 
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 For its application, the low field MRE was extended to study the rat brain as a 

feasibility study. The brain was fixed sample, so the stiffness measurements were taken. 

MRE for the study of brain has been conducted at high fields (Boulet et al., 2011), this 

study illustrated the capability of low field MRE to determine the mechanical properties 

of the brain as shown in Figure 17. The phase difference map shows the propagation of 

shear waves through the sample and the line profile shows a change in wavelength as the 

waves travel from the agar gel to the brain sample. In the study, the mechanical 

properties were not acquired since the change in the physiology of the tissue due to 

formalin compromises the stiffness properties.  For this reason, the phase difference map 

shows the brain sample as having similar stiffness as the 1.0% wt. gel. However, the 

study does demonstrate the feasibility of the low field MRE in studying the brain and can 

be extended to studying additional tissue types.  
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Future Application: Study of Tissue Engineered Constructs

Motivation 

There is a necessity for replacing bone tissue that has been lost due to trauma.  

This trauma can be due to physical factors like fractures or due to diseases like 

osteoporosis and cancer.  On average, there are an estimated 10 million cases of fracture 

related injuries in the US every year (Amini, AR, et.al, 2012).   When the fracture is 

small, or the bone loss is minimal, the human body can naturally replace the bone.  

Natural bone regeneration is the preferred method of bone healing but for fractures in 

which a large amount of bone is lost, natural bone healing is unable to replace the bone 

tissue.  Therefore, other methods must be employed to treat these cases of bone loss.   

Conventional methods for treatment of bone injuries is through bone grafts.  On 

average, 500,000 graft operations are performed annually in the US, which results in 

approximately 1.5 billion dollars in bone grafts and bone graft substitute sales.  In bone 

grafting, bone tissue is obtained from either the individual or from cadavers and is 

implanted at the site of the bone injury (Fillingham & Jacobs, 2016).  This gives the bone 

a framework to use to form a union and heal.  Grafts that are obtained from the patient 

contain live bone tissues that elicit no immune response (since they are from the patient) 

and readily recruit body cells to repair the bone. However, harvesting bone from the 

patients require additional surgeries which can cause complications and longer 

rehabilitation times leading to increased suffering and cost.  Bone grafts that are obtained 
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from donors run the risk of eliciting an immune response that can cause serious injury to 

the patient.  If the body rejects the graft, then it will actively fight the new tissue, which 

in extreme cases can lead to comma or death.  Bone grafts obtained from cadavers offer a 

matrix for the patient’s bone tissue to use as a physical support structure for growth but 

there are no living cells present in the graft since it is obtained post-mortem.  The lack of 

living cells allow for biocompatibility but lead to a longer healing process since new cells 

need to be produced and spread along the graft (Spin-Neto et al., 2014). 

A potential alternative to transplantation of tissues is offered by tissue engineering 

(TE).  Tissue engineering aims to create biological substitutes for natural tissue within the 

human body.  To accomplish this, it is necessary to use the principles of cell 

transplantation, biology, materials science, and engineering to combine the essential cells, 

growth factors, and biomaterials to create functional tissues. Cells that are typically used 

in tissue engineering are embryonic stem cells or adult stem cells, both of which have the 

capability to differentiate into cells of different lineages (Caplan, 1994; Langer & 

Vacanti, 1993).  The cells can be made to expand in vitro and then seeded onto a scaffold 

before inducing differentiation either by bioactive signals such as chemical factors or 

physical excitation (surface-induced, mechanical, or electrical) (Alhadlaq & Mao, 2004; 

Altman et al., 2002; Heng, Cao, Stanton, Robson, & Olsen, 2004; McBeath, Pirone, 

Nelson, Bhadriraju, & Chen, 2004).  The scaffold provides the stem cells with physical 

support (matrix) and an environment in which the proper regulation of cell behavior 

(adhesion, proliferation, migration, and differentiation) can occur.   

Mesenchymal stem cells (MSCs) obtained from bone marrow have a strong 

capability to differentiate into multiple cell lineages such as bone, fat, and cartilage. Bone 
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marrow is responsible for the formation of osteoblasts and osteocytes. Osteoblasts are 

responsible for the formation and regulation of bone extracellular matrix deposition and 

mineralization and osteocytes help with calcification of the bone extracellular matrix.  

The ability of MSCs to differentiate into osteoblast-like cells makes them ideal for use in 

bone tissue engineering (Petite et al., 2000; Wang et al., 2018; Pchelintseva & Djamgoz, 

2018). 

