

University of the Pacific Scholarly Commons

Euler Archive - All Works

Euler Archive

1862

Fragmenta arithmetica ex Adversariis mathematicis deprompta

Leonhard Euler

Follow this and additional works at: https://scholarlycommons.pacific.edu/euler-works Part of the <u>Mathematics Commons</u>

Record Created: 2018-09-25

Recommended Citation

Euler, Leonhard, "Fragmenta arithmetica ex Adversariis mathematicis deprompta" (1862). *Euler Archive - All Works*. 806. https://scholarlycommons.pacific.edu/euler-works/806

This Article is brought to you for free and open access by the Euler Archive at Scholarly Commons. It has been accepted for inclusion in Euler Archive - All Works by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.

an all meticine

and the standard of the second second standard and the second sec

Fragmenta arithmetica ex Adversariis mathematicis(*) depromta.

and and construct state of the normal part of the normal part of the operation of the operation of the content of the normal and the content of the normal state of th

pointen al someties not de manue a spranna est la baj temp sociantaria maitis es est matemate a) De numeris formae mxx -1 mys corumque divisorious. Infondia todillaje comparatis est est est antonide a ababataria and social decine to di successer orav menue die comparatis est est est antonide a ababataria and social decine to di successer angle appendi menue die comparatis est est est antonide es manateris de facilités de social decine te all'est appendit menue die comparatis est est est antonide est autonide provide facilités de social decine te autor appendité menue die comparatis est est est est action appendité est autonide provide de social de social de social de social appendités de social de soc

THEOREMA. Si formula mxx + nyy casu x = a et y = b praebeat numerum primum a, tunc omnes numeri primi in formula $a \pm 4mnp$ contenti simul erunt numeri formae mxx + nyy. Quin etiam omnes numeri primi in hac formula $aqq \pm 4mnp$ contenti simul erunt numeri formae mxx + nyy.

NB. Demonstratio adhuc desideratur. a muannun uni tia silidiaivili de pona alumant il $\frac{A. m. T. I. p. 13}{A. m. T. I. p. 13}$ in the probability of the probabili

The distribution of the intervation for the state (lexell.) is non-real units interval. (In the dotted interval interval) in the dotted interval interval. (In the dotted interval interval) is the dotted interval. In contrast, mxx + myy divisibilis fuerit per numerum integrum, i, infinitae aliae similes formulae per imported interval. In contrast, mxx + myy divisibilis fuerit per numerum integrum, i, infinitae aliae similes formulae per imported interval. In contrast, mxx + myy divisibilis fuerit possunt. In contrast, mxx + myy divisibilis fuerit possunt. In contrast, mxx + myy divisibilis fuerit possunt. In contrast, $mxx + myy + m(ay \pm \gamma)^2$ per i erit divisibilis, quicunque numeri integri pro α , β , γ accipiantur; semper autem numeros α , β , γ ita accipere licebit, ut quadratorum radices ambae $ax - \beta i$ et $ay - \gamma i$ infra $\frac{1}{2}i$ deprimantur, quin etiam altera $ax - \beta i$ ad unitatem revocari poterit, quum enim numeri x etiandentur province fractione $\frac{i}{x}$, α quaeraturation numeris terminoribus fractional poterit, quum enim numeri x is it $ax - \beta i = \pm 1$, quo casu invento sit altera radix $\alpha y - \gamma i = r$, atque hi duo valores x = 1 et y = r quasi-principales spectentur, sum vero reliqui ordine in the tabella exhibentur: province much in the much in the fuerior of the fueri

bur $dbq + uqc + uqc + q c = q c = q du <math>\frac{1}{4}$ du q = 0 $\frac{1}{4}$ du q = 0 $\frac{1}{4}$ du q = 0 $\frac{1}{4}$ \frac

Exempli gratia, sit formula proposita $3xx_1 - 2yy$ et sumatur x = 7, y = 2, ac, prodit numerus, 155, cujus $\frac{1}{1}x_1 + 2y_1 = 1$, sit jam proxime flat $\frac{x}{2} = \frac{31}{3} = \frac{x}{3} = \frac{9}{2}$, sive $\alpha = 9$ et $\beta = 2$; tum enim fit of

Tag Training supervision is a set of the state of the set of the s

- Handst og elver og

 $\alpha x - \beta i = 63 - 62 = -1$, et altera radix $\alpha y - \gamma i = 18 - 31 = -13 = r$,

unde fiat sequens tabula:

$$\infty$$
 1, 2, 3, 4, 5, 6, 7
y 13, 5, 8, 10, 3, 15, 2.

Minima formula hinc nascens erit secunda: $3.2^2 + 2.5^2 = 62$, quod per 31 divisum dat quotum minimum 2 A. m. T. I. p. 94. 95.

") M L V Î D B BEE D B D BEE M Î Î T BENT<u>TE D</u>. 219 SE MÎ TOBRÎ BEED SE AN Î T **3**-

THEOREMA. Si fuerit numerus primus formae p = 8n + 5, constat semper dari formam aa + 1 per illum numerum p divisibilem, tum vero nulla hujusmodi forma $aa \pm ayy$ unquam erit per p divisibilis. Contra autens pro numeris primis formae p = 8n + 1 datur etiam forma aa + 1 per p divisibilis, tum vero dabuntur formulae $ax \pm ayy$ per p divisibiles.

Demonstratio eo nititur fundamento, quod priori casu numerus a semper sit non-residuum, in posteriori vero residuum; illud autem inde ostenditur, quod numerus residuorum sit 4n-1-2, inter quos quilibet numerus utroque signo -1 et — occurrit, unde multitudo diversorum residuorum erit 2n-1, scilicet impar; sin autem numerus ille a inter residua esset, haec multitudo (prodiret par, quod esset absurdum.

THEOREMA. Si formula naa-+bb divisibilis sit per numerum p, semper dari poterit formula n + qq divisibilis per eundem numerum p, ita ut $q < \frac{1}{2}p$.

DEMONSTRATIO. Quaeratur primo formula generalis nxx + -yy per numerum p divisibilis, quod fit su mendo^{di} <u>x = aa di</u> βp^{α} et ^{di} y = ab ^{dif} $y^{\alpha} p$; ^b tilin ^c enim 18ta formulai et ti ^d a (nim 1 + bb) = 2p(naa \beta + ab y +) $pp(n\beta\beta + y)$ quae ergo per p est divisibilis. Jam semper numeros α et β ita accipere licebit, ⁱⁿ ti fiat $\alpha a^{1-1}\beta p = 1$, ideoque x = 1, quaerendo scilicet fractionem $\frac{d}{\beta}$ from the acqualem for $\frac{p}{\beta}$. Cum igitur si $y = ab \frac{d}{\beta} p = 1$, ideoque x = 1, quaerendo scilicet fractionem $\frac{d}{\beta}$ from $\frac{d}{\beta}$ ideoil program acqualem for $\frac{p}{\beta}$. Cum igitur si $y = ab \frac{d}{\beta} p = 1$, numerum x = 1, quaerendo scilicet fractionem $\frac{d}{\beta}$ from $\frac{d}{\beta}$ ideoil program acqualem for $\frac{p}{\beta}$. Cum igitur si $y = ab \frac{d}{\beta} p = 1$, numerum x = 1, quaerendo scilicet fractionem $\frac{d}{\beta}$ ideoil program acqualem for $\frac{p}{\beta}$. Cum igitur $\frac{d}{\beta} p = ab \frac{d}{\beta} p = 1$, numerum x = 1, accipere licebit, ut fiat y non solum minus quam p, sed etian minus quam $\frac{1}{2}p$. $\frac{1}{2}$ mini $\frac{1}{2}p - \frac{1}{2}$ mini $\frac{1}{2}p - \frac{1}{2}p$. $\frac{1}{2}p$ mini $\frac{1}{2}p - \frac{1}{2}p$ mini $\frac{1}{2}p - \frac{1}{2}p$ mini $\frac{1}{2}p - \frac{1}{2}p$ mini $\frac{1}{2}p - \frac{1}{2}p - \frac{1}{2}p$ mini $\frac{1}{2}p - \frac{1}{2}p - \frac{1}{2}p$ mini $\frac{1}{2}p - \frac{1}{2}p -$

SOLUTIO. Cum igitur detur numerus q', ut sit n + qq divisibile per p', ponatur $\frac{n+nqq}{p} = r$ sumaturque $aq_{p} = r$ sumaturque b = qa + pd eritque naa + bb = naa + qqaa + 2pqad + ppdd, quae ob n = pr - qq abit in p(raa + 2qad + pdd), quae ergo per p divisa dat raa + 2qad + pdd. Quod autem poni possit b = qa + pd, sive ut $\frac{b-qa}{p}$ semper sit numerus integer, inde patet, quod etiam detur formula n + qq per p divisibilis, ideoque etiam naa + aaqq, quarum differentia bb - aaqq per p divisibilis erit, unde cum p supponatur numerus primus, vel b + aq, vel b - aq per divisibile, utrumvis perinde est. Quia ergo $\frac{b-qa}{orp}$ integer sit = d, ideoque poni semper poterit b = qa + pd integer a + pd inte

 ^{enfer} Тиковки А.⁴¹¹Odinis⁶ numerus primus formae 8n + 1 semper in forma xx 4 2yy continctur. ¹¹ плохі DEMON'STRАТТО. ¹² Sufficiet ¹⁰ ostendisse ¹ semper exhiber posse formain A²⁴ - 2B²¹ per 8n + 1²⁰ Tulivisibile Demonstratum autem est, hanc formam a⁸ⁿ - b⁸ⁿ semper divisibilem esse per 8n + 1, quicunque numeri p a et b accipiantur, scilicet primi ad 8n + 1. Ergo a⁴ⁿ - b⁴ⁿ, vel a⁴ⁿ + b⁴ⁿ erit divisibilis. Facile, autem demon pautenetten.

And to all of the of

stratur non omnes numeros $a^{4n} \leftarrow b^{4n}$ divisibiles esse....Dantur ergo casus ; quibus forma $a^{4n} \leftarrow b^{4n}$ est divisibilis. Habebitur ergo summa duorum biquadratorum divisibilis $A^4 \leftrightarrow B^4$. Quare cum sit $a^4 \leftarrow b^4 = (aa \leftarrow bb)^2 \leftarrow 2aabb$, propositum est demonstratum. Ita cum 97, in forma $8n \leftrightarrow 1$ contineatur, reperitur 97, =:57 + 2.63.

THEOREMA. Omnis numerus primus formae 8n to 3 simul in forma xx + 2yy continetur.

DEMONSTRATIO. Ilerum sufficiet ostendisse, dari formam $A^2 + 2B^2$ per 8n + 3 divisibilem. Cum igitur haec forma $a^{8n+2} - b^{8n+2}$ semper sit divisibilis, quicunque numeri pro a et b accipiantur, erit vel $a.a^{4n} - b.b^{4n}$, vel $a.a^{4n} + b.b^{4n}$ divisibilis. Jam sumatur d = cc et b = 2dd ut $a.a^{4n}$ fiat quadratum A^2 et $b.b^{4n}$ duplum quadratum, puta $2B^2$, sicque vel forma $A^2 - 2B^2$, vel $A^2 + 2B^2$ divisionem admittet per 8n + 1. At vero demonstratum est, formam $A^2 - 2B^2$ alios divisores non admittere, nisi vel formae 8n + 1, vel formae 8n - 1, unde sequitur alteram formam $A^2 + 2B^2$ divisibilem esse. Ita cum sit 107 = 8.13 + 3, reperitur esse $107 = 3^2 + 2.7^2$, hocque semper unico modo, quod ita demonstratur:

Sit P = aa + 2bb simulque P = cc + 2dd, numerus P nécessario est compositus. Cum enim sit

inde sequitir $\frac{a+c}{b+1} = \frac{2(a-b)}{a-c} = \frac{p}{p}$. Erit ergo a+c=ap et d+b=aq, $d-b=\beta p$ et $a-c=2\beta q$. Hinc $2a=ap+2\beta q$ et $2b=aq-\beta p$; quare cum 4P=4aa+2.4bb erit $4P=(aa+2\beta\beta)(pp+2qq)$, sicque 4P $2a=ap+2\beta q$ et $2b=aq-\beta p$; quare cum 4P=4aa+2.4bb erit $4P=(aa+2\beta\beta)(pp+2qq)$, sicque 4Pfor point and an information of the second second

$$11 = 3^{2} + 2.1^{2} \qquad 67 = 7^{2} + 2.3^{2}$$

$$4^{-1} = 12^{-1} + 2.3^{2} + 12^{-1} +$$

Notandum hić, praeter casum primum, in Onmibus reliquis alterum quadratum semper per 9 esse divisibile: Notandum hić, praeter casum primum, in Onmibus reliquis alterum quadratum semper per 9 esse divisibile: $\gamma_{14} + \gamma_{24} + \gamma_{25} = L$ ohun $L_2 = \gamma_{14} + \gamma_{24} + \gamma_{24} + 1$ for $\lambda_{14} = --A$. mr.T. [III. p. 180. 181. If a cholic self A to $\gamma_{14} + \gamma_{14} + \gamma_{14} + \gamma_{14} + 1$ for $\lambda_{14} = --A$. mr.T. [III. p. 180. 181.

