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Peer to Peer Digital Rights Management using Blockchain

Abstract

by James Rinaldi
University of the Pacific

2018

Content distribution networks deliver content like videos, apps, and music to users through

servers deployed in multiple datacenters to increase availability and delivery speed of con-

tent. The motivation of this work is to create a content distribution network that maintains a

consumer’s rights and access to works they have purchased indefinitely. If a user purchases

content from a traditional content distribution network, they lose access to the content when

the service is no longer available. The system uses a peer to peer network for content dis-

tribution along with a blockchain for digital rights management. This combination may

give users indefinite access to purchased works. The system benefits content rights owners

because they can sell their content in a lower cost manner by distributing costs among the

community of peers.
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Chapter 1: Introduction

The motivation for this work is to create a content distribution network (CDN) that

maintains the consumer’s rights and access to works they have purchased like music,

movies, books, and software indefinitely. The problem with current systems is that when a

user purchases an electronic copy of a work from a traditional CDN they lose access when

the CDN service is permanently or temporarily unavailable. The benefit of using a peer to

peer (P2P) file distribution network for content delivery and a blockchain for digital rights

management (DRM) is that it can give users indefinite access to purchased works.

CDNs use DRM systems to manage customers’ digital content rights. DRM protects

a content creator’s revenues by letting only authorized consumers access a work. This

paper considers a DRM system failed when the servers on which it relies are no longer

operated. Servers are shut down by their operators if they are legally compelled or operating

the servers is unprofitable. DRM systems can be unprofitable from server cost or from

having to rewrite DRM client software to keep up with advances in operating system design

[4]. DRM services are considered failed from the consumer’s perspective and from an

economic perspective. Consumers lose current and expected value when DRM services are

shutdown. Unprofitable servers produce less economic value than they consume and have

failed economically.

DRM system failures have negatively impacted both consumers and businesses. Failed

DRM systems have hurt consumers by reducing availability of purchased content. A failed
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DRM system that hurt consumers is the shutdown of Yahoo! Music. On September 30,

2008 Yahoo! Music shut down their license key servers [5]. This shutdown stopped con-

sumers from downloading purchased media. To transfer content consumers had to burn

the content to CDs and then rip the content to a new computer [5]. Another failed DRM

system was Diesel eBooks which in March 2014 announced that their servers would shut

down at the end of the month [6]. Ubisoft’s DRM services were temporarily interrupted by

a denial of service (DOS) attack. Ubisoft’s games require communication with a server to

be played and the DOS attack prevented some player’s games from communicating with

the server. These players were unable to play their games during the attack [7].

Failed DRM systems hurt businesses who operate them while they are unprofitable.

Walmart announced on September 26, 2008 they were shutting down their DRM servers.

But after customer complaints Walmart reversed the decision [8]. Microsoft announced

that on August 31, 2008 that MSN music servers would be shutdown preventing users from

authorizing new devices to play music. But after customer complaints Microsoft supported

adding new devices to MSN music until the end of 2011 [9]. The DRM systems failed

because the companies were financially better off by ending services. Announcing the end

of services hurts the company’s reputation so they decide to continue service and reduce

profits.

The solution to prevent failure of a DRM system is to decentralize its operation. De-

centralization should be both technological and financial with a community of peers sup-

porting the DRM system. Centralized DRM systems have the operating company as a

single point of failure. Failure occurs when the company goes out of business or because

the DRM system becomes unprofitable. Short term unavailability occurs during power
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failure, natural disaster, or cyber attack. The decentralized system can have a partial or a

complete failure. Partial failure occurs in a decentralized system if the last copy of a file

is unavailable. Total failure occurs in a decentralized system when every peer that par-

ticipates in the system shuts down. Decentralized operation will prevent financial failure

by distributing costs among the community operating the system. A decentralized system

mitigates the causes of short term failure since power failures and natural disasters won’t

cause correlated peer failures assuming peers are diverse in physical location.

The decentralized DRM system proposed here will utilize P2P filesharing and blockchain

technology. P2P filesharing creates a CDN that is decentralized and has each client as a po-

tential server. Blockchain creates a distributed database to contain rights information. This

thesis will present a review of the literature in Chapter 2, a background of the systems used

to implement the distributed DRM system in Chapter 3, the design of the DRM system in

Chapter 4, its implementation in Chapter 5, and its testing and evaluation in Chapter 6.
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Chapter 2: Literature Review

2.1 Peer to Peer File Sharing

Studies of P2P network architectures place emphasis on improving network efficiency

and reliability. The work of Tang et al. [10] reviews the history of traditional, P2P, and

cloud based CDNs. Tang found that first generation P2P CDNs are centralized and un-

structured, with a central server used to coordinate peers. An example of a first generation

network is Napster. The advantage of this type of system is that peers do not have to store

complex routing data. A significant disadvantage of this type of system is that a shutdown

or failure of the central server will collapse the entire P2P network [10]. Tang found that

second generation P2P networks do not use centralized servers and are decentralized and

unstructured [10]. Second generation P2P networks, such as Gnutella, relay queries among

all peers until the desired file is located. Redundant messages in this type of P2P network

inefficiently waste bandwidth, causing poor scalability [10]. Other second generation P2P

networks, such as Chord, use a distributed hash table (DHT) for locating files. Large DHT

networks do not work well due to routing data storage [10]. Third generation P2P networks

combine properties of the first and second generations. An example of a third generation is

BitTorrent (BT). BT’s trackers are first generation central servers except they track specific

files instead of all files. BT can use a DHT instead of a tracker. BT splits files into multiple

chunks, increasing replication speed in the P2P network by allowing downloaders to begin
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uploading part way through the download [10]. A summary of the generations identified

by Tang et al are shown in Table 1.