It is essential to characterize any material that is used in design to ensure its 

proper application and functionality.  In TE, understanding of material properties like the 

stiffness, elasticity, and strength is critical since these properties will influence the 

success of the construct in vivo. Furthermore, these properties change as the tissue 

develops (initiation of cellular response and remodeling, stem cell differentiation, 

degradation of scaffold material) (Dado & Levenberg, 2009).  Since the tissues are 

engineered for potential in vivo use, they need to be able to provide support for the 

surrounding tissue.  For example, in bone tissue engineering, the scaffold needs to not 

only provides support for the cells but also needs to provide mechanical support for the 

injury site.  Growth of engineered tissue is typically assessed through microscopy, 

biochemical assays, or histologic staining.  Although these methods provide information 

about the molecular content of the cell (e.g. staining for alkaline phosphatase (ALSP) 

provides an early osteogenic marker), they are destructive to the tissue and require the 

sample be sacrificed. A major challenge in tissue engineering is being able to characterize 

tissue mechanical properties without harming the living cells in the tissue. This challenge 

can be addressed through MRE. 
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Feasibility of MRI and MRE to Characterize TE Bone 

MRI has been used to study tissue engineered constructs at a high field strength of 

11.74 T (H. Xu, Othman, Hong, Peptan, & Magin, 2006). MRI can assess the growth of 

tissue engineered bone through quantitative and qualitative measurements. Qualitatively, 

the growth of the bone has been shown to correlate with a lower imaging intensity caused 

by the calcification and subsequent elimination of protons from the tissue. Therefore, as 

the tissue engineered bone grows and becomes stiffer, the signal-to-noise ratio (SNR) in 

MR images decreases, and the image quality declines.  Quantitatively, the T1 and T2 

relaxation times have shown to be dependent on osteogenesis; where a decrease in the 

parameters showed increased osteogenesis. In their study, Xu, et al., 2006 found that over 

a four-week period, the T2 relaxation time for TE bone decreased by 64%. This 

significant decrease was due to mineral deposition in the extracellular matrix of the 

osteogenic construct which resulted in regions of solid bone that introduced magnetic 

susceptibilities, reducing the T2 relaxation times (H. Xu et al., 2006). This study showed 

the feasibility of measuring osteogenesis through MR parameters at high field strengths. 

MRE has also been used to study TE constructs at  high a field strength (Khalilzad-

Sharghi et al., 2016; Othman et al., 2012; H. Xu et al., 2006).  The development of TE 

bone is characterized by an increase in the stiffness due to calcification and mineral 

deposition. Xu, et al., 2006 found that for TE bone, the shear stiffness increased from 

11.8 + 0.4 kPa at week 1 to 15.8 + 0.5 kPa at week 2.  These results were correlated with 

histologic measurements and provided evidence of osteogenesis in TE bone.  
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MRI and MRE monitoring of TE bone has been conducted at high field strengths; in 

the present study, the potential application of low field 0.5 T MRI and MRE is 

considered. 

Methods 

Cell Culture.  Human mesenchymal stem cells (hMSCs) obtained from adult 

bone marrow (PT-2501, Lonza, Walkersville, MD) were purchased. The hMSCs were 

expanded in Dulbecco’s Modified Eagle Medium (12491015, Thermofisher, Waltham, 

MA) supplemented with 10% fetal bovine serum (10437010, Thermofisher, Waltham, 

MA) and 1% antibiotic mixture containing penicillin, streptomycin, amphotericin B 

(152400672, Thermofisher).  The cells were incubated at 37 °C with 5.0% CO2 and 

expanded to the population essential for the study. 

Scaffold Preparation.  Fabricated protein silk scaffolds were obtained from Dr. 

David Kaplan’s lab from Tuffts University. The scaffolds were 12 mm in diameter and 6-

8 mm in height with a pore size of 500-600 micrometers. Prior to seeding, the scaffolds 

were autoclaved in distilled water at 121°C and 14-16 psi for 20 minutes in the liquid 

cycle for sterilization.  The sterile scaffolds were placed in the incubator in culture media 

for 2 hours before seeding.  A standard 24-well plate was used. 

Scaffold Seeding.  The hMSCs were seeded onto the scaffold at a density of 2.0 x 

106 cells per scaffold in a cell suspension of 200 µl.  To ensure proper spread of the cells, 

the cell suspension was dispensed in a dropwise fashion over the entire surface of the 

scaffold.  After seeding, the scaffold was placed in the incubator for 15 minutes.  After 15 

minutes, the scaffold was flipped 180° and 20 µl of cell culture media was added to 



42 

 

 

maintain hydration. This process was repeated for a total of four times, after which the 

scaffold was aspirated to remove the growth media. Each scaffold was placed in 2 ml of 

osteogenic differentiation media (SCM121, MilliporeSigma,St. Louism MO), which was 

exchanged every two-three days. A total of 5 scaffolds were used for the study. 