THEOREMA. Propositis numeris quibuscunque a, b, c, d, si numerus formae abpp - cdqq multiplicetur per numerum formae acrr - bdss, tum productum semper continebitur; in hac forma bcxx + adyy. DEMONSTRATIO facile patet. Sumto enim x = apr + dqs et y = bps - cqr, postrema forma bcxx + adyyReperitur productum binarum praecedentium. A. m. T. III, p. 182.

.(Golovin.)

Тиковема. "Productum ex. dualus, hujusmedi, formulis aa at ab to bb et ce to ed. t. dd semper, ad similem Igmam. cx, to cy to yy reduci-potest. Est enim duplici modo.

vel
$$x = ac + b(c + d)$$
 et $y = ad - bc$

el etiam
$$x = ad + b(c + d)$$
 et $y = ac - bd$.

It is if the single function of the second structure of the second structure

It is the obmat Si formula $aaa + 2\beta ab + \gamma bb$ per aliam sui similem $app + 2\beta pq + \gamma qq$ multiplicetur, productum prodicting is formated at a write and the real sector is the base of the base of the real sector is the base of the

Nota Editorum. Casum specialem, quô $\beta = 0$, vide Comment. arithm. T. II, p. 201.

L. EULERINOPERANPOSTHUMA

Тиєовемь. Si formula aapp-y-bβqq:duçatur inclormulam abirite abss', productum cerit: concerned otherin
$A = \frac{1}{2} $
hujus ergo producti forma est $abxx \mapsto a\beta yy$ existente $x \doteq apx \pm \beta qs$ et $y = aps \pm bqr$
Conf. professi a first Comment. arthin: T. II; p. 2013)
and an and the second the second star the second star and start and the second start start and the second start
PROBLEMA. Formulam $d\alpha x x \rightarrow \delta \beta y $ in aliam ejusdem generis transformare. Solutio. Ponatur $x = bmp \rightarrow \beta nq$ et $y = anp - amq$ et prodibit
Solutio. Ponatur $x = bmp - \beta nq$ et $y = anp - amq$ et produkt
$aa bb mmpp + aa \beta\beta nn qq + b\beta aa nnpp + b\beta aa mm qq = ab mm (abpp + a\beta qq) + a\beta nn (ab qq + ab pp) = aa ab mm (ab qq + ab pp) ab $
Solutio. Ponatur $x = bmp + \beta nq$ et $y = anp - amq$ et produit $a\alpha bb mmpp + a\alpha\beta\beta nn qq + b\beta aan pp + b\beta \alpha a mm qq = \alpha b mm (abpp + -\alpha\beta qq) + -\alpha\beta nn (\alpha\beta qq + -abpp) ==$ $(\alpha bmm + \alpha\beta nn)(abpp + -\alpha\beta qq).$
1. The poly and undergraphic of CLASS TOL OF ALL AND AND ADD ADD MALLED "ALL "ALL SHOW ADD ADD ADD ADD ADD ADD ADD ADD ADD AD
and a state of the second s
the minur and comparison for element (In Fuss I) anon define a state or all any functions off a react the
Тиеокема. Si numerus formae xx-+-nyy divisibilis fuerit per numerum pp-+-nqq, quotus semper erit nu
merus ejusdem formae $A^2 \rightarrow nB^2$. DEMONSTRATIO. Cum numeri x et y ad $pp \rightarrow nqq$ debeant esse primi, et p et q quoqué sint primi inter se, quicunque fuerint numeri x et y , semper per p et q ita repraesentari possunt, ut sit $x = \alpha p \rightarrow \overline{\beta q}$ et
DEMONSTRATIO. Cum numeri x et y ad $pp + nqq$ debeant esse primi, et p et q quoque sint primi inter-
se, quicunque fuerint numeri x et y, semper per p et q ita repraesentari possunt, ut sit $x = \alpha p + \beta q$ et
se, quitanque nermi numeri a oroșe i appent beline see anopro remente arrante ($2pq(\alpha\beta - n\gamma\delta)$, quae per $y = \gamma p + \delta q$. Hoc modo formula $xx + nyy$ abit în hanc: $pp(\alpha\alpha - n\gamma\gamma) + qq(\beta\beta - n\delta\delta) + 2pq(\alpha\beta - n\gamma\delta)$, quae per sector de la contrata avolume arrante arr
pp -+- nqq divisa praebeat quotum Δ , ita ut sit
$pp(\alpha\alpha + n\gamma\gamma) + qq(\beta\beta + n\delta\delta) + 2pq(\alpha\beta + n\gamma\delta) = \Delta pp + n\Delta qq.$
Hinc igitur patet fore $\Delta = \alpha \alpha + n\gamma \gamma_3$ $n\Delta = \beta \beta + n\delta \delta$ et $\alpha \beta + n\gamma \delta = 0$, unde jam patet formam ipsius Δ esser
$\alpha \alpha \rightarrow n\gamma \gamma$. Tum etiam erit $n \Delta = \beta \beta + n \delta \delta$, et $\alpha \beta + n \gamma \delta = 0$. Ex ultima fit $\beta = -n\gamma \delta$. Ponatur ergo multiplation
$d = \alpha f. \text{ iet} \beta = -n\gamma f, \text{ erit } \beta\beta + n\delta\delta = nff(\alpha\alpha + n\gamma\gamma) = n\Delta, \text{ unde } \Delta = ff(\alpha\alpha + n\gamma\gamma).$
Cum igitur sit $\Delta = \alpha \alpha + n\gamma\gamma$, sequitur fore $f = \pm 1$. His valoribus fit
$= \inf_{x \in [0, \infty]} \max_{y \in [0, \infty]} \max_$
Hine fit $wxnyy = pp(\alpha\alpha + n\gamma\gamma) + nqq(\alpha\alpha - n\gamma\gamma) = (pp - nqq)(\alpha\alpha + n\gamma\gamma), = (ny) = (ny) + nqq(\alpha\alpha + n\gamma\gamma), = (ny) + (ny) $
sicque: quotus, utio jama vidimus, $\Delta = \alpha \alpha + n \eta \gamma$ as a way to a statistic same of the statistic statist
A. m. T. III. p. 184-
. 8.
THEOREMATA DEMONSTRANDA. I. Si fuerit 4na-1-bb numerus primus, erit semper hujus formae xx - and
II. Si fuerit 4na -bb numerus primus, erit semper hujus formae ayy
A. m. T. II. p. 154
and the second
provide a second s
THEOREMA. Si numerus mnff + gg divisorem habeat primum $p = \frac{maa + nbb}{\Delta}$, tum etiam quotus q_{j} exchange
divisione ortus, erit quoque ejusdem formae scilicet $q = \frac{mcc + ndd}{\Delta}$.
EXPLICATIO. Quaerantur primo duo numeri λ et μ , ut sit $\lambda a - \mu p = \pm 1$; deinde ut formula mnff-+ff
divisorem admittat p , alteram litteram f pro lubitu accipere licet, tum vero altera g ita esse debet comparate
ut sit $g = n\lambda bf - rp$, quibus notatis cum sit $mnff + gg = pq$ existente $q = \frac{mcc + -ndd}{\Delta}$, litterae c et d sequent
modo determinantur
$V_{\rm example} = V_{\rm example} = V_{\rm example} = V_{\rm example}$. For $V_{\rm example}$, we have $V_{\rm example}$, we have $V_{\rm example}$.

й. (А. (). () De divisoribus numerorum formae $fa^n + gb^n$.

•••

10. (Lewell:)

$\mathbf{P_{ROBLEMA}}$. Si formula $fa'' + gb''$ divisorem habeat d, invenire infinitas alias similes forma	s fx ⁿ -⊩gy ⁿ per
weindem numerum d divisibiles.	
Solutio. Capiatur $x = ma \pm \mu d$, et $y = mb \pm \nu d$, et quaesito satisfiet; si enim μ et $\nu = 0$, re	s est manifesta;
in autem multipla ipsius d accedant, omnes termini post primos ex evolutione nati, per se sunt o	livisibiles per d.
PROBLEMA. Invenire omnes divisores primos formulae $x^4 + y^4$. Cum haec formula sit facto	r hujus $x^8 - y_{\mu}^8$,
demonstratum est, omnes ejus divisores contineri in forma $8n-1-1$, quod etiam hoc modo ostenditu	ur: Cum formae
$2^{2} + b^{2}$ omnes divisores sint formae $4n + 1$, ponamus formulae $aa - bb$ divisorem primum esse 4	
erro cham omnes formulae $xx \rightarrow y'$ per eundem numerum erunt divisibiles sumendo $x = ma \pm \mu a$	二、 我们,我我们打了这些
Pro nostro ergo casu hi ambo numeri debent esse quadrati. Pro priore sumto $\mu=0$, hoc	er saft st
it fiat $x = ap$. Superest ergo, ut et haec forma $y^2 = abpp \pm rd$ fiat quadratum, idque sive positivum ponatur ergo $abpp \pm rd = \pm qq$ et res huc redit, ut $abpp \pm qq$ divisibile fiat per d , et quia statui po	sive negativith. tost $a^2 \rightarrow b^2 \rightarrow d$
$p_{macritur}$ ergo $aopp \pm a \equiv dq$ et res inte reint, ut $aopp \pm qq$ utvisible hat per a , et qua statut po autoretrivitation of the activity of the acti	
and a state of the second of the	
I. Sit $d=5$, erit $a=2$ et $b=1$, unde formula $2pp \pm qq$ divisorem habere deberet 5, id require vero 5 continetur in forma $8n \pm 1$ atome hine visissim concludere possumus, neque	2pp + aa, nec
unit, neque vero 5 continetur in forma $8n + 1$, at que hine vicissim concludere possumus, neque $2m - qq$ unquam divisibile esse per 5.	,
II. Sit $d = 13$, erit $a = 2$ et $b = 3$, et nunc quaeritur an formula $6pp \pm qq$ divisibilis esse	
and quod negari debet, quia 13. non est formae $8n + 1$.	an a traffat ont bear
III. Sit $d=17$, erit $a=1$ et $b=4$, nunc quaeritur an $4pp \pm qq$ divisibilis esse possit per 1	7, quod utique
affirmandum, verum est etiam 17=8n+1.	man photo a
a = 25 end $a = 25$ end $a = 2$ er $a = 5$, et quaertur an 10pp $-qq$ untimum esse possi per 25,	
non est 8n i 1, negari debet. Tenneritavia mananan maj about itivila est sque almand estatos aciante alconate filma o 10 m	
GOROLLARIUM 1. Hic ergo distingui oportet duos casus, prouti existente b numero impa	
Sucrit rel impariter par, vel pariter par. Priori casu divisor d non crit formae $8n + 1$, sed i allo allo allo allo allo allo allo al	
$a = 4\alpha \pm 2; \text{ et} b = 4\beta \pm 4, \text{ eritque} aa \pm bb = 16 (\alpha^2 + \beta^2) \pm 16\alpha \pm 8\beta_1 + 5;$	in the second
Where $a = 4a = 2$, et $a = 4\beta = 1$, enque $aa = 6b = 10$ ($a = 2\beta$) $= 10a = 6\beta = 3$ Where $a = 10$ ($a = 2\beta$) $= 2)$ $pp = 2q$.	
source primum 16 $(\alpha^2 + \beta^2)$ + 16 α + 8β + 5 talis formula 16 $\alpha\beta$ + 4 $(2\beta + \alpha)$ + 2 nunquam est di	•
Condition 2. Sin autem manente $b = 4\beta + 1$ (ubi β etiam negative capere licet) si	
$bb = 16 (\alpha \alpha + \beta \beta) + 8\beta + 1$, et nunc certi sumus, dari formulas $4\alpha (4\beta + 1) pp = qq$, quae	divisorem ha-
to it and the to be to be the second part of distribution of the trade of the trade of the second the second s	a and states in
COROLLARIUM 3. Si igitur verum est, omnes numeros primos formae $8n - 1$ divisores o interior radius indicator in the second s	esse posse for-
The map where is all here by the click of the click of the product of the produc	in se continere
elquidem fuerint primi, Aequemus ergo has formas et reperimus	Tital Review and
$n = 2 \left(\alpha^2 + \beta^2\right) \pm \beta$ much non ogeld index have $\overline{\gamma} + \beta = 2 \left(\alpha^2 + \beta^2\right) \pm \beta$ have a line of 17 is $\hat{\gamma}$.	ು ಬೇಬ .ಕ ಮಾರ್ಯವಾದ್ ಬಾದುಕ
	Lentersteer tie die
0, 12, 18, 18, 19, 17, 18, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	FT
eitrefering - n in sites indering 7, 1, 7-4, 14, 1, 22, n, 37, 56, n, 79, 106	舟村 : 詩のおんと
1, 2, 7, 16, 29, 46, 67, 92	· · · · ·
L. Euleri Op. posthuma. T. I.	21