Table 1: Generations of P2P Networks

Centralized Structured Reliable Scalable Year
1st Generation Yes No No Yes 1999 (Napster)
2nd Generation No Yes Yes No 2000 (Gnutella)
3rd Generation Yes/No No/Yes Yes Yes 2002 (BT)

Stoica et al. [1] introduce a P2P network lookup protocol called Chord. The Chord

protocol maps a key to a P2P node, so peers can find the node with a desired file. Chord

divides routing information among nodes so they only store log(N) entries and can query

other nodes when missing information is required. Figure 1 shows example routing in-

formation. It contains a key in the start column, the node that is holding the key in the

successor column, and the number of keys this node tracks. Chord finds desired files in

log(N) messages. Chord can add and remove nodes from the routing table in at most

log2(N) messages with a high probability of success. Chord evenly distributes files among

the nodes to balance network load.
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Figure 1: Chord Architecture [1]

Jagadish et al. [2] introduce a P2P lookup protocol tree structure called Balanced Tree

Overlay Network (Baton), shown in Figure 2. Baton maps a key to a P2P node and uses

the tree structure to perform range queries adding additional functionality. Baton can add

and remove nodes in log(N) messages improving upon Chord which could do so in log2(N)

messages. Baton can find a file or perform a range query in log(N) operations. Baton avoids

bottlenecking of communication caused in trees when nodes from one side of the root must

communicate with nodes on the other side of the root. Baton avoids this bottlenecking

by adding a link between nodes on the left side of the tree with their analogous node on

the right side of the tree. Baton nodes also have links to the two nodes to their left and

two nodes to their right at the same level. These additional links reduce bottlenecks and

increase robustness as nodes join and leave the network. Using figure 2 if node m needs a
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file held by node i it can immediately communicate with node i. But if node m wants a file

held by node h then node m will pass the request to node l since node m knows that node l

knows the location of node h.

Figure 2: Baton Architecture [2]

Tsolis et al. [3] introduce the Autonomous Range Tree (ART), shown in Figure 3.

ART nodes store a binary tree with links between each node at the same level. ART nodes

also store a directory called a Random Spine Index (RSI). The RSI contains links to random

nodes at every level of the ART. The ART is more efficient than many popular P2P archi-

tectures [3]. ART finds keys in log2
blog(N) messages. The maximum routing table size for

ART is N1/4/logcN. ART updates routing information in log(log(N)) messages [3].
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Figure 3: ART Architecture [3]

Peltotalo et al. [11] combine multicasting with P2P CDNs. A multicast server sends

data to multiple clients by sending the data with special instructions telling the network to

send it to all the clients. Peercasting is the combination of P2P filesharing and multicas-

ting [11]. Peltotalo found that peercasting optimizes network usage if used in large scale

CDNs. Delco is their prototype of peercasting and is based on BT. Delco can be run in

peercasting and non-peercasting mode allowing users whose ISP does not allow multicast-

ing to participate in the network. Multicast support is most common in networks to deliver

IPTV but is not commonly supported on the public internet.

2.2 DRM

DRM uses multiple approaches to protect content [4]. Controlling access to content is

the first line of defense. Allowing only authorized users to download content reduces the

number of places that leaks could originate and requires a leaker to purchase the content.
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Cryptography is the second line of defense. Cryptography prevents content from being

stored on disk or RAM in plain text. Clients request decryption keys if they do not have

them. If the content is rented the keys expire when the rental period ends. Content is

decrypted in small portions and is stored in RAM unencrypted for a limited amount of

time, to protect against attackers reading the content from RAM. Once decrypted, content

is sent through a secure channel, like High-bandwidth Digital Content Protection (HDCP),

to the display. The last line of defense is used after content has been leaked. Forensic

marking uniquely identifies the purchaser of a content, this helps track down the leakers of

the content and is used to discourage leakers. Digital watermarking is a form of forensic

marking that changes color or sound values slightly and is only detectable with the detector

and secret key.

DRM systems operate in untrusted environments requiring methods to secure opera-

tion [4]. Tamper resistant hardware offers protection against physical or logical attacks.

The processor, RAM, and storage in tamper resistant hardware is not physically accessi-

ble and detects intrusion attempts. Tamper resistant hardware is used for encryption and

decryption to protect the secret keys and the content. Tamper resistant software uses pro-

gramming practices, obfuscation, and encryption to prevent analysis and manipulation of

software. To prevent static analysis the software is obfuscated and can be encrypted with

a driver program that unencrypts the software to run it. To prevent run time analysis the

software detects the use of debuggers or if it is in a virtual machine. If it is being analyzed,

it will stop execution at a random point. Programing practices like the principle of least

privilege and compartmentalization are used to minimize the effect of attacks. Multiple

versions of functionally equivalent software can be distributed to prevent universal attack
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tools.

2.3 P2P with DRM

Current work on integrating DRM into P2P CDNs varies in DRM method and P2P

network architecture. DRM methods found in literature encrypt content, encrypt keys,

watermark content, require hardware, or require an operating system interface [12] [3] [13].

Examples of P2P DRM include fully P2P systems and others that have central key or rights

management servers.

Shi et al. [14] implement a P2P research network called vuCRN. The vuCRN net-

work is for distributing PDF files. Adobe’s Extensible Metadata Platform embeds rights

information into PDF files. The types of rights supported by vuCRN include unrestricted,

reproducible, and personal use only. Juxtapose P2P networking software coordinates peer

communication in vuCRN. The work does not specify how the rights meta-data added by

the scheme is enforced.

Tsolis et al. [3] combine P2P image sharing and digital watermarking. Whenever a

node receives an image it watermarks the image with its key. The digital watermarking is

invisible to viewers but can be found by a detector. The detector can find each key in the

image establishing rights enforcement and assisting in transaction tracking [3]. The P2P

network used is the ART described in section 2.1.

Chen et al. [12] increase privacy while combining DRM and P2P file sharing. First

the content provider (CP) generates a master key to encrypt the file. The master key is

hidden using Shamir’s threshold algorithm, splitting the master key into multiple parts

called shadow keys. No information is revealed about the master key until it is recovered.
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The shadow keys are distributed among the P2P network nodes. The peers encrypt the

shadow keys using a group key. Users downloading a file use the group key to request the

shadow keys from the other nodes. The user recovers the master key with the shadow keys

and decrypts the file. The encryption process hides the file content and decryption keys.

The P2P nodes do not know with which user they are communicating [12]. Third parties

watching network traffic do not know which file is being transferred and do not learn any

portion of the decryption key.