Scaffold Imaging Procedure.  Three scaffolds were imaged with MRI, two 

scaffolds were imaged with MRE, and three scaffolds were set aside for proteomics. The 

scaffolds were removed from the incubator and immediately placed in a specialized 

holder for MR imaging. MR imaging of the scaffolds was conducted at week 0, week 2, 

and week 4. Imaging was conducted with a spin echo imaging sequence with a TR of 2 s, 

a TE of 60 ms, in-plane resolution of 0.195 mm, and NEX of 256. For MRE, the scaffold 

was immersed in agarose gel of 0.25% wt. concentration and placed in a MRE holder. 

Imaging was conducted with a spin echo based MRE sequence with a TR of 4 s, a TE of 

30 ms, an in-plane resolution of 0.273 mm, NEX of 16, and 4 MSG. MRE was conducted 

at week 0 and week 2. Imaging procedure of scaffolds is summarized in Table 3. 

Table 3: Breakdown for the imaging of tissue engineered constructs. A total of 8 

scaffolds were imaged (3 through MRI, 2 through MRE, 3 through Proteomics). 

Imaging Type Week 0 Week 2 Week 4 

MRI X X X 

MRE X X  

Proteomics X X X 

 



43 

 

 

Preliminary Results of Tissue Engineered Bone 

MRI.  As shown in Figure 18, low field MRI can image the engineered construct 

with high resolution. It is expected that as the constructs undergo osteogenesis, there will 

be a decrease in the MR signal intensity which will result in a decrease in the image SNR.  

 

Figure 18: MR image of a tissue engineered bone at week 0 showing the capability of the 

low field system in acquiring high resolution images. The image was acquired with a spin 

echo sequence with an in-plane resolution of 0.195 mm, a TR of 2 s, TE of 60 ms, slice 

thickness of 8 mm, and 128 NEX. 

MRE.  Figure 19 shows a stiffness map of the TE bone construct at week 0.  

From the map, the stiffness of the TE bone is approximated at 5 kPa at week 0.  It is 

expected that as the osteogenesis occurs, the stiffness should increase which will be 

indicated by the stiffness map.  
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Figure 19: Stiffness map for TE bone at week 0 obtained through a spin echo based MRE 

sequence.  The sample was placed in 0.25% wt. agarose gel.  The map was produced with 

an in-plane resolution of 0.273 mm, a TR of 4 s, TE of 30 ms, slice thickness of 8 mm, 

MSG frequency of 400 Hz, 4 MSG waves, and 16 NEX.
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Summary

The ability of the low field MR system in providing high resolution images can 

significantly change many fields of study. This study demonstrated that a 0.5 T low field 

MRI can be utilized to image various types of samples and samples of different sizes and 

do so with excellent contrast. The study explored the capability of the low field MR 

system to obtain contrast between tissues and found that relaxation parameters like spin-

spin relaxation (T2) can be manipulated to influence the contrast. Furthermore, in this 

study, the low field MR system was modified into one capable of performing MR 

elastography, a technique used to accurately and noninvasively determine the mechanical 

properties of soft samples.  The sensitivity of MRE was explored through the study of a 

rat brain and it was determined that MRE can successfully provide estimates of the 

mechanical properties of the brain. This also demonstrated that low field MRE can be 

extended to studying the stiffness parameters of other tissues.   

An additional and significant application of low field MRI and MRE is for the study 

of tissue engineered bone.  Low field MR systems have the advantage of being able to 

image stiffer materials and so they are ideal in assessing the growth of the bone.  As the 

bone grows and increases in stiffness, the growth can be assessed through imaging and 

measurement of MR parameters like the T2 relaxation. Additionally, low field MRE can 

also provide quantitative measures of mechanical properties which can be correlated with 

the MR images and parameters to provide solid evidence of bone growth.  
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 Low field MRI is a powerful tool that has many applications. However, there are 

several limitations that need to be considered before its use in experimental studies.  It 

was demonstrated that low field systems can produce MR images with resolution 

comparable to high field systems. These images are obtained by increasing the number of 

acquisitions, which results in an increase in the scan time.  Therefore, the desired 

resolution needs to be balanced with the desired scan time.  This becomes crucial in 

imaging engineered tissue where extended scan times can result in the death of the cells. 

Furthermore, MRE is highly dependent on the characterization of the actuator resonance 

frequency.  If the proper frequency is not used, it can result in inadequate displacement 

which could compromise mechanical property measurements.  This can cause a 

misinterpretation of the results.  However, this issue can be avoided by determining the 

resonance frequency of the actuator for each experimental study.  Overall, the benchtop 

low field MRI is a transformative tool that has wide applications. For example, it is 

expected that the successful measure of osteogenesis through low field MR imaging and 

MRE will transform the field of tissue engineering; it represents a low-cost tool that 

accurately provides information about tissue growth. 
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