L. EULERI OPERA POSTHUMA.

 $2(\alpha^2 + \beta^2) \pm \beta = 0, 1, 3, 6, 10, 15, 21, 38, 36, 45, 55, 66, 78, 91, 105$ 2, 3, 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, 80, 93, 107,
8, 9, 11, 14, 18, 23, 29, 36, 44, 53, 63, 74, 86, 99
18, 19, 21, 24, 28, 33, 39, 46, 54, 63, 73, 84, 96, 109
32, 33, 35, 38, 42, 47, 53, 60, 68, 77, 87, 98 ...
50, 51, 53, 56, 60, 65, 71, 78, 86, 95 ...
71, 72, 74, 77, 81, 86, 92, 99 ...

Arithmetica

98, 99

Hic omnes numeri non occurrunt, sed excluduntur 4, 7, 13, 16, 20, 22, 25, 26, 27, etc. at vero ex his on nibus 8n - 1 non fit primus.

Si igitur A denotet numerum impariter parem 4n+2 et B numerum pariter parem sive 4n, et C numerum imparem 2n+1, tum haec duo habentur theoremata:

I. Per numerum primum $A^2 \rightarrow C^2$ neutra formula $ACpp \pm qq$ unquam dividi potest; neque etiam summ duorum biquadratorum, unde sequitur, si singula quadrata per $A^2 \rightarrow C^2$ dividantur, tum in residuis neque +AC, neque -AC occurrere, sed certo esse non-residua.

II. Sin autem divisor primus fuerit $B^2 \rightarrow C^2$, tum semper datur formula $BCpp \pm qq$ per eum divisibilis, and propterea etiam summa duorum biquadratorum, atque in residuis quadratorum, per eundem numerum primum $B^2 \rightarrow C^2$ divisorum, tam +BC, quam -BC reperientur.

PROBLEMA. Invenire omnes divisores primos formulae $fx^4 \rightarrow -gy^4$.

Cum omnes constent divisores formulae faa + -gbb, qui sive in formula $f\alpha \alpha + -g\beta\beta$, sive in hac $\alpha\alpha + fg\beta\beta$ continentur, sit quilibet eorum = d, per quem formula faa + -gbb sit divisibilis; tum sumto $X = ma \pm ad$ $Y = mb \pm \beta d$, ut formula $fX^2 + -gY^2$ etiam per d fiat divisibilis, jam reddatur primo X quadratum, quod fit m = app; tum vero erit $Y = abpp \pm \beta d$, quod etiam quadratum reddi debet, quod sit $\pm qq$, et nunc opoile ut $abpp \pm qq$ divisibile fiat per d, eritque $Y = \pm qq$ et X = aapp, quare sumto x = ap et y = q fiet $fx^4 + gy^4$ per d divisibile. Huc ergo redit quaestio: quibus casibus formula $abpp \pm qq$ dividi queat per memoratum divisorem qui est vel $f\alpha\alpha + g\beta\beta$, vel $\alpha\alpha + fg\beta\beta$.

EXEMPLUM 1. Sif f=1 et g=2, ideoque $a=\alpha\alpha+2\beta\beta$, qui numeri sunt vel 8n-1, vel 8n-1, vel 8n-1, au valores percurramus. Sit

I. d=3, per quem formula aa - 2bb divisibilis fit; si a=1 et b=1, unde quaeritur an formula $pp \pm m$ divisibilis fieri queat per 3, quod cum eveniat, etiam 3 erit divisor formulae $x^4 - 2y^4$.

II. Sit d=11, erit a=3 et b=1, hinc nostra formula $3pp \pm qq$ divisibilis per 11, at ipsius $3pp \pm qq$ divisibilis.

III. Sit d=17, a=3, b=2, ergo formula nostra per 17 divisibilis erit $6pp \pm qq$, at prior $6pp \pm qq$. est divisibilis, neque etiam posterior, unde sequitur nullam formam $x^4 + 2y^4$ dividi posse per 17.

IV. Sit d=19, erit a=1 et b=3 et formula per 19 divisibilis erit $3pp \pm qq$, id quod fieri potest ponende ex. causa p=1 et q=4, hinc x=1 et y=4, atque formula x^4+2y^4 erit divisibilis per 19.

V. Sit d = 41, erit a = 3 et b = 4, et hacc formula nostra per 41 divisibilis reddenda fit $12pp \pm qq + 5$ hacc $3pp \pm qq$, * at 41 in nulla harum formularum $12n \pm 1$, 12n + 7 continetur. Ergo non datur $x^4 + 2y^4$ p 41 divisibilis.

VI. Sit d=43, erit a=5 et b=3, hinc formula per 43 divisibilis $15pp \pm qq$, sive etiam $5pp \pm 3qq$, id and succedit, cum sit $43 = 3 \cdot 4^2 - 5 \cdot 1^2$, ergo datur forma $x^4 + 2y^4$ per 43 divisibilis. Si x = ap = 20, y = 1, sive x = 4, y = 1.

162

sive

Fraqmenta ex Adversariis depromta.

an l'an l'a

d = 59, we it a = 3 et b = 5, hinc formula $15pp \pm qq$, sive $5pp \pm 3qq$, which manifesto $15.2^2 - 1$, ergo x = 6, y = 1, et formula $x^4 + 2y^4$ per 59 divisibilis. **GOROLLARIUM 1.** Videtur ergo, quoties fuerit d = 8n + 3, tum fore divisorem formae $x^4 + 2y^4$, nec non et hujus abpp = qq, at vero tum fiunt ambo numeri a et b impares; quoties ergo aa + 2bb fuerit numerus mimus, semper datur formula ab pp ± qq per eum divisibilis, sive inter residua quadratorum reperietur vel ab, vel — ab. The Contraction 2. Contra autem non omnes numeri 8n-1 excluduntur, quia numerus 113 = 3⁴-1-2.2⁴. VIII. Sit d = 67, a = 7, b = 3, formula $21pp \pm qq$, vel $7pp \pm 3qq$, p = 5, q = 6, vel x = 35, y = 18. EXEMPLUM 2. Sumatur f = 1 et g = 3, ut quaerantur divisores formulae $x^4 + 3y^4$ et divisor d erit 3bb, erit ergo vel formae 12n + 1, vel 12n + 7. 1. Sit d=7, erit a=2 et b=1, et formula $\frac{2pp\pm qq}{7}$, quod succedit quia $7=2\cdot 2^2-1$, unde p=2, x = 1, x = 4, y = 1.TI Sit d = 13, crit a = 1 et b = 2 et formula $\frac{2pp \pm qq}{43}$, quae est impossibilis. III. Sit d = 19, erit a = 4 et b = 1 et formula $\frac{4pp \pm qq}{19}$, quae succedit: p = 9, q = 1, x = 36 et y = 1. V_{1}^{11} Sit d = 31, erit a = 2 et b = 3 et formula $\frac{6pp \pm qq}{34}$, vel $\frac{3pp \pm 2qq}{31}$, x = 18, y = 5. VI. Sit d = 43, erit a = 4 et b = 3 et formula $\frac{12pp \pm qq}{43}$, vel $\frac{3pp \pm qq}{43}$, x = 12, y = 8, x = 3, y = 2. Hic igitur maxime est mirandum, quod solus numerus 13 hic sit exclusus.

PROBLEMA SUPERIUS de divisoribus fx^4 -t- gy^4 ita concinnius resolvitur:

Sit d divisor hujus formulae, qui necessario erit divisor talis formulae $fa^2 + gb^2$. Cum igitur hae duae formulae faa - gbb et $fx^4 - gy^4$ habere debeant communem divisorem d, multiplicetur prior per x^4 et posterior per ac_1 horumque productorum differentia, quae est $gbbx^4 - gaay^4 = g(bx^2 - ay^2)(bx^2 + ay^2)$ etiam nunc erit divisibilis per d; unde si d sit numerus primus, per quem neque f, neque g divisibilis esse potest, ob

$$bbx^4 - aay^4 = (bx^2 - ay^2) (bx^2 - ay^2),$$

necesse est, ut horum factorum alter $bx^2 \pm ay^2$ sit divisibilis per d. Quare proposito numero primo d, qui dividat formulam faa + gbb, quoties assignari poterit formula $bxx \pm ayy$ per d divisibilis, tunc etiam formula $dx^2 \pm gy^4$ per eundem numerum d divisibilis erit.

EDROLL'ARIUM. Si datur formula $bxx \pm ayy$ per *d* divisibilis, etiam haec formula $zz \pm abyy$ divisibilis erit **SUM10** z = bx; hoc autem eveniet, si inter residua quadratorum per *d* divisorum, occurrat numerus $\pm ab$. **THEOREMA.** Quoties divisor primus *d* fuerit formae 4n - 1, isque dividat formulam faa-gbb, tum semper dabitur formula $fx^4 + gy^4$ per *d* divisibilis.

DEMONSTRATIO. Cum divisor d sit formae 4n - 1, sive 4n - 3, si quadrata singula per eum dividantur, depression commes plane numeri occurrent, sive signo plus, sive minus affecti, ergo etiam occurret numerus depression commes plane numeri occurrent, sive signo plus, sive minus affecti, ergo etiam occurret numerus $d = \frac{1}{2} d = \frac$

COROLLARIUM. At si *d* fuerit formae 4n - 1, quia in residuis guadratorum non omnes numeri occurrunt, red semissis adeo penitus excludatur, sive positive, sive negative capiantur, ulique fieri potest, ut $\pm ab$ inter cappa occurrat et tum nulla dabitur formula $fx^4 - gy^4$ per *d* divisibilis. Observatum autem est (nondum vero demonstratum) omnes divisores formulae $axx \pm byy$ contineri in tali forma 4abn - kk.

÷

L: EULERI OPERA POSTHUMA.

Hic jam duo occurrunt casus considerandi, prout vel amboi numeri a et b sunt impares, vel unus par alter impar. Priori casu, semper possibile videtur, ut divisor d in hac forma contineatur; at vero si a fuen numerus par, puta 2c, forma divisorum erit. 8bcn - 1 - kk, quae reducitur ad formam 8n - 1. Quoties ergo hoc, casi divisor d formam habet 8n - 5, tum casus est impossibilis, unde sequitur haec conclusio: Quoties ergo d = 8n - 5 fuerit divisor formulae faa - 1-ghb, insuperque alteruter numerorum a et b par, tum mile

dabitur formula fx⁴ +-gy⁴ per d divisibilis.

THEOREMA. Si numerus primus formae 4n + 3 dividat formulam faa + gbb, sive aa + fgbb, tum nulla da bitur formula faa - gbb, sive aa - fgbb per d divisibilis.

DEMONSTRATIO. Si enim formula aa - fgbb divisibilis sit per d, tum inter residua quadratorum reperietu -fg, at fg erit non-residuum, unde etiam nulla formula aa - fgbb divisibilis erit per d.

THEOREMA. Si numerus primus formae 4n - 1 dividat formulam faa - gbb, sive aa - fgbb, tum elian semper dabitur formula faa - gbb, sive aa - fgbb divisibilis per d.