Chang et al. [15] describe methods of key distribution for P2P Internet Protocol Televi-

sion (IPTV). Two key distribution methods are presented, one uses asymetric-cryptogram-

family key distribution (ACF) and the other uses private-key encryption (PKE) [15]. ACF

protects by requiring peers to decrypt content and encrypt it with their private key be-

fore forwarding the content. PKE offers protection by encrypting the content issuer’s pri-

vate key. ACF has better DRM protection than PKE, but PKE is more cost effective than

ACF [15]. Both ACF and PKE rely on a central key management and rights issuer server.

PKE is more efficient than ACF because the peers decrypt a smaller amount of data less

often. PKE reduces both cryptographic processing and key request traffic [15]. The authors

suggest increasing the security of PKE through periodic distribution of a new master key.

Kumar et al. [13] propose DRM middleware (DMW). DMW is designed to be used

in a P2P network. DMW utilizes a hardware component and the device’s operating system

(OS) to enforce copyright. DMW communicates with the OS to gain information about

the use of copyrighted content. DMW then instructs the OS to stop actions that violate

copyright. The hardware component decrypts content just in time for the user. DMW

proposes to use a content information exchange not described by Kumar et al. [13]. The



20

work of Kumar et al. is a research proposal that does not appear to have been developed

further.

2.4 Blockchain with DRM

Kishigami et al. [16] describe The Blockchain Based Content Distribution System.

This system manages access rights to 4k video using a blockchain. This allows copyright

owners to manage the permissions of the content including removing permission to use

content from a user. This system does not allow off-line viewing of content since the client

requires a transaction ID from miners on the network to decode the content. The design

proposed in this thesis differs from the work of Kishigami et al. since it has a built in

currency which allows for decentralized purchasing.

Herbert and Litchfield [17] use a blockchain for software license validation. The au-

thors identify two blockchain forms in license validation. In the Master Bitcoin Model, a

consumer proves ownership by showing that they own a Bitcoin that originated from the

software vendor. The Bespoke Model is the Master Bitcoin Model with additional data

fields available. This allows the software maker to store license information like time until

license expiration. The Bespoke Model was implemented for a single user owning a single

license. Future work mentioned is allowing clients to hold hundreds of copies of a license.

McConaghy and Holtzman [18] use the Bitcoin blockchain to record image ownership.

The legal registry stores the terms of service and a timestamp. The registry is stored on the

blockchain with ownership information. A web crawler uses machine learning to detect

images that have been placed on a website without the owner’s permission.

Ujo uses Ethereum to enable music publishing [19]. Ujo demonstrated proof of
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concept by publishing Imogen Heap’s ’Tiny Human’ using Ethereum. The Ethereum

blockchain is used by Ujo for payments, rights management, and identity storage for artists.

Ujo uses Interplanetary File System (IPFS) for data transfer.

PeerTracks is being developed to allow for streaming and retail music sales using

blockchain [20]. PeerTracks uses the Muse blockchain, which is specifically for Peer-

Tracks. PeerTracks includes a tipping and patronage system. Muse ”monetizes attention”

by allocating new cryptocurrency to each active listener during a day and then distributing

the cryptocurrency to content creators based on user consumption [21].

DECENT is a blockchain based CDN for any kind of file [22]. DECENT uses IPFS for

distribution. DECENT uses a custom blockchain with delegative proof of stake (DPoS) for

mining. DPoS essentially has peers vote for miners using their cryptocurrency and these

elected miners create blocks. DECENT creates a rating system for content that cannot

be manipulated like normal online reviews. DECENT allows for custom tokens allowing

content creators to create new methods of monetization.
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Chapter 3: Background

3.1 Blockchain

A blockchain is a database that is securely stored and updated by members of a P2P

network. The first example of a blockchain is the Bitcoin blockchain which was described

by Satoshi Nakamoto in 2008 [23]. The purpose of the Bitcoin blockchain is to manage the

Bitcoin cryptocurrency. A cryptocurrency is a digital currency that uses cryptography for

security [24].

Blockchains are made of blocks of transactions which are chained together through

a cryptographic hash of the previous block. The blocks contain a cryptographic hash, a

nonce, a timestamp, and a set of transactions. The nonce is a random number used in

the mining process. The cryptographic hash of the previous block establishes a sequential

order. A diagram of a blockchain is shown in Figure 4.
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Figure 4: Bitcoin Blockchain

The accounts on the blockchain are called wallets which are a public/private key pair.

The private key signs transactions to prove that the owner of the sending wallet is mak-

ing the transaction. All the transactions are public, but anonymity is considered established

through not knowing the owner of each wallet [23]. The Bitcoin peer network is an unstruc-

tured P2P network run by all nodes. Nodes use a list of previous nodes for peer discovery,

and if the previous nodes do not lead to peers they contact one of multiple ”DNS servers”

for peer discovery. The DNS servers are like the BitTorrent tracker system.

The process of generating the blocks of the blockchain is called mining and a peer who

mines a block is known as a miner. Before mining a block, the miner receives and verifies

transactions. If it receives too many transactions to fit in one block, the miner decides

which transactions will be in the block it tries to mine. To mine a block of transactions

a miner uses the proof of work scheme. The miner guesses a value for the block’s nonce

so that when the block is hashed it will be less than a threshold value [23]. The threshold
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value is adjusted to change the difficulty if blocks are being mined either too slowly or too

quickly compared to a targeted time between each block [23].

When a miner creates a valid block whose hash is less than the threshold value it is

broadcasted to the peer network. The peers check the validity of the transactions and the

hash of the block. The mining process is expensive to create blocks and cheap to verify

blocks, requiring many hash operations to create a block but only one to verify the block.

Mining is incentivized by giving miners Bitcoin for each block mined, by generating new

Bitcoin and paying transaction fees [23]. The maximum number of Bitcoin generated is 21

million and the amount of new bitcoin decreases as the number of blocks increases [23].

Peers in the blockchain network assume the longest blockchain is the correct blockchain,

which is important for security [23].