DEMONSTRATIO. Quia d dividit formulam aa - fgbb, in residuis quadratorum occurret -fg; ideoque of formam 4n - 1, ibidem quoque occurret -fg, ergo dabitur formula faa - gbb, sive aa - fgbb itidem per divisibilis.

GOROLLARIUM. Quoties ergo evenit, ut formulae faa-1-gbb divisor d=4n+1, non simul dividat formulan fx^4--gy^4 , tum quia idem divisor est quoque formulae faa-gbb, forte erit divisor formulae fx^4-gy^4 . Hoc au tem secus evenit casu f=1, g=2 et d=17. Etsi enim $17=3^2+2.2^2$ et simul $17=2.3^2-1$, tamen neutra harum formularum x^4-2y^4 et x^4-2y^4 per 17 est divisibilis. Quo hoc accurations scrutemur, consideremus residua ex divisione biquadratorum nata pro divisoribus 4n+1, quae semper tantum numero n.

Residua

Divisor

$$5 1$$

$$13^{11} 1, 3, 9$$

$$4 1, -4 4$$

$$29 \left\{ \begin{array}{c} +1, -4 \\ -4, -7, -4 \end{array} \right\}$$

$$4 1, -4, -10, -16, -18$$

Hinc ergo discimus, si divisor fuerit formae 8n+5, tum numerum residuorum esse 2n+4, ideoque imparem unde nullum utroque signo occurrit, unde, si formula $fx^4 + gy^4$ fuerit divisibilis, altera $fx^4 - gy^4$ certe non en divisibilis, quod autem vicissim non valet, quia numerus non-residuorum triplo major est, quam residuorum Pro tali ergo divisoris forma vel neutra formularum $fx^4 = gy^4$, vel unica saltem est divisibilis.

At si divisor fuerit formae 8n+1, quodvis residuum utroque signo affectum occurrit, unde si una haring formularum fuerit divisibilis, etiam altera erit divisibilis, sive vel utraque, vel neutra divisibilis erit. Hinc sequitu primo si divisor primus = 8n+5 dividat formulam faa+gbb, quo casu etiam dividet formulam fa'a' - gb'illinc autem pro biquadratis formula $axx \pm byy$ per d fuerit divisibilis, tum certe formula $a'x^2 \pm b'y^2$ non et divisibilis. Deinde si fuerit d = 8n + 1 et dividat tam formulam faa+gbb quam fa'a' - gb'b', tum si formula $axx \pm byy$ fuerit divisibilis, certe etiam altera $a'xx \pm b'yy$ erit divisibilis, et si illa non erit, etiam haec non et A. m. T. I. p. 218-223

and the second

and the start

18. 2個地

erad in the

angitaini j.

11. Company one employment and the states

.

la ban An

(N. Fuss I.)

and the second
PROBLEMA. Invenire omnes summas binorum biquadratorum $x^4 + y^4$, quae sint divisibiles per datum nu-
merum primum formae $8m + 1 = \Delta$.
Solutio. Cum haec formula $x'' + y''$ alios divisores non admittat nisi formae $2in + 1$, sequitur formulam
$x^{i} + y^{4}$ alios divisores habere non posse nisi formãe $8i + 1$. Tales autem numeri sunt
17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353, 401, etc.
qui numeri cum omnes sint summae duorum quadratorum, sit $\Delta = aa + bb$. Deinde cum alter numerorum x et
y pro lubitu accipi queat, sumatur $x = a$, et pro y inveniendo quaeratur numerus quadratus formae $i\Delta \pm ab$,
and sit pp atque sumi poterit $y = p$, vel in genere $y = \alpha \Delta \pm p$. Cum enim sit $pp = i\Delta \pm ab$, neglecto multiplo
ipsius Δ , quippe quod semper adjici potest, erit $y^4 = p^4 = aabb$, hinc ergo erit $x^4 + y^4 = aa(aa + bb) = aa\Delta$,
ideoque $x^4 y^4$ divisorem habebit Δ . Idem valor $y = p$ valet quoque pro $x = b$; tum enim erit
$x^4 - y^4 = bb (aa - bb) = bb\Delta.$
Praeter p autem dabitur alius valor q , ut sit $p: q = a:b$, ideoque $q = \frac{bp}{a}$, sive $q = \frac{bp + i\Delta}{a}$; undervalor ipsius q
semper erit integer, Sumto enim
$x = a$ et $y = q = \frac{bp}{a}$, erit $x^4 + y^4 = a^4 + \frac{b^4p^4}{a^4}$ et ob $p^4 = aabb$, erit $x^4 + y^4 = \frac{a^6 + b^6}{aa}$
At vero $a^6 + b^6$ semper habet factorem $aa + bb = 4$. Eodem modo patet, sumto $x = b$ et $y = q$, etiam $x^4 + y^4$
factorem Δ esse habiturum. Sumto igitur sive a sive b pro x, tum pro y sumi poterit sive p sive q; unde patet,
si pro x capiatur vel na vel nb, tum pro y sumi debere vel np vel nq, qui valores, cum semper multiplum
ipsius A auferre liceat, omnes hos valores infra $\frac{1}{2}A$ deprimere licebit. Praeterea vero ad singulos hos valores
quaevis-multipla ipsius Λ addi possunt. Hoc modo pro quovis divisore Λ tabula construi poterit duabus constans
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus.
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus.
columnis, quarum prior binos, valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. I. Sit $\Delta = 17 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. $\Delta = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest $\Delta = 0$ et $p = 2$ et ob $1:4 = p:q$ erit $q = 8$. Hinc
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. 1. Sit $A = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest 2 = 0 ét $p = 2$ et ob $1:4 = p:q$ erit $q = 8$. Hinc (lielle state
columnis, quarum prior binos valores ipsins x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. $d = 1$ Sit $\Delta = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest d = 0 et $p = 2$ et ob $1:4 = p:q$ erit $q = 8$. Hinc distinguister $x = 1$ et $y = 1$ et $y = 1$ et $p = 4$ erit $q = 8$. Hinc distinguister $x = 1$ et $y = 1$ erit $q = 8$. Hinc distinguister $x = 1$ et $y = 1$ erit $q = 8$. Hinc distinguister $x = 1$ et $y = 1$ erit $q = 8$. Hinc distinguister $x = 1$ erit $q = 8$. Hinc distinguister $x = 1$ et $y = 1$ erit $q = 8$. Hinc distinguister $y = 1$ erit $q = 1$ erit $q = 8$. Hinc distinguister $y = 1$ erit $q = 1$ erit
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. 1. Sit $\Delta = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi poiest b = 0 ét $p = 2$ et ob $1:4 = p:q$ erit $q = 8$. Hinc disite the state of $1:4 = p:q$ erit $q = 8$. Hinc 1, 4 = 2, 8 is state where 1 is the state of $1:4 = p:q$ erit $q = 8$. Hinc 2, 8 = 4, 1 exemples a state of $1:4 = p:q$ erit $q = 1$ et $1:4 = p:q$ erit $q =$
columnis, quarum prior binos valores ipsins x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. 1. Sit $\Delta = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest d = 0 ét $p = 2$ et ob $1:4 = p:q$ erit $q = 8$. Hinc disita sumi $1, 4 = 2, 8$ 2, 8 = 4, 1 sumi sumi sumi $2, 8 = 4$. A sumi sumi sumi $2, 8 = 4$. The sumi sumi sumi sumi sumi sumi sumi sumi
columnis, quarum prior binos valores ipsins x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. I. Sit $A = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest b = 0 ét $p = 2$ et ob $1:4 = p:q$ erit $q = 8$. Hinc usite $\frac{x}{1, 4} = \frac{2}{2, 8}$ $\frac{2}{3, 5} = \frac{4}{6, 7}$ while quia x et y sunt permutabiles, secundi valores, utpote in primis jam contenti, omitti possunt, ita ut tabula
columnis, quarum prior binos valores ipsins x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. IL Sit $\Delta = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest b = 0 ét $p = 2$ et ob $1:4 = p:q$ erit $q = 8$. Hinc using x is $1, 4 = 2, 8$ 2, 8 = 4, 1 2, 8 = 4, 1 3, 5 = 6, 7 ubi, quia x et y sunt permutabiles, secundi valores, utpote in primis jam contenti, omitti possunt, ita ut tabula dues tantum casus involvit, scilicet pro x , 1, 4 et 3, 5, et pro y , 2, 8 et 6, 7. Ita v. gr. sumto $x = 5$,
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. We have $A = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest b = 0 et $p = 2$ et ob $1:4 = p:q$ erit $q = 8$. Hinc disite $x = 1$ et $y = 1$ erit $q = 8$. Hinc 2, 8 4, 1 erits $4, 1$ erit
columnis, quarum prior binos valores ipsins x, altera vero binos ipsius y exhibebit, id quod exemplis illustremus. $\exists z = 1$ Sit $\Delta = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest $\exists z = 0$ et $p = 2$ et ob $4:4 = p:q$ erit $q = 8$. Hinc divide $x = 1$ is $y = 12$. Alterative $y = 12$, y
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. $\exists L$ Sit $\Delta = 47 = 4^2 + 1^2$, erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest $\exists m = 0$ et $p = 2$ et ob $4:4 = p:q$ erit $q = 8$. Hinc divide x is y in y eritering x is y in y in y is y in y is y in y is y in y is y
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. We I. Sit $\Delta = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest b = 0 et $p = 2$ et ob $4:4 = p:q$ erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction $q = 1$,
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. We I. Sit $\Delta = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest b = 0 et $p = 2$ et ob $4:4 = p:q$ erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction $q = 1$,
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. We I. Sit $\Delta = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi potest b = 0 et $p = 2$ et ob $4:4 = p:q$ erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction x is a static erit $q = 8$. Hinc the interaction $q = 1$,
equannis, quarum prior binos valores ipsius x, altera vero binos ipsius y exhibebit, id quod exemplis illustremus. di L. Sit $\Delta = 47 = 4^2 + 1^2$; erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi polest $i = 0$ et $p = 2$ et ob $4 \cdot 4 = p \cdot q$ erit $q = 8$. Hinc distance $\frac{x}{1, 4} = \frac{2}{2, 8}$ $\frac{2}{8}$ $\frac{3}{5} = \frac{5}{6}, 7$ while quia x et y sunt permutabiles, secundi valores, utpote in primis jam contenti, omitti possunt, ita ut tabula dues tantum casus involvit, sellicet pro x, 1, 4 et 3, 5, et pro y, 2, 8 et 6, 7. Ita v. gr. sumto $x = 5$, sumi poterit $y = 6$; quia igitur $5^4 = 625$ et $6^4 = 1296$, erit $x^4 + y^4 = 1921 = 17.113$. IL Sit $\Delta = 41 = 4^2 + 5^2$, eritque $a = 4$ et $b = 5$, ideoque $pp = 41n \pm 20$, ideoque $n = 4$ et $p = 12$. Nam $4 \cdot 5 = 12 \cdot q$, ergo $q = 15$. Hinc pro divisore 41 nostra tabula erit: $\frac{x}{1, 9} = \frac{y}{3, 14}$ $\frac{y}{1, 9} = \frac{3, 14}{6, 13}$ $\frac{1}{12, 15}$
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. We have $A = 47 = 4^2 + 1^2$, erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi poiest k = 0 et $p = 2$ et ob $1:4 = p:q$ erit $q = 8$. Hinc the first and $\frac{x}{1, 4} = \frac{2}{2, 8}$ $\frac{2}{3, 5} = \frac{5}{6, 7}$ ubi, quia x et y sunt permutabiles, secundi valores, utpote in primis jam contenti, omitti possunt, ita ut tabula dues tantum casus involvit, sellicet pro x , 1 , k et 3 , 5 , et pro y , 2 , 8 et 6 , 7 . Ita v . gr. sumto $x = 5$, sumi poterit $y = 6$; quia igitur $5^4 = 625$ et $6^4 = 1296$, erit $x^4 + y^4 = 1921 = 17.113$. H. Sit $A = 41 = 4^2 + 5^2$, eritque $a = 4$ et $b = 5$, ideoque $pp = 44n \pm 20$, ideoque $n = 4$ et $p = 12$. Sam $k: 5 = 12:q$, ergo $q = 15$. Hinc pro divisore 41 nostra tabula erit: $\frac{x}{1, 9} = \frac{y}{2, 18} = \frac{6}{6, 13} = \frac{12}{12, 15} = \frac{12}$
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. We have $A = 47 = 4^2 + 1^2$, erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi poiest k = 0 et $p = 2$ et ob $1:4 = p:q$ erit $q = 8$. Hinc the first and $\frac{x}{1, 4} = \frac{2}{2, 8}$ $\frac{2}{3, 5} = \frac{5}{6, 7}$ ubi, quia x et y sunt permutabiles, secundi valores, utpote in primis jam contenti, omitti possunt, ita ut tabula dues tantum casus involvit, sellicet pro x , 1 , k et 3 , 5 , et pro y , 2 , 8 et 6 , 7 . Ita v . gr. sumto $x = 5$, sumi poterit $y = 6$; quia igitur $5^4 = 625$ et $6^4 = 1296$, erit $x^4 + y^4 = 1921 = 17.113$. H. Sit $A = 41 = 4^2 + 5^2$, eritque $a = 4$ et $b = 5$, ideoque $pp = 44n \pm 20$, ideoque $n = 4$ et $p = 12$. Sam $k: 5 = 12:q$, ergo $q = 15$. Hinc pro divisore 41 nostra tabula erit: $\frac{x}{1, 9} = \frac{y}{2, 18} = \frac{6}{6, 13} = \frac{12}{12, 15} = \frac{12}$
columnis, quarum prior binos valores ipsius x, altera vero binos ipsius y exhibebit, id quod exemplis illustremus. We L. Sit $\Delta = 47 = 4^2 + 1^2$, erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi polest d = 0 et $p = 2$ et ob $1:4 = p:q$ erit $q = 8$. Hinc distant $\frac{x}{1; 4} = 2, 8^{1}$ $\frac{2}{1; 4} = 3, 5 = 6, 7$ $\frac{2}{1; 5} = 12: q$, ergo $q = 15$. Hinc pro divisore 41 nostra tabula erit: $\frac{x}{1; 9} = 3, 14$ $\frac{2}{1; 9} = 3, 14$ $\frac{3}{16}, 20^{1}$ $\frac{3}{1; 14}, 17$ $\frac{1}{1; 15}$ $\frac{3}{16}, 20^{1}$ $\frac{1}{1; 15}$ $\frac{1}{1; 19} = 36, 20^{1}$ $\frac{1}{1; 19} = 36, 20^{1}$ $\frac{1}{1; 17}$
columnis, quarum prior binos valores ipsius x , altera vero binos ipsius y exhibebit, id quod exemplis illustremus. at L. Sit $\Delta = 47 = 4^2 + 4^2$, erit $a = 1$ et $b = 4$. Nunc igitur erit $pp = 47n \pm 4$, unde statim sumi poiest d = 0 et $p = 2$ et ob $1:4 = p:q$ erit $q = 8$. Hinc distance x is a prior in $q = 8$. Hinc distance x is a prior in $q = 8$. Hinc $\frac{x}{1, 4}$ is $\frac{2}{2, 8}$ $\frac{3}{5}$ is $\frac{5}{6, 7}$ $\frac{2}{8}$ is $\frac{1}{2, 8}$ is $\frac{1}{2, 8}$ $\frac{2}{8}$ is $\frac{1}{2, 8}$ is $\frac{1}{2, 8}$ $\frac{2}{8}$ is $\frac{1}{2, 8}$ is $\frac{1}{2, 8}$ is $\frac{1}{2, 8}$ $\frac{1}{2, 8}$ is $\frac{1}{2, 9}$

	ili modo tal			, 1									05		
	Δ=	= 73			· · · · · · · · · · · · · · · · · · ·	4=	= 89		њ. :		•••••	⊿ ≃	= 97		• • • • • • • • • • • • • • • • • • •
.0	x	3	<u> </u>			eti	. ₁₁ 3	l <u>-</u> -		1 - A	2	x.		y :	11
	1, 27	10,	22		1,	34	12,	37	•		1,	22	- 33,	47	ti Eği
	5, 11	23,	36, .	a lan in	2,	. 21	15,	24	•		2,	44	3,		(a,b)
	2, 19	20,		यो देख समितिहर			22,	36	1.4		4,	9	6,	35	(to two)
	3, 8	· · · ·	7		4,	42	30,	41	• •		-	13	29,	41	י בי ן
	4, 35	. ·	15	• '•	5,		7,	29			7,	40	37,	38	
	6, 16	13,		5 i i		2 6	- 17,	44		· . •		18			1900
	9, 24	17,		ı	9,		19,			÷		26			
	.12, 32		28		10,		14,					48	25,		(i,
	18, 25	34,	31	•	11,		38,			. ,	-	17	21,		an 12
	-			•	20,	,	27,			· ·		36	24,		
					25,		33,					30	20,		
	•				taka 11	$M = \{$	We etc.				28,	34	42,	46	

Sit $\Delta = 89$ sum to x = 5 et y = 7, crit $x^4 + y^4 = 3026 = 89.34$.

Cum hae tabulae facillime ex positione litterarum a, b, et p, q construantur, istam positionem pro singulis divisoribus Δ hie apponamus:

Δ	<i>a</i> ,	b	<i>p</i> ,	q	4	` <i>a</i> ,	Ъ	<i>p</i> ,	q	Δ	<i>a</i> ,	Ь	p,	q	Δ	<i>a</i> ,	b	p .,	q
17	1,	. 4	2,	8	193	7,	12	63,	85	353	8,	17	131,	146	569	, 13,	2Ò	150, 1	187
41	4,	5	12,	15	233	8,	13	77,	96	401	1,	20	45,	98	577	1,	24	152, 1	186
73	3,	8	7,	30	241	4,	15	32,		409	3,	20	39,	198	593	8,	23		[71]雪
89	5,	8	7,	29	257	1,	16	4,	64	433	12,	17	44,	82	601	5,	24	214, 2	95
97	4,	9 °	6,	35	281	5,	16	° 19,	117	449	7,	20	44,	` 1 '95 [`]	^{lat} 617	16,	19	173, 2	4
113	7,	8	13,	31	313	12,	··4'3 🕻	-16;	65	457	···4,·	21	a 86 ,	223	641	4	25	10,::2	258
137	4,	11	27,	40	: 337:	.,9,	. 16,	12,	91		11,	: 20 ,	48,	182	673	12,	23	95, 1	26
								•								•			お調

Hic igitur praecipuum negotium in inventione quadrati $pp = n\Delta \pm ab$ consistit, quod-autem-sequenti modo-haud difficulter praestabitur. Cum enim semper dentur numeri p et q, minores quam $\frac{1}{2}\Delta$, eorum complementa etiam erunt $<\Delta$, semper ergo dantur quatuor tales numeri minores quam Δ , quorum duo erunt pares et duo impares atque cognito uno, reliqui tres facile inveniuntur.

Quaeramus igitur numerum imparem pro p et cum sit $pp = n\Delta \pm ab$, tum vero $pp < \Delta\Delta$, singulos numeros n tentando non ultra $n = \Delta$ progredi opus est. Deinde, quia $\Delta = aa + bb = 8m + 1$, numerorum a et b alter erit pariter par, alter vero impar, unde productum ab habebit vel formam 8i + 4, vel 8i. Pro priore casu, quo ab = 8i + b, quia Δ est 8a + 1, quadrata autem imparia formam habent 8i + 1, ut talis forma oriatur, sumi défiei n = 5, vel n = 8a + 5, sieque casuum examinandorum numerus octies erit minor. Pro altero casu, quo ab = 8m numeri pro n sumendi erunt 1, 9, 17...8i + 1. Inter hos autem numeri etiam statim excludi possunt ii, gui desinunt in 3 vel 7, tum etiam ii, qui sunt formae 3i - 1. Praeterea vero etiam ipsam formam $pp = n\Delta \pm an$ in alias similes transformare licet. Si enim fuerit $ab + \alpha\Delta = ffA$, erit $pp = ff(n\Delta \pm A)$; tum vero si fuerit $\alpha\Delta + A = ggB$, erit etiam $pp = ffgg(n\Delta \pm B)$ et ita porro. Inter quas plurimas formas plerumque casus sponte se produnt, quibus quadrata emergunt. Ex his autem egregia theoremata deduci possunt:

I. Si fuerit $\Delta = aa + bb = 8m + 1$, haec formula $n\Delta \pm ab$ semper quadratum reddi potest.

II. Si fuerit A = aa + bb = 8m + 5, tum ista formula $nA \pm ab$ nunquam quadratum fieri potest. Ita si A = 5, ob a = 2 et b = 1, haec forma $5n \pm 2$ nunquam esse potest quadratum, quod per se constant

Fragmenta ex Adversariis depromta.

But solution Definde sum to a=2, b=3 et A=13, have forma $13n\pm6$ nunquam quadratum esse potest. Item b=3, b=5, have forma $29m \pm 10$ nunquam fit quadratum.

ALIA Solutio problematis praecedentis. Sit $8m - 1 = aa - bb = \Delta$ esseque oportet

 $x^4 + y^4 = (aa + bb) (pp + qq).$

tent :

Jam sit proxime $\frac{a}{b} = \frac{a}{\beta}$, its ut sit $a\beta - b\alpha = \pm 1$. Sit nunc x = c et sumatur $p = bf\Delta + \beta cc$ et $q = af\Delta + \alpha cc$, et cum sit xx = ap - bq et yy = aq + bp, erit $x^4 + y^4 = (aa + bb)(pp + qq)$, erit itaque $xx = (a\beta - ba)cc = cc$ at $yy = (aa + bb)f\Delta + (a\alpha + b\beta)cc$, quod ergo esse debet quadratum. Sit nunc $cc = n\Delta + d$, fiet $yy = i\Delta \pm (a\alpha + b\beta)d$. EXEMPLUM 1. Sit $aa + bb = 41 = \Delta$, erit a = 5 et b = 4, hinc $\frac{5}{4} = \frac{a}{\beta}$, proxime hinc $\alpha = 1$ et $\beta = 1$. Sumatur porro c = 1, eritque d = 1, ergo $yy = 41i \pm 9 = \Box$, unde sumto i = 0, erit y = 3 et x = 1, eritque $x^4 + y^4 = 82 = 2.41$.

EXEMPLUM 2. Sit $\Delta = 601$, erit a = 24 et b = 5, tum vero a = 5 et $\beta = 1$. Sumto ergo x = 1, erit a = 1 et $yy = 601i \pm 125$, hinc sumto i = 6, erit y = 59.

Jam x pro lubitu sumi potest, verbi gr. x = c, erit $y = 59c \pm 601i$, unde omnes valores redigi possunt infra 300. A. m. T. III. p. 171-174.

12. De divisoribus primis formae $a^4 + 2b^4$.

Primo patet hanc formam alios-divisores habere non posse, nisi qui dividant formam $a^2 - 2b^2$, qui omnes continentur vel in hac forma 8n + 1, vel in hac 8n + 3. Ac primo quidem omnes numeri primi hujus formae 8n + 3 possunt esse divisores cujuspiam numeri formae $a^4 - 2b^4$. Longe secus autem res se habet de altera forma 8n + 1. Non enim omnes numeri primi in hac forma contenti divisores esse possunt formae $a^4 - 2b^4$, sed tantum sequentes: 73, 89, 113, 233, 257, 281, 337, 353, 577, etc. Hinc ergo excluduntur hi numeri ejusdem formae: 17, 41, 97, 137, 193, 241, 313, 401, 409, 433, 449, 457, 569, etc., neque tamen ulla ratio patet, qua has duas species numerorum formae 8n - 1 a se invicem distinguere liceat.

Ad divisores formae $a^4 - 2b^4$ supra allatos et in formula 8n - 1 contentos insuper accedunt 601 et 617. Est enim 601 divisor ipsius $14^4 - 2.5^4$ et 617 divisor ipsius $16^4 - 2.7^4$.

A. m. T. III, p. 181. 182.

13.

PROBLEMA. Invenire exponentem c, ut formula $a^e - b^e$ per datum numerum Δ fiat divisibilis, si quidem numeri a et b sint primi ad Δ .

Solutio. Sint p, q, r, s numeri primi, et considerentur sequentes casus

si $\Delta = p$, erit e = p - 1• $\Delta = p^2$ • e = p (p - 1)• $\Delta = p^3$ • $e = p^2 (p - 1)$ • $\Delta = p^3$ • $e = p^2 (p - 1)$ • $\Delta = p^q$ • e = (p - 1)(q - 1)• $\Delta = pq$ • e = (p - 1)(q - 1)Side is a particular in $\Delta = pqr$ • e = (p - 1)(q - 1)Reading where $\Delta = p^{\lambda}q^{\mu}r^{\nu}$ • $e = p^{\lambda} - 1(p - 1)q^{\mu} - 1(q - 1)r^{\nu} - 1(r - 1)$.