The security of the blockchain relies on multiple assumptions. The first assumption

is that public key cryptography is secure. An attacker that can calculate others’ private

keys can create fake transactions. The second assumption is that the cryptographic hash

algorithm is secure. An attacker that can generate a new block whose hash matches an ex-

isting block can replace the block compromising the integrity of the blockchain. The third

assumption is that an attacker will not possess more processing power than all the honest

miners, which is known as a 51% attack. Attackers could censor or delay transactions by

not placing them in their blocks or generate an alternative blockchain that tries to replace

the honest blockchain. The fourth assumption is that a miner must use brute force methods

to mine a block [25]. If a miner can use a more efficient method they could perform a 51%

attack more easily.

The risk of a malicious blockchain replacing the legitimate blockchain is mitigated by
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economic incentive [23]. If a fake blockchain replaces the honest blockchain users will

abandon the network. Once the network is abandoned the economic value associated with

the accounts in the blockchain will be significantly reduced. This will reduce the reward an

attacker will receive. This economic disincentive will deter economically rational attackers.

Attackers who are economically irrational and desire to destroy the legitimate blockchain

will not be deterred.

3.2 Ethereum

Ethereum is an open source blockchain being developed by the Ethereum Founda-

tion [26]. The Ethereum blockchain builds upon the concepts of the Bitcoin blockchain

by creating an environment for executing code stored in the blockchain. The Ethereum

blockchain database stores values representing the Ether cryptocurrency and programs

called contracts which have been compiled to bytecode. Ethereum uses public/private key

wallets. The blocks of the Ethereum blockchain store a hash of the previous block, a

nonce, a timestamp, transactions, the bytecode of contracts created in the block, and other

fields [27].

The contracts stored on blockchain are like classes in object oriented programming.

Contracts contain state variables, which are stored on the blockchain and functions which

have access to the state variables. State variables can only be modified by a function in-

side the same contract but can be viewed by anyone with access to the blockchain [26].

Functions modify state variables, call functions of other contracts, or send Ether [26].

Many contracts currently on the public Ethereum network create tokens. A token is

a digital currency whose account balances are managed by the contract. Another use of
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contracts on the public Ethereum network is Cryptokitties. Cryptokitties are virtual cats

stored on the blockchain with unique genomes that can be bought, sold, and bred.

Contracts in the blockchain are executed in the Ethereum Virtual Machine (EVM)

[26]. The EVM creates a consistent execution environment among network peers. The

EVM does not have access to networking, storage, or other processes, increasing security

[26]. Contracts are written in Solidity, a Turing complete programming language. The

Solidity source is compiled into EVM bytecode. The compilation into EVM bytecode

minimizes the size of each contract to avoid bloating the blockchain [26].

Contracts can be programmed, deployed, and executed by anyone. A contract is de-

ployed to an address on the blockchain, allowing it to receive transactions. Ether is paid to

deploy a contract to the blockchain and the amount depends on the size of the bytecode.

The Ether fee maximum, which can change over time, limits the size of bytecode which

can be deployed. Contracts are executed when they receive a transaction called a message

call. Owned contracts are a common security feature allowing a single account to execute

some or all its functions. All full Ethereum nodes validate the state of the blockchain. So,

when contracts are executed on the blockchain all full nodes run the code in the EVM.

The EVM uses the data portion of the message call to execute a function. Ether in

the message call pays for the execution of the contract [26]. The transaction limit for each

block in Ethereum is based on computational complexity of the transactions in the EVM.

The computational complexity is measured in units called gas. Each computation during

the execution of the contract is charged, to prevent denial of service attacks using infinite

loops to stall miners. The attack could prevent the miner from making a block or prevent

other contracts from being executed in the current block. The charge assigns a price to the
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attack, and execution halts when the message call runs out of funds. Once halted, changes

to state variables will be reverted [26].

The EVM has a maximum call stack height of 1024 to make it deterministic and

independent of the implementation language. Each miner needs the same answer when

executing the contract, requiring the EVM to be deterministic. Contract execution fails

when stack height is exceeded [26]. The stack height introduces a security vulnerability.

An attacker can build the call stack before calling another contract causing it or a contract

it calls to fail [26]. The effect of the failure depends on the contract attacked. The call stack

vulnerability can be prevented through proper contract programming.

The mining process of Ethereum uses proof of work. Proof of work in Ethereum

differs from Bitcoin proof of work and is ASIC resistant [26]. ASIC mining leads to cen-

tralization of a decentralized system and weakens the benefits of building a distributed

system [26]. The Ethereum proof of work requires a large, currently 1 GB, directed acyclic

graph during the mining process. The nonce needs a small part of the DAG and miners

either generate a portion of the DAG during each mining attempt or store the entire DAG

in RAM [26]. Generating pieces of the DAG for each nonce is too expensive to effectively

mine, requiring storage of the DAG in RAM [26]. RAM I/O limits benefits of ASICs be-

cause the nonces for mining blocks are randomly distributed in the DAG and RAM is the

most efficient way to randomly access data.

Verification is cheap for clients, requiring a small portion of the DAG which can be

generated. The DAG changes every 30000 blocks and is based on the block height allowing

pregeneration of the DAG. The DAG change reduces the speed up from shared memory

architecture. The DAG is pregeneratable, so generation does not stop mining temporarily
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[26].

Mining is incentivized with new Ether and fees paid for transactions and contract

execution. There is no limit to the total number of Ether. A block that is mined, and could

have been a valid block, but was mined after another valid block is called an uncle. Figure

5 shows uncles in Ethereum. Miners who generate uncle blocks are given a partial reward

in Ethereum, unlike in Bitcoin. The uncle reward prevents centralization risks with a short

time between blocks [28].