COROLEXRICH 4. Hiné- si loco a scribatur a^{α} et b^{β} loco b, etiam haec formula $a^{\alpha e} - b^{\beta e}$ erit per A

CONOLLARIUM 2. Hinc si exponens e divisorem habeat n, ut sit e = dn, tum semper dari poterit formation $x^n - y^n$ per Δ divisibilis. Cum enim $a^{dn} - b^{dn}$ sit divisibilis, sumatur $x = a^d$ et $y = b^d$, vel etiam $x = a^d \pm ad$ et $y = b^d \pm \beta \Delta$, vel adhuc generalius $x = fa^d \pm \alpha \Delta$ et $y = fb^d \pm \beta \Delta$.

NB. In his formulis, ubi productum (p, -1)(q - 1)(r - 1) occurrit, sufficit ejus loco minimum commune dividuum numerorum p - 1, q - 1, r - 1, scribere.

Quoniam formula $x^n - y^n$ praeter x - y nullos habet divisores, nisi in forma $\lambda n - 1$ contentos, sic cash n = 5 formae $x^5 - y^5$, praeter x - y, divisores sunt $5\lambda + 1$ hoc est: 11, 31, 41, 61, 71, 101, 131, etc. Si ergo proponatur formula $x^5 - 1$, eaque casu x = a divisorem habeat $5\lambda - 1$, eundem divisorem habebit casibus $x = a^2$, $x = a^3$, $x = a^4$, etc., sicque ex uno casu reliqui omnes deduci possunt, cum sit

$$x = a^{\mu} \pm M(5\lambda + 1),$$

unde sequens tabula est confecta:

Div. pr. <i>p</i> .	Valores <i>x</i> generatim	-4-4
. 11	$1 - 2 + 3 + 3 + 5 + etc.$ (- 2) ^{$\mu + 11 M$}	
31	$1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow \text{etc.}$ $(-2)^{\mu} \pm 31 M$	Ţ
41	$1 - 4 + 16 + 18 + 10 + etc.$ $(-4)^{\mu} = 41 M$	
61	1. 3. 9. 27. 20. etc. $(-3)^{\mu} \pm 61 M$	
71	$1 + 5 + 25 - 17 = 14 + \text{etc.}$ $(+ 5)^{\mu} \pm 71 M$	
101	$1 - 6 + 36 - 14 - 17 + etc.$ $(-6)^{\mu} \pm 101 M$	
±46121 (131	$1 + 53 + 58 + 61 - 42 + \text{etc.}$ $(-42)^{\mu} \pm 131 M$	
(11^2) , 121	그는 그들은 것 같은 것	:
(113) 1331	$1 - 161 + 632 - 596 + 124 + \text{etc.} \qquad (-124)^{\mu} \pm 1331 M$	

minimus autem valor ipsius $x \in x$ proprietate supra allata reperitur. Ita si divisor =31, quia $a^{30}-1$ divisoren habet 31, sumatur $x = a^6$, fiet x^5-1 . Sumatur a = 2, erit $x = 64 \pm 2.31$, unde minimus =2. Ita si p = 101 quia $a^{100} - 1$ divisibile per 101, sumatur $x^5 = a^{100}$, sive $x = a^{20} \pm 101M$.

Ut formula $x^6 + y^5$ divisibilis flat per 37, numeri x et y ex sequenti schemate:

scilicet ex eadem linea horizontali sumi debent.

. H.

11	. G	1	<u> </u>		.								
AUU	$x^{*} + \eta^{*}$	divisibile	fiat	ner	61	~	at	A 2	ΩV	commonti	achamata		
				L. L.	ч ,		ię.	9.	Сд	oequenu	schemate	sumuntur	

	(1,	13,	14	(11, 21, 32	
	2,	26,	28	22, 19, 3	i an
x	4,	98-97- 9 ,	28 5	$\begin{array}{c c} \begin{array}{c} & & & & \\ & & & \\ \end{array} \end{array} = \begin{array}{c} \begin{array}{c} & & & \\ & & \\ \end{array} \end{array} = \begin{array}{c} \begin{array}{c} & & & \\ & & \\ \end{array} = \begin{array}{c} & & \end{array} \end{array} = \begin{array}{c} & & \\ \end{array} = \begin{array}{c} & & \\ \end{array} = $	
		30,		16, 25, 20	
	8 ,	18,	10		

singulis autem his numeris adjici intelligenda est $\pm 61M$. Hinc casus simplicissimus est $2^6 + 3^6$. Singuli autem hi terniones in unica forma comprehendi possunt, quae simplicissima est 4n, 5n, 9n, vel in hac 1n, 13n, 14n

PROBLEMA. Ut formula $x^{\epsilon} - 1$ divisibilis flat per divisorem idoneum A, valores ipsius x definire.

SOLUTIO. Divisor Δ necessario debet contineri in hac formula $\Delta = \frac{a^3 \pm 1}{a \pm 1}$, cujus factor quicunque dabit valorem idoneum pro Δ ; tum autem tres habebuntur valores principales pro x, qui sunt $1, \pm a, \pm aa$, quibus adjici potest $\pm M\Delta$. Ita si sumatur a=2, erit $\Delta = \frac{8\pm 1}{2\pm 1}$, ideoque vel $\Delta = 3$, vel $\Delta = 7$, et tum erit x=1, 2, 4Si a=3, erit $\Delta = \frac{27\pm 1}{3\pm 1}$, ideoque vel $\Delta = 7$, vel $\Delta = 13$, eritque x=1, 3, 9. Si a=4, erit $\Delta = \frac{4\pm 1}{4\pm 1}$

anda (d) Tai tain

titian

tale of a wheeld

Sec. and

iffereque vel $\Delta = 13$, vel $\Delta = 21 = 3.7$, tum x = 1, 4, 16. Si a = 5, erit $\Delta = \frac{125 \pm 1}{5 \pm 1}$, ideoque $\Delta = 21$, vel $\Delta = 31$, x = 1, 5, 25, etc.

PROBLEMA. Ut formula $x^{10} - 1$ divisibilis flat per Δ , valores ipsius x assignare.

SOLUTIO. Hic debet esse $\Delta = \frac{a^5 \pm 4}{a \pm 4}$, ac tum quinque habentur valores principales pro x, scilicet 1, a, aa, a^3 , a^4 , quibus adjici potest MA. Sic sumto a = 2, erit $\Delta = \frac{32 \pm 1}{2 \pm 4}$, vel $\Delta = 11$, vel $\Delta = 31$, eritque x = 1, 2, 4, 8, 16. Si a = 3, erit $\Delta = \frac{243 \pm 4}{3 \pm 4}$, ideoque vel $\Delta = 61$, vel $\Delta = 121$, hinc x = 1, 3, 9, 27, 81. Si a = 4, erit $\Delta = \frac{1024 \pm 4}{4 \pm 4}$, vel $\Delta = 205$, vel $\Delta = 341 = 11.31$ et x = 1, 4, .16, 64, 256. Si a = 5, erit $\Delta = \frac{3125 \pm 1}{5 \pm 4}$, ideoque vel $\Delta = 521$, vel $\Delta = 781 = 11.71$, x = 1, 5, 25, 125, 625, etc.

NB. Omnes divisores primi hic sunt formae 10n + 1. Dato ergo tali divisore, veluti 131, quaeri debet numerus a, ut $a^5 \pm 1$ divisionem admittat per 131, quod hoc casu non evenit, nisi sumatur vel a = 42, vel a = 53, vel a = 58, vel a = 70; tum enim habebitur x = 1, 42, 70, 58, 53.

Quando autem divisor Δ datur, in forma 10n - 1 contentus, valor litterae a hoc modo eruetur. Cum Δ debeat esse divisor formae a^5-1 , capiatur $a = b^n$, erit $a^5 = b^{5n}$, semper autem est $b^{10n} - 1$ divisibile per 10n - 1, ideoque vel $b^{5n} - 1$, vel $b^{5n} - 1$, quocirca sumi debet $a = b^n$. Ita pro casu $\Delta = 131$ est n = 13, ideoque $a = b^{13}$; sumto ergo b = 2, erit $b^{13} = 8192$, quod divisum per 131 relinquit 61, et valores ipsius x erunt 1, 61, 61², 61³, 61⁴. Est vero 61² = 3721, quod dat 53, et 61.53 dat 42, et 61.42 dat 58. Sicque x = 1, 61, 53, 42, 58. Eodem modo si proponatur $\Delta = 151$, erit n = 15 et a = 19, $a^2 = 59$, $a^3 = 64$, $a^4 = 8$.

Ut formula $x^{8} + y^{8}$ divisibilis fiat per 97, numeri x et y ex sequenti tabula desumantur

5	i.,	$\cdot t$	x		11	11		172	7	y	5
---	-----	-----------	---	--	----	----	--	-----	---	---	---

n an		1,	33,	22,	47) -		• • •	8,	27,	18,	12
		2,	31,	44,	3				16,	43,	36,	24
	·	4,	35,	· 9,	6	1	· .	$(\mathbf{x}_{i})^{1,p}$	32,	11,	25,	48
		5,	29,	13,	41	••		. 1	40,	38,	7,	37
n de Maria (m. 1997) 1997 - Maria Maria (m. 1997) 1997 - Maria Maria (m. 1997)		10,	39,	26,	15	÷. ·		۹.	17,	21,	14,	23
	1	46,	13,	42,	28		- ·		29,	19,	45,	30
ata casus simplicissimus	est	5 ⁸	7 ⁸ .		2	ì		1. A. A.				1

. Ut formula $x^{10} - 1$ dividi queat per 11³, valores ipsius x erunt

1, 124, 596, 699, 161.

Cum enim $3^5 - 1 = 2.11^2$, ponatur $z = 3 - 11^2 y$, eritque $z^5 - 1 = 2.11^2 - 5.3^4$. $11^2 y - 4$ etc. quod divisum per 11^2 dat $\frac{z^5 - 1}{41^2} = 2 + 5.3^4 y - 4$ etc. Tantum ergo y ita sumatur, ut 2 - 5.81 y divisibile sit per 11, sive 2 - 2y, vel 1 - y. Sumatur y = -10, erit z = 1207 = 124.

c) De numeris formae $x^p \pm 1$.

12.

(Lexell.)

PROBLEMA. Invenire numerum formae $2^n - 1$, qui habeat datum divisorem.

Solutio. Divisor repræsentetur per simplices potestates binarii, et quotus quaeratur sequenti modo per partes; ubintenendum est, quoniam tandem omnes minores, potestates binarii in producto excludi debent, si ex aliquot partibus quoti prodierit productum 1-1-2^a-1-etc. tum sequentem quoti partem esse debere 2^a, deinde antum notetur esse 2^a-1-2^a=2^{a+1}.

L Euleri Op posthuma. T. I.