Figure 5: Uncles in Ethereum

3.3 CDN

CDNs for delivering DRM protected content are made of three services: the merchant

service, the rights management service, and the content delivery service [4]. Some ex-

amples of large CDNs with DRM are Netflix, Amazon Video, and iTunes. The merchant

service sells digital rights. First the merchant service confirms payment and then it tells

the rights management service to update the user’s database entry. The rights management
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service maintains the digital rights database. The rights management service sends license

keys to clients, so they can request and decrypt content. The content delivery service deliv-

ers content to authorized users. Content delivery in a CDN relies on geographically diverse

servers to minimize delivery time. CDN services can be operated by multiple parties. For

example, the content delivery service can be outsourced. Many ISPs operate CDNs with

servers inside their network so companies can quickly deliver content to their customers. If

all services, merchant, rights management, and content delivery are P2P the CDN will not

contain a single point of failure.
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Chapter 4: Design

4.1 System Design

The design goal of this thesis is to make a P2P CDN that benefits both consumers and

content producers. Consumers want to purchase content knowing that they will not have

their ownership revoked in the future. Content producers want to sell their works without

maintaining servers. The CDN uses a blockchain to maintain the consumer’s rights to

works indefinitely. Through P2P filesharing the CDN distributes content creators works in

a low cost manner and gives consumers indefinite access. An overview of the system is

shown in Figure 6.

Figure 6: System Overview
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The content distribution network will use an Ethereum blockchain to operate the mer-

chant and rights management services. The content distribution network will use a P2P

network like the BitTorrent tracker system as the content delivery service. An Ethereum

blockchain will securely store digital rights and allow programs to execute securely. This

makes the merchant and rights management services completely P2P. It is impractical and

insecure for the content delivery service to store the content in the blockchain. Blockchain

size will increase to an impractical level, leading to blockchain storage centralization. And

any peer who has the blockchain will have every piece of content. Instead, the content will

be stored in a P2P file sharing network. The blockchain will be used by network peers to

restrict content access so peers cannot store files that they do not own. The content creator

will have to serve the file until it is purchased and downloaded by peers. In this system

content creators use a content packager to publish their content to the blockchain and the

P2P filesharing network. Consumers pay the content’s contract to gain access rights. Con-

sumers then request the content from the P2P filesharing network. When content has been

received and verified the user can view the content.

4.2 The Blockchain

The merchant service and rights management service will be implemented using con-

tracts on a private Ethereum network so the blockchain will only be for this system. Calling

contract functions requires the contract’s address and interface. A header and hub system

was implemented to assist in contract function calls. The header contract stores the file-

name, hub address, and hub interface. The header is standardized so the interface does

not change for each content, allowing the interface to be known in advance. The header
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information is used to interact with the hub contract. The hub stores addresses and inter-

faces of the license mint contract, the verification contract, and the index server directory

contract. The license mint contract stores the digital rights, the price to gain rights, and is

used to purchase digital rights. The verification contract stores the SHA-256 hash to verify

received files. The index server directory contract stores information required to communi-

cate with index servers to find P2P filesharing peers, allowing for index servers to be added

or removed.

There were multiple iterations of the systems deployed on the blockchain during de-

velopment. The first system was insecure. The second system was a secure system. The

third and final system is a more efficient and secure system.

4.2.1 Insecure System The initial system allows content creators to publish con-

tent and deploy contracts. The content creators create the content and write the contracts.

The system is described in Figure 7. This system is insecure, as content creators can write

flawed or malicious contracts. Using insecure contracts causes unintended results, such as

the consumer paying too much or not gaining access rights.
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Figure 7: Insecure System

4.2.2 Secure System The secure system does not allow content creators to write

their own contracts, to prevent flawed or malicious contracts. This requires a trusted third

party to create the contracts to ensure consistency of contract implementations across con-

tent creators. The third party creates factory contracts for use by content creators, shown

in Figure 8. A factory is a type of contract whose job is to create other contracts. To re-

duce the trust required, the factory stores its source code on the blockchain. The content

creators call a factory function to create new contracts for their content, shown in Figure

9. The factory addresses are listed on a factory lookup contract, helping content creators

locate every factory. Factory produced contract addresses are placed on a contract lookup,

helping consumers locate every content’s contracts. The interface of each contract created

by the same factory will be identical. To improve space efficiency, interfaces are stored in

the interface lookup contract and are given an interface ID. The header and hub store the
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interface ID, using the interface lookup to retrieve the interface.

Figure 8: Secure System - Factory Creation

Figure 9: Secure System - Content Publishing
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4.2.3 Efficient System The efficient system is secure and more space efficient.

The secure system wastes storage by creating identical bytecode each time a factory cre-

ates a contract, illustrated in Figure 10. The efficient system removes the replication of

bytecode, shown in Figure 11. Content license contracts, which store data for multiple

contents, are used instead of factories. The trusted third party creates the content license,

shown in Figure 12. The content license stores its own source code. The content license

combines the functionality of the license mint, verification, and index server directory con-

tracts. Content producers call a content license function to add the required data for their

content, shown in Figure 13. The amount of storage saved on each node with the efficient

design is shown in equation 4.1. The calculations to get equation 4.1 are in the appendix.

kb f + kd f +nb− kb (4.1)

with

n = number of content

k = number of license standards

b = size of bytecode

b f = size of factory bytecode

d f = size of factory state variables



36

Figure 10: Naive Design with Redundant Bytecode

Figure 11: Efficient Design Eliminating Redundancy
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Figure 12: Efficient System - License Creation

Figure 13: Efficient System - Content Publishing
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4.3 P2P Filesharing Network

The content delivery service’s P2P filesharing network is like the BitTorrent tracker

system. Peers in the network rely on index servers for peer discovery. Any peer can run an

index server, listing it individually on the blockchain for any number of contents. There is

not a limit on the number of index servers per content. Serving peers list themselves on the

index server. Downloading peers get a list of peers serving the file from the index server.

The sequence of activities involving the index server is shown in Table 2.

Table 2: Index Server Activity

1 Index Server lists itself for the file on the blockchain
2 Index Server starts index for the file
3 Producer lists themselves on the file’s index
4 Consumer asks Index Server for servers

The peer list is used to request content from peers. Files are transferred if the requester

has rights on the blockchain. When requesting content, peers include their public key from

the blockchain. Peers prove they own the public key by signing a nonce chosen by the

serving peer. The serving peer validates the signature and checks if the public key has

rights on the blockchain. The serving peer then sends the file to the requester. The file is

not chunked like in BitTorrent in this prototype. The content request process is shown in

Figure 14.
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Figure 14: Content Request from P2P Network

Received files are validated by comparing the SHA-256 hash to the stored hash on the

blockchain. The P2P filesharing network uses hypertext transfer protocol (HTTP) to trans-

mit information and files. HTTP is used for its wide adoption and available libraries. The

peer list is transmitted in JavaScript object notation format (JSON). JSON libraries enable

easy packing and unpacking of transferred data. The sequence of events for a consumer to

get the file from a producer is shown in Table 3.

Table 3: Sequence of Consumer getting content from Producer

1 Producer places content data on the blockchain
2 Index Server lists itself for the file on the blockchain
3 Index Server starts index for the file
4 Producer lists themselves on the file’s index
5 Producer begins serving file
6 Consumer pays for access rights (blockchain)
7 Consumer asks Index Server for servers
8 Consumer asks Producer for file
9 Producer serves to Consumer
10 Consumer lists themselves on the files index
11 Consumer begins serving file
12 Consumer2 pays for access rights (blockchain)
13 Consumer2 asks Index Server for servers
14 Consumer2 asks Producer or Consumer for file
15 Producer or Consumer serves to Consumer2
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4.4 Content Protection

Content protection relies on encryption to prevent content from being accessible to

attackers and uses watermarks to locate the source of a leak. Secret keys are not amenable

to a fully P2P CDN. Key servers create a central failure point, which could prevent content

from being viewed by peers with rights. A key stored on the blockchain is insecure, as it

is accessible to every peer who has the blockchain. Giving authorized peers the key will

result in a leak allowing anyone to decrypt the content. Individualized watermarks change

the cryptographic hash of a file for each peer preventing content validation.

4.4.1 Whitebox Whitebox cryptography is used to protect keys in software appli-

cations that are executed on untrusted devices [29]. Whitebox cryptography combines the

secret key into the cipher in an obfuscated manner. Whitebox ciphers allow the content to

be stored in an encrypted form. Ciphers should be generated for each content or a limited

number of contents. Individual ciphers can make key theft economically irrational com-

pared to purchasing content. If all contents share the same cipher, key theft will have a

greater reward and may be economically rational. The cipher may delay key theft, protect-

ing content creators’ revenue streams. The SHA-256 hash of the cipher should be stored on

the blockchain and the ciphers stored in the P2P filesharing network to prevent blockchain

centralization. Cipher access should only be given to rights holders, so key thieves must

purchase the content, to further reduce incentive for key theft. The use of whitebox ciphers

may not be beneficial. Even when decrypted in small portions the content will be vulner-

able to leak. Using systems like HDCP to protect the content in transit to the display may

prevent indefinite access to content. When HDCP is no longer supported by computers the



41

system to display the content will no longer operate unless it is updated. To update the

system the secret key would be required to rebuild the whitebox, leading to the initial prob-

lem the whitebox was trying to fix. Because of the long term support issues of whitebox

cryptography it is not included in this design.

4.4.2 Non-Encryption Protection Service superior to pirated networks protects

content by incentivizing consumers to use legitimate services. Service quality can be in-

creased through economic incentive. Paying index and peer servers incentivizes uptime

and serving peers, increasing quality and quantity of service. Consumers paying for peer

discovery and file delivery will not increase the overall cost. Server costs are factored

into the content prices when purchasing from regular CDNs like Netflix or iTunes. Since

content producers do not have to run servers the cost to purchase content will decrease.

Server cost efficiency may increase for some content and decrease for others. Centralized

CDNs use economies of scale to reduce costs and increase efficiency, the loss of economies

of scale will decrease efficiency. Competition drives innovation and reduces cost, and the

competition among peers may reduce costs and increase efficiency. Content served by large

distributers may have the cost of delivery increase as competition’s benefit is outweighed

by the loss of economies of scale. Content served by small distributers may see the cost of

delivery decrease as the loss of economies of scale is outweighed by the effect of competi-

tion.
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Chapter 5: Implementation

5.1 Implementation

The system design previously described was implemented to validate it and measure

its performance in a realistic scenario. The version of Ethereum used in the implementation

is Geth 1.7.2, with Solidity 0.4.11 used to write contracts. These are not the most recent

versions of Geth or Solidity. Ethereum is currently under development with new versions

being released frequently. The version was pinned to stop updates from breaking software.

The version of Python used in the implementation is 3.6.3 so the secrets module could be

used for secure random numbers. Flask is used for the HTTP servers. The version of Flask

used is 0.12.2. The testbed interacts with Amazon Web Services, and the API module used

is Boto3 1.4.7. An overview of the software used is in Table 4.

Table 4: Software Versions Used

Geth 1.7.2
Solidity 0.4.11
Python 3.6.3
Flask 0.12.2
Boto3 1.4.7
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5.2 Test Environment

5.2.1 Simulated Environment The environment being simulated is consumers us-

ing extra resources on their computer (or old computers) to serve files. Peers have 2 core

processors with moderate clock speeds. Peers have small hard drives to represent extra

storage or smaller disk machines. Index servers are dedicated home computers with more

resources than consumer peers. Miners are dedicated computers with larger amounts of

RAM and processing than other peers. Peers are assumed to be running in private resi-

dences with low to moderate speed network connections. Contracts are on the blockchain

prior to testing because the creation of the contracts would not affect most consumers buy-

ing content.

5.2.2 Testbed The testbed is on AWS because of the free credits they give to stu-

dents and previous experience with their cloud. The testbed has a dedicated machine for

the miner and bootnode. The other machines are producers, consumers, or index servers.

The machines are networked in an Amazon Virtual Private Cloud and are not open to the

public internet, aside from SSH connections. An overview of the testbed is shown in Figure

15.
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Figure 15: AWS Testbed

Each machine runs a program that simulates the behavior of its user. The consumer

simulator purchases every content listed on the blockchain in random order and requests

content immediately after purchase. The consumer simulator runs a peerclient to download

files and a peerserver that serves downloaded files. The producer simulator generates ran-

dom files and lists them for purchase on the blockchain. After the producer simulator has

created the files it starts a peer server to serve its newly created files to the network. The

random files are 5.5 gigabyte blank files with a small amount of random data appended at

the end to prevent hash collisions. The files are transferred uncompressed, and the size of

5.5 gigabytes was chosen as a middle ground between small files and large files that have

been compressed.