L. EULERI OPERA ROSTHUMA.

V =	E. BULERI OPERA POSTHUMA.	Arithme
EXEMPLUM I. Sit divisor	$r = 1 + 2^7 + 2^9$, ac prima pars quoti crit 1, et operatio sequenti	mada instit
Partes	quoti Productum	mogo matifu(
. * **4 .		ېېېنې د ده کې زې او د ده ک
27 		en e
210		
211	$2^{2^{11}} + 2^{15} + 2^{20} + 2^{12} + 2^{21}$	• • • •
		19 1 T
2 ¹³	$x^{2^{18}} + x^{2^{20}} + x^{2^{22}} + x^{2^{17}} + x^{2^{28}}$	-
217	· · · · · ·	
2 ^{18.}	$2^{18} + 2^{25} + 2^{27} + 2^{27} + 2^{21}$	4
······································		
222	*2 ²² -+ *2 ²⁹ -+ *2 ³¹ -+ 2 ³²	
ergo forma est 2 ³² -i-1, cujus	divisor est $1 + 2^7 + 2^9 = 641$ et	#3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
quotus == 1	$+ 2^7 + 2^8 + 2^{10} + 2^{11} + 2^{12} + 2^{13} + 2^{17} + 2^{18} + 2^{21} + 2^{22}$	in inger werdt
EXEMPLUM II. Sit divisor	$73 = 1 + 2^3 - 2^6$	1999 1997 - 1997 1997 - 1997
Partes qu	noti Productum	(*************************************
.	1 +,23 +,26	
2^{3}	· * ²³ ++ * ²⁶ ++ * ² ⁹ ++ * ² ⁴ -+- * ²	1914) C. 4
24	*2 ⁴ + *2 ⁷ + *2 ¹⁰ + *2 ⁵ + *2 ⁸	16년 211 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111
25	$*^{2^5} + *^{2^8} + *^{2^{11}} + *^{2^6} + *^{2^9} + *^{2^{10}} + *^{2^{11}} + *^{2^{12}}$	
2 5	* ²⁶ ++ * ²⁹ ++ * ²¹² ++ * ²⁷ ++ * ²¹³	
27	* ²⁷ + * * ^{2¹⁰} + * * ^{2¹³} + * * ^{2³} + * * ^{2¹⁴}	
28	$_{*}2^{8} + _{*}2^{11} + _{*}2^{14} + _{*}2^{9} + _{*}2^{10} + _{*}2^{11} + _{*}2^{12} + _{*}2^{15}$: : :
2¹²	$*2^{12} + *2^{15} + *2^{18} + *2^{13} + *2^{16}$	۵۰۰۰۰ ۵۰۰۰۰ ۲۰۰۰۰۰۰
. 213	$_{2^{13}+2^{16}+2^{16}+2^{19}+2^{14}+2^{17}}$.5 (¥
214	$2^{14} + 2^{17} + 2^{20} + 2^{15} + 2^{18} + 2^{19} + 2^{20} + 2^{21}$	44 14
215	$*2^{15} + *2^{18} + *2^{21} + *2^{16} + *2^{22}$	
216	* ^{2¹⁶+*^{2¹⁹+*^{2²²+*^{2¹⁷+*^{2²³}}}}}	arth de Maria
217	* ²¹⁷ +* ²²⁰ +* ²²³ +* ²¹⁸ +* ²¹⁹ +* ²²⁰ +* ²²¹ +* ²²⁴	
221	* ^{2²¹} +* ^{2²⁴} +* ^{2²⁷} +* ^{2²²} +* ^{2²⁵}	
222	* ^{2²²-+*^{2²⁵+**^{2²⁸-+**^{2²³-+**^{2²⁶}}}}}	
223	* ^{2²³+*^{2²⁶+*^{2²⁹+*^{2²⁴+*^{2²⁷+*^{2²⁸+*^{2²⁹+*^{2³⁰}}}}}}}}	
224	*2 ²⁴ +*2 ²⁷ +*2 ⁸⁰ +*2 ²⁵ +**2 ³¹	EP
2 ²⁵	$*2^{25} + *2^{28} + *2^{31} + *2^{26} + *2^{32}$	
<u>2</u> ²⁶	* ²²⁶ +** ²²⁹ +** ²⁸² *+** ²²⁷ +** ²²⁸ +** ²²⁹ +** ²³⁰ +** ²³⁸	
2 ³⁰	$2^{30} + 2^{33} + 2^{36} + 2^{31} + 2^{34}$	
Plane non datur talis forma per 7		1999) 1999 1999 - 1999 1999 - 1999
EXEMPLUM III. Sit divisor		
partes quoi 1		
1 2³	$1 + _{*}^{2^{3}} + _{*}^{2^{5}}$ $*^{2^{3}} + _{*}^{2^{6}} + _{*}^{2^{8}} + _{*}^{2^{4}}$	
2* 24	$x^{-1} + x^{-1} + x^{-1} + x^{-1} + x^{-1}$	
	$x^{2^4} + x^{2^7} + x^{2^9} + x^{2^5} + x^{2^6} + x^{2^7} + x^{2^8} + x^{2^9} + 2^{10}$ per 41 et quotus erit 1 - 2 ³ - 2 ⁴ - 2 ⁵	
		· · · · / () • · · / ()

ergo forma $1 + 2^{10}$ divisibilis est per 41 et quotus erit $1 + 2^3 + 2^4 = 25$.

17.0

Fragmenta ex Adversariis depromta. 171 Same EXEMPLUM IV. Sit divisor $11 = 1 + 2^1 + 2^8$, erunt materials a productum partes quoti $1 + {}_{*}2^{1} + {}_{*}2^{3}$ ${}_{*}2^{1} + {}_{*}2^{2} + {}_{*}2^{4} + {}_{*}2^{2} + {}_{*}2^{3} + {}_{*}2^{4} + {}_{*}2^{5}$ 1 21 unde $1 \rightarrow 2^5 = 11 (1 \rightarrow 2)$. EXEMPLUM V. Sit divisor $13 = 1 + 2^2 + 2^3$, erunt partes quoti productum $1 + {}_{*}2^{2} + {}_{*}2^{3} + {}_{*}2^{3} + {}_{*}2^{4} + {}_{*}2^{5} + {}_{*}2^{3} + {}_{*}2^{4} + {}_{*}2^{5$ 1 2^2 unde $2^6 + 1 = 13 (1 + 2^2)$. EXEMPLUM VI. Sit divisor $7 = 1 + 2 + 2^2$, erunt productum partes quoti Burnson marine $1 + 2 + 2^2$ 1 <u>2</u> + <u>2</u>² + <u>2</u>³ + <u>2</u>² + <u>2</u>³ + <u>2</u>⁴ 2^1 agamioto - ave -HERE AND A 22 $2^{2} + 2^{3} + 2^{4} + 2^{3} + 2^{4} + 2^{5} = 2^{5}$ 2⁴+ 2⁵+ 2⁶+ 2⁵+ 2⁶+ 2⁷ 24 Millin of 2⁸ 2¹⁰ 2¹⁰ 2¹⁰ 2¹⁰ 2¹⁰ 2¹⁰ 2¹⁰ 2¹¹ parate more 210 bit have har or sinete Pro hoc ergo divisore non datur forma binomialis $1 + 2^n$; dantur autem trinomiales: $1 + 2 + 2^2$, $1 + 2^2 + 2^4$, $1 + 2^4 + 2^5$, $1 + 2^5 + 2^7$, $1 + 2^7 + 2^8$, $1 - 2^8 + 2^{10}$, $1 + 2^{10} + 2^{11}$ (Krafft.) **PROBLEMA.** Invenire numerum formae $2^n - 1$, qui habeat datum divisorem. Solutio. Primo notetur esse $2^{n} - 1 = 1 + 2 + 2^{2} + 2^{3} + 2^{4} + \dots + 2^{n-1}$ sieque omnes potestates ab unitate usque ad maximam occurrere debent. Si igitur, ut ante, quotus per par-📰 💱 quaeratur; in producto ex aliquot partibus orto notetur minima potestas, quae adhuc deficit, eaque ipsa erit nova pars quoti. EXEMPLUM I. Sit divisor $23 = 1 + 2 + 2^2 + 2^4$, erunt • | productum partes quoti Barn - I 1 + 2 + 2² + 2⁴ 1 23-+- *24-+- *22-+- *22-+- *22++- *26 2^{s} $2^{4} + 2^{5} + 2^{5} + 2^{5} + 2^{8} + 2^{8} + 2^{7} + 2^{8} + 2^{8} + 2^{8} + 2^{8} + 2^{8} + 2^{8} + 2^{8} + 2^{10}$ 2^4 2^6 unde erit n = 11 sicque $2^{11} - 1$ divisibile est per 23 quoto existente 1 + 2³ + 2⁴ + 2⁶ = 89. Nota. Forma numerorum perfectorum est $2^{n-1}(2^n-1)$, quoties fuerit factor posterior 2^n-1 numerus primus. EXEMPLUM II. Sit divisor, $47 = 1 + 2 + 2^2 + 2^3 + 2^5$, erunt

LEULERI OPERA POSTHUMA.

Arithmet

2.36

(1105)

Red

partes quoti	production in the instant of the second of t	er wat a free
1	$1 \rightarrow 2 \rightarrow 2^2 \rightarrow 2^3 + 2^3 + 2^3 + 2^5 + 2^$	
24	2^4 +- $_*2^5$ +- $_*2^6$ +- $_*2^7$ +- $_*2^6$ +- $_*2^6$ +- $_*2^7$ -+ $_*2^8$	
25	2^{5} + 2^{6} + 2^{7} + 2^{7} + 2^{8} + 2^{10} + 2^{9} + 2^{10} + 2^{10} + 2^{11}	
2 ⁸	$2^8 + 2^9 + 2^{10} + 2^{11} + 2^{11} + 2^{12} + 2^{12}$	1997 - 19
211	2 ¹¹ -+-,2 ¹² +,2 ¹³ +,2 ¹⁴ +,2 ¹⁵ +,2 ¹⁵ +,2 ¹³ +,2 ¹⁴ +,2 ¹⁵	s i y ji iti
212	$2^{12} + 2^{13} + 2^{14} + 2^{15} + 2^{17} + 2^{14} + 2^{15} + 2^{16} + 2^{17} + 2^{18}$	
213	$2^{13} + 2^{14} + 2^{15} + 2^{16} + 2^{18} + 2^{16} + 2^{16} + 2^{17} + 2^{19}$	
215	$2^{15} + 2^{16} + *^{2^{17}} + *^{2^{18}} + *^{2^{20}} + *^{2^{18}} + *^{2^{19}} + *^{2^{20}} + 2^{2^{11}}$	
217	$2^{17} + 2^{18} + 2^{19} + 2^{20} + 2^{22}$	

ergo n = 23 et $2^{23} - 1$ divisibile est per 47° , quoto existente

 $2^{17} + 2^{15} + 2^{13} + 2^{12} + 2^{11} + 2^{8} + 2^{5} + 2^{4} + 1 = 178481.$

(Lexell.)

Verum haec omnia multo facilius atque adeo multo generalius per sequentem methodum expediri possunt **PROBLEMA.** Invenire exponentem x, ut formula $2^x - a$ datum habeat divisorem = $p \in p$

Solutio. Quaeritur ergo potestas binarii 2^x , quae per numerum p divisa relinquat residuum = a; notetur autem pro residuo a in genere scribi posse $a + \lambda p$, loco a igitur sumatur $a \pm p$, qui numerus cum sit par ec fortasse per majorem binarii potestatem divisibilis, ponatur $a \pm p = 2^{\alpha}b$, atque potestas $2^{x-\alpha}$ dabit residuum b, cujus loco sumatur iterum $b \pm p$, quod sit $= 2^{\beta}c$, sicque potestas $2^{x-\alpha-\beta}$ residuum dabit c, sive $c \pm p$ quod sit $=2^{\gamma}d$, sicque potestas $2^{x-\alpha-\beta-\gamma}$ residuum dabit d, atque hoc modo eo usque procedatur, donce ad residuum perveniatur = 1, quod cum sit residuum potestatis 2° , evidens est ultimum exponentem

$$x - \alpha - \beta - \gamma - \delta - \text{etc. esse debere} = 0,$$

$$x = \alpha - \beta + \gamma + \delta + \text{etc.}$$

consequenter habebitur

Tota haec operatio sequenti modo commode disponetur: Pro divisore = p:

potestates	residua			
2 *	an a	$a = p = 2^a b$ and $a = b$	· ·	, પ્લક્ષીનું
$2^{\alpha} - \alpha$	b b	$b \pm p \equiv 2^{\beta}c$	ent ⁷	1.08-
$2^{\alpha-\alpha-\beta}$	с. С	$c \pm p = 2$ [?] d		124
$2^{\alpha-\alpha-\beta-\gamma}$	<i>d</i>	$d \pm p = 2^{\delta}e$		- សេរ សំរុ
	-	e Aller		and and
•	•	•		a stand
$\alpha x - \alpha - \beta - \gamma - \delta - \cdots$	• 4 •	$\alpha - \alpha + \beta + \alpha + \delta + \text{etc.}$		

EXEMPLUM I. Quaeratur formula $2^x + 1$, quae divisorem habeat 641. Pro hoc divisore

potestates	residua	sive
2^x	a = - 1	$640 = 128.5 = 2^7.5$
2^{x-7}	, i j 5 j	$-636 = -2^2.159$
2^{x-9}	- 159	$-800 = -2^{5}.25$
2^{x-14}	— 25	
2^{x-17}	-+ 77	$-564 = -2^2.141$
$2^{x - 19}$	— 141	$+500 = +2^2.125$
1919 2 ^x - 21		$-516 = -2^2.129$
2 ^{x-23}	— 129	512 - + 2 ⁹ .1
$2^{x} - 32$	1	ergo $x = 32$

Fragmenta ex Adversariis depromta.