The index simulator manages indexserver data for each file on the blockchain, while
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checking for new content on the blockchain periodically. The miner simulator will run

the miner, so data can be added to the blockchain. The programs need Ether to append

data onto the blockchain or purchase content. The bootnode simulator runs a bootnode and

sends Ether to peers for testing. The bootnode was arbitrarily chosen to send Ether for

testing.

Peers needing Ether send messages with their Ethereum addresses to the bootnode

using Amazon’s simple queue service (SQS). SQS stores a queue on an AWS operated

server, so peers can push items onto or pull items from the queue over a network connection.

The bootnode reads n messages, with n being the number of peers requiring Ether, this is

required for testing and is not part of the system. The mining difficulty was minimized to

reduce resources required for testing. This should not affect the results since the difficulty

is automatically adjusted to meet the targeted block interval of 17 seconds, and blocks were

mined in advance to create the Ether sent out to peers for testing.
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Chapter 6: Results

6.1 Data Gathering Method

All the timing data is gathered from the consumer simulators and focuses on the con-

sumer experience. The data was gathered by pushing the current time onto an AWS SQS

queue at the start and end of each task. After each test, the messages were gathered from

the queue and the time to complete each task was calculated. The time reported is the

average time to complete each task during a test. Multiple tests were run with an increas-

ing number of consumers to test the scalability of the system. The test configurations are

shown in Table 5. In every configuration a producer generates and serves 1 file. There is

one Bootnode in each test to coordinate the Ethereum clients. There is one miner in each

test to produce blocks. There is one index server in each test to coordinate P2P filesharing

peers. The program was not ran at scales larger than those in Table 5 because of the costs

to run tests.

Table 5: Test Configurations

BootNodes IndexServers Producers Consumers Miners Cost/Hour
1 1 1 1 1 $0.45
1 1 10 10 1 $1.69
1 1 10 20 1 $2.37
1 1 10 40 1 $3.74
1 1 10 80 1 $6.48
1 1 10 160 1 $12.00
1 1 10 237 1 $17.24
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6.2 Results

The total time it takes to purchase and completely download a file was measured. To

better characterize the performance of the prototype implementation, the components of

total time are also measured these are purchase time, get index server time, get peers time,

and download time. For analysis, the components are combined, as shown in Table 6, to

produce the combined metrics of query time, blockchain time, pre download time, and total

time.

Table 6: Combined Metrics

Purchase Get IndexServer Get Peers Get File
Total Time X X X X
Query Time X X X
Blockchain Time X X
Pre-Download X X X
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Figure 16: Total Time

Total time is the duration from when a consumer decides to get a file until they have

the entire file. Figure 16 shows that total time grows linearly as the number of consumers

is increased. In the small scale testing with 10 consumers the total time is just over 4

minutes (249 seconds) with 87% of the total time being download time and 6% of the total

time being get peers time. At the largest scale tested total time is over 18 minutes (1105

seconds) with 48% of the total time being download time and 49% of the total time being

get peers time. The total time is dominated by get peers time and download time with get

peers becoming a larger portion of total time as scale increases.
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Figure 17: Query Time

Query time is how long it takes a consumer to retrieve a file they own. As shown

in Figure 17 the query time increases linearly as the number of consumers is increased.

Query time is like total time since they are made of the same components with total time

also having purchase time. With 10 consumers query time is just below 4 minutes (234

seconds). At the largest scale tested the query time is just below 18 minutes (1073 seconds).

Query time is dominated by get peer time and download time which make up over 99% of

query time at each scale tested.
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Figure 18: Blockchain Time

Blockchain time is how long it takes for the consumers blockchain read and write oper-

ations. Figure 18 shows that blockchain time increases linearly as the number of consumers

increases, with the slope decreasing after the 80 consumer test. In the lower scale tests, the

blockchain time is between 15 to 20 seconds. In the larger scale tests, the blockchain time

is between 30 and 35 seconds. Blockchain time is dominated by the time to purchase the

content, which is the only time the consumer writes to the blockchain. This confirms that

writing to a blockchain takes longer than reading the blockchain.
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Figure 19: Pre-Download Time

Pre-download time is how long a consumer must wait before starting the file down-

load. As shown in Figure 19 pre-download time increases linearly as the number of con-

sumers increases. In the small scale test with 10 consumers pre-download time is 32 sec-

onds, with 46% of the time being purchase time. In the largest scale test pre-download

time is over 9 minutes (578 seconds), with 5% of the time being purchase time and 94%

of the time being get peers time. As the scale is increased the get peers time becomes the

dominant component of pre-download time.



52

Figure 20: Purchase Time

Purchase time is how long it takes to acquire rights after a consumer decides to pur-

chase a file. Purchase time involves transactions in Ethereum and requires the consumer

making the purchase and the miner. As shown in Figure 20 the purchase time doubles as the

number of consumers (and transactions) increases. Initially the purchases were included

in the next block, but as the number of transactions increased it took two blocks for the

purchase to be included. The decrease in slope after 80 consumers is caused by reduced

parallel purchase transactions which resulted in relatively faster purchase times. Due to

implementation issues, which are described later in this chapter, some consumers wait sig-

nificantly longer than others for a file. This makes some consumers purchase their next file

later than the others with the purchase transaction sent after other consumers transactions
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have been mined.

Figure 21: IndexServer Time

Get index server time is how long it takes for a consumer to get the list of index

servers for a content. Get index server time is the consumer reading from their copy of the

blockchain with the index server having previously sent a transaction to the miner to list

themselves as index serving for the content. Figure 21 shows that the time to get the list

of IndexServers is consistently under 1 second. The spike at 10 consumers is likely caused

by inconsistency in the testbed not the system design. Three peers in this test had high get

index times that were consistently between 2 to 3 seconds, while the other peers performed

similar to peers in other tests. Get index time is not affected by test scale because it is a

local disk read.
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Figure 22: Peer Time

Get peers time is how long it takes for the consumer to get the list of serving peers

from the index server. The peers involved in get peers time are the consumer and the index

server and has no activity occurring on the blockchain. Figure 22 shows that the time to

get the peer information from the index server increases linearly with the number of con-

sumers. The poor performance of the index server is caused by the implementation and

is not inherent in the concept of combining P2P filesharing and blockchain. The perfor-

mance is caused by limiting the number of peers allowed to communicate simultaneously

with the index server to prevent out of memory exceptions. This limit was needed since

libraries used to run the index server consumed large amounts of memory to create threads

when serving clients. Limiting the number of peers allowed to communicate simultane-
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ously causes a line of peers waiting for routing information. This line of peers causes some

peers to begin downloading much earlier than others causing them to finish downloading

first. This reduces the number of consumers sending parallel purchase transactions.

Figure 23: Download Time

Download time is how long it takes to download the file from a peer. The peers in-

volved in download time are the consumer and a peer running a peer server, this could be

the producer or a consumer who has the file. No activity occurs on the blockchain, but the

peer server requires the consumer to have purchased the file. As shown in Figure 23 the

download time increases linearly as the number of consumers increases. The increase in

average download time is caused by increased load on the peer servers with more clients

asking for files at once from each index server. The load is the worst during each con-
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sumer’s first download when only the producers are serving the files to all the consumers.

The implementation of the P2P network does not have peers serve the chunks of file they

have downloaded before the download has finished. Serving chunks would reduce the ef-

fects of increased load by having peers serve sooner.
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Chapter 7: Discussion

Given the performance of the P2P filesharing network implementation it is important

to look at the theoretical performance of the blockchain. The transactions per second (tps)

of the system will be used to measure the scalability. Purchase transactions are used to

calculate the tps because they are the most common type of transaction and have the largest

direct effect on the consumer experience. Equation 7.1 will be used to calculate tps.

ts = tb/s (7.1)

with

ts = transactions per second

tb = transactions per block

s = seconds per block

The transactions per block is unknown and the seconds per block is known with the

time between blocks at 17 seconds. Equation 7.2 is used to calculate the number of trans-

actions per block.

tb = cb/ct (7.2)

with

tb = transactions per block
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cb = complexity per block

ct = complexity per transaction

Computational complexity in Ethereum is measured in a unit called gas. The com-

pexity per block is the default targeted block gas limit of 4000000. The complexity per

transaction is the average complexity of a purchase. Before gathering results, multiple pur-

chases were performed and the average complexity of a purchase was 57400 gas. With the

complexity per block and the complexity per transaction about 70 purchase transactions

can fit in a block.

The test results confirmed the calculation when purchase time doubled between 40

consumers and 80 consumers, showing that a block was filled, and another was required to

process the transactions. The purchase time data shown in Figure 20 appears to outperform

the theoretical results in Figure 24 in the larger scale tests but the number of consumers

is not equivalent to the number of parallel purchases. In smaller scale tests, the number

of consumers was essentially equivalent to the number of parallel purchases, but as scale

increased and performance issues occurred consumers were sending purchases in parallel

less often weakening the relationship between the two. The stairstep pattern of the theoret-

ical scalability is because multiple values for parallel purchases require the same number

of blocks. When only part of a block is required the consumers still must wait the full 17

seconds for the block to be made.
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Figure 24: Theoretical Scalability

7.1 Scale Comparison

In 2012 Netflix users viewed 5.1 TV shows and 3.4 movies per week [30]. Netflix

had 40.28 million viewers in the 3rd quarter of 2012 and 109.25 million viewers in the 3rd

quarter of 2017 [31]. This averages 8.5 transactions per week. Using the 2012 viewership

requires a CDN that supports 566.10 transactions per second (tps). Using the 2017 view-

ership, assuming content consumption is the same as 2012, requires a tps of 1535.42. The

current upper bound for Bitcoin is about 7 tps [32]. The current upper bound for Ethereum

is about 15 tps [32]. The implemented system is capable of 70 purchases per block, with

1 block produced every 17 seconds, and thus can support 4.1 purchases per second. When

compared to enterprise-scale CDNs, the implemented system faces bottlenecks with the
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current generation of blockchain technology.

7.2 Future Work

Future work should address the scalability issues to improve consumer experience.

Methods to improve scalability that can be investigated to improve a blockchain digital

rights management system are block limit increase, the lightning network, and sharding.

Increasing the block size or complexity limits has been used by BitcoinCash [33] and

Ethereum miners [34]. This method quickly increases the transaction rate, but it is not

a long term solution because it requires additional resources proportional to the increase in

transaction rate. The lightning network creates secure transactions off the blockchain [35].

The lightning network routes currency through cryptographically secured payment chan-

nels. If a peer does not correctly route currency, then proof can be published to the

blockchain to resolve the conflict. Sharding divides the verification or storage of transac-

tions among multiple subsets of peers [32]. Each subset handles its portion of transactions

and requests information from peers in other subsets when required. Sharding is supposed

to be secure if each subset of peers is sufficiently large.

Other challenges that can be addressed in future work are the free rider problem and

multiple copy storage. In a P2P filesharing network the free rider problem is a peer that

downloads content and does not serve peers, which results in worse service for peers. A

potential fix to the free rider problem is to use cryptocurrency micropayments between

peers to cover the costs of and incentivize file serving. Files with more copies stored are

more likely to be available in the future. Cryptocurrency distribution for storing copies of

files might incentivize storage of a minimum number of copies of a file.
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APPENDIX A: Storage Calculations

Definitions

n = number of content

k = number of license standards

s = Total storage on single blockchain node

b = size of bytecode

d = size of state variables

b f = size of factory bytecode

d f = size of factory state variables

Assumptions

b0 = b1 = bn

d0 = d1 = dn

b f 0 = b f 1 = b f n

d f 0 = d f 1 = d f n

k << n

Factory Method Calculations

s = k(b f +d f )+n(b+d)

License Method Calculations

s = nd + kb

Difference Calculations
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kb f + kd f +nd − (nd + kb)

kb f + kd f +nb− kb
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