EXEMPLUM II. Quaerere formulam $2^x + 1$, quae divisorem halicat 29. (Prochoc divisore 1.03°

manus-1

EXEMPLUM II.	Quaerere formulam 2	$2^{-1} + 1$, quae		- X ± [*] -
and many and	potestates	residua	erensista sive s engine retrain a verticita	
	2"	_ 1	- 1 29 28 - 2 ² .7. Juni 2 1996 1997 198	
	$2^{x} - 2$	7	- 1 -36 - 2 ² .9	ý séla
and the second	2^{x-4}	9	$-20 = -2^2.5$	5 A.T. 840 - 2
na na serie de la companya de la com Na serie de la companya de la company Na serie de la companya de la company	2 ² - 6		$24=2^3.3$	
	2^{x-9}	3	$32 = 2^5.1$	
	2^{n-14}	Ť Í	x = 14.	tite program (1997)
EXEMPLON III.	Quaerere formulam	2 [*] -1-1, quae o	livisorem habeat 73. Pro divisore 73	제 2011년 866 44775
	potestates	residua	sive	1 .3
	2^x	- 1	2 ³ .9	
	2^{x-s}	·9	$-64 = -2^{6}.1$	
	2^{x-9}		$72 = 2^8.9$	ni, ej el
	2^{x-12}	9	$-64 = -2^{6}.1$	en e
	-2^{x-18}	<u> </u>		•
unde apparet hanc qua	estionem esse impos	ihilem.		
81			habeat divisorem 23:	
BAERFLUM AT.	potestates	· -	sive:	
	2^x			
	2 2 ^x -3	1	$24 = rac{2^3}{10} rac{3}{2} rac{3}{2} rac{3}{2} rac{1}{2} r{1}{2} rac{1}{2} ra$	이 말한 아이 영웅에 있다.
	$2^{x}-5$	3		
	-		$-28 = -2^2.7$	
Frankiston Balanta (J. 1997) Balanta (J. 1997) Balanta (J. 1997) Balanta (J. 1997)	2^{x-7}	-7	$16 = 2^4.1$	
	2^{x-11}	1 [ergo $x = 11$.	
EXEMPLUM V. Q	uaerere formam 2 [*] -			
alenter (n. 2199) Alenter Alenter (n. 2199)	potestates	residua	sive	
	2 ^æ	3	$-16 \stackrel{\text{\tiny bind}}{=} 2^4.1$	· _ · ·
anerova Saletova Saletova Markova	2^{x-4}	-1	$-20 = -2^2.5$	
			$24=-2^3.3$ and $24=-2^3.3$	e. 4 (2)
		· · ·	10^{-1}	
	2^{x-13}	atterneyroute DL Mar- L	united the second of the second second second second	entrata in char
PROBLEMA GENER	ALIUS. Invenire exi	ponentem x, u	t formula AK^{x} — a datum habeat divisore	m = p.
			a , cui aequivalet $a \pm \lambda p \equiv R^{a}b$, unde numer	
residuum dare debet b,	sive $b \pm \lambda p \equiv R^{\beta}c$,	sicque numeru	s $AR^{x-\alpha-\beta}$ producet numerum <i>c</i> , sicque	e hoc modo
			nascitur ex AK^0 , manifestum est esse de	
te obnitry	and 1998 and	$= \alpha + \beta + \gamma$	- i-δ-i- etc. (1999)	threed to
EXEMPLUM. Quae	rere formulam 5 ^{**}	1, quae diviso:	rem habeat 17.	1. <u>1</u> . 16
potestates residua	sîve	en Maria Maria	notestates residua siv	e' "itsms ook
1. in	35	161. Partis	$5^{\alpha} - \frac{5}{5} - \frac{5}{5} - \frac{6}{5} - \frac{6}{5} - \frac{1}{5} - \frac{40}{5} = -\frac{1}{5}$	- 5.8
5 <i>x</i> -1 7	-10 = -5.2		5^{x-6} -8 -25 -	5 ²
5 ² - 2	15 = 5.3		. ¹ 5 [∞] .	
5 7 - 3 3	20 = 5.4		$5^{x} - 5$ $5^{x} - 6$ $- 8$ $- 25 =$ $5^{x} - 8$ $- 1$ $5^{x} - 1$ $- 3^{x} - 1$	16 10 - 1999 - 2
52 54	-30 = -5.6	S 18 19 19 19	The Briddine (1) and the state of the Briddine	
PROBLEMA. Inveni	re, exponentem m. m	it formula 22x	$\rightarrow 2^{x} \rightarrow 1$ datum habeat divisorem p .	on the liter.
	the second se			·

.... L. EULERF OPERA POSTHUMA.

Arithmetic

SOLUTIO. Cum ergo formula $2^{2x} + 2^{2}$ residuum habere debeat -1 isive $-1 + \lambda p$, ponamus potestar 2^x habere residuum r, atque ejus quadratum 2^{2x} residuum habebit rr, ideoque illius formae residuum e rr--r. Quaeratur ergo r, ut flat

 $rr + r = -1 + \lambda p$, sive $4rr + 4r + 1 = (2r + 1)^2 = 4\lambda p - 3$, unde $2r + 1 = \sqrt{(4\lambda p - 3)}$; λ igitur ita sumi debet, ut $4\lambda p - 3$ sit quadratum. Invento autem r quaeratur potestas 2^x residuum habene quod est problema superius. Sec. Sec.

Sit verbi gratia divisor p = 19 et quadratum esse debet 76 λ -3, quod fit si $\lambda = 3$, ergo $2r + 1 = \pm 12$ consequenter vel r = -7, vel r = -8.

I. Pro r = -+-7 2^x resid. --- 7 $-12 = -2^2.3$ 2^{x-2} 0.2 - 3 $16 = 2^4$ _ - 2<u>* - 6</u> 1 hinc x = 6

ideoque 2¹²-+2⁶-+1 divisibile (per 19.

. II. Pro r = -8 2^x resid. -8 $-2^{3}.1$ 2³⁰ - s - 1 $-20 = -2^2.5$ $2^{x}-5$ $-24 = -2^3$ 3 $\hat{\mathbf{2}}_{\mathbf{2}}^{\mathbf{2}}$ - $\mathbf{8}_{\mathbf{2}}^{\mathbf{1}}$ $\hat{\mathbf{2}}_{\mathbf{2}}^{\mathbf{2}}$ $\hat{\mathbf{2}}_{\mathbf{2}}^{\mathbf{2}}$ $\hat{\mathbf{2}}_{\mathbf{2}}^{\mathbf{2}}$ $\hat{\mathbf{2}}_{\mathbf{2}}^{\mathbf{2}}$ $\hat{\mathbf{2}}_{\mathbf{2}}^{\mathbf{2}}$ $16 = 2^4$ 2×-12 1

ideoque 224 + 212 + 1 divisibile per 19.

A. m. T. I. p. 143-149

いらご説

15. 1 / Jan 14 (1925)

 $x = 12^{-1}$

1

(J. A. Euler.)

di men tri ottatrici Cum sit $a^{2p}-1$ divisibile per 2p+1, si 2p+1 fuerit numerus primus, tum vel a^p-1 , vel a^p+1 per europeration dividi poterit. Duplicis ergo generis sunt potestates a^p , prouti vel formula $a^p - 1$, vel $a^p - 1$ fuerit divisibility per 2p-+1.

THEOREMA. Cujus generis fuerit potestas- a^p ejusdem generis quoque erunt omnes istae

 a^{2a+p} , a^{4a+p} , a^{6a+p} et in genere a^{2na+p} ,

<u>}</u> →•••

ubi a debet esse primus ad 2p - 1 et n quoque potest esse numerus negativus.

111116

: 14.

Praelerea vero etiam ejusdem generis erunt hae potestates

 a^{2a-p-1} , a^{4a-p-1} , a^{6a-p-1} et in genere $a^{2na-p-1}$ REPART TO A DESCRIPTION is contract hoc autem posterius tantum valet, si a fuerit numerus positivus; si enim sit negativus, hae posteriores potestitut ad alterum genus pertinent. Ratio hujus exceptionis manifesta est: si enim p fuerit numerus par, perindete sive capiatur +a, sive -a; sin autem p sit impar, loco a sumendo -a, ipsa potestas fit negativa. Sieque formula $(-a)^p = 1$ fuerit per 2p - 1 divisibilis, tum $(-a)^p = 1$ divisibilis erit. an in the

EXEMPLUM: Quia $2^1 + 1$ per $2 \cdot 1 + 1 = 3$ est divisibile, ubi a = 2 et p = 1, ad idem genus pertinential hae potestates $2^1, 2^5, 2^9, 2^{13}, 2^{17}, 2^{21}, \dots, 2^{4n+1}$ deinde etiam istae 2^2 , 2^6 , 2^{10} , 2^{14} , 2^{18} , 2^{22} ... 2^{4n+1-2} . Examinemus casum 2^{21} , an $2^{21} + 1$ divisibile sit per 43, sive an 2^{21} per 43 divisum relinquat -1, quod and methodi supra expositaceita fietada a come and the states of the second

Fragmenta ex Adversariis depromta.

and an entry of the second	Fragmenta ex Adv	ersariis depromta.	275
	divisor: 43	a 🖉 🗄 🔤 residua	
n an phrain Bhailtean Parailtean	2 ²¹	$-1-43 = -44 = -2^2.1$	1
ана алананананананананананананананананан	2 ²¹⁻²	<41 43 == 32 == 2⁵. 1œ∂asa	and anamalanish
	221 - 7	1. Capiatur cubus	
	23.21-21	1. At	
1	22:21		
er (* 1818) 2995 Augustus			
in the second	$2^{21} - 2^{1}$ 2^{0}	1	•
guod cum sit verum, etiam	- 1	•	,
		elinquat — 1. Calculus ita fiet	
Examinetin Jam Potest	divisor: 37	residua	,
Tang pangan Mi Ang mang mang mang mang mang mang mang ma	2 ¹⁸	$-1 + 37 = 2^2.9$	
	-	$-1-9-37=-2^{2}_{12}7_{12}$	
制作	218-4	$-7 - 37 = -2^2 \cdot 11$	大教师, 和一次推动和名称
Maria and Angeland a Angeland and Angeland and Angeland Angeland and Angeland			
	$2^{2 \cdot 18}$	- 1331 == +- 1, quod etiam e	
		ile per 5; hujus ergo generis erun	t omnes hae potestates:
		3^{26} 3^{6n-1-2} , item hae	
	[,] 3 ³ , 3 ⁹ , 3 ¹⁵ , 3 ²¹ ,	3 ²⁷ 3 ⁶ ⁿ + 3, ¹	
Examinetur 3 ²⁶ an per	53 divisa relinquat — 1:		
	divisor: 53	residua	
tiny and 10 Sections Marketing and the section of the sec	326	-+- 1 -+- 53 == 3 ^s .2	
	3 ²⁶ 3 ²³ 3 ⁴⁶ 2 ⁶ vel 3 ²⁰	+2	
	346-26 vel 320	-+- 4	
man 「 「 「 「 」 に 、 、 、 、 、 、 、 、 、 、 、 、 、			
Reserved and the second s	$\frac{3^{14}}{3^5} = \frac{1}{3^5}$	-+-16 100	t in a star way in the
		+ 128 vel 22	i toka
	3 ² and a set of the	44 vel - 9,	(the F , 1995)
guod cum sit falsum, residu	e de la companya de l	1 M. 7 M.I	the state of the s
Examinetur 3 ⁸⁸ an per		$\frac{1}{2} = \frac{1}{2} $	1.1.18
ala ang ang ang ang ang ang ang ang ang an	divisor: 67	residua	· · · · · ·
		1 134 == 3 ³ .5	• .
and a second second Second second second Second second second Second second second Second second s Second second	3,30	5	and the second second
San Ala San Angel San San San San San San San San San San San	327	25	- 1 B L
	324	125 vel -9	,
	318	-225 vel -24	
	3 8		the area
	3 ³³ vel 3 ⁰	-135 vel -1	s de l'entre la companya
auod quia est falsum, nostra			
EXEMPLUM. Sit a=6	et fieri nequit $p=1$, quia n	eque, $6^1 + 1$, neque $6^1 - 1$ per 3	
excluduntur, exponentes	•	7, 49, etc., tum etiam	
	10, 22, 34, 4		
At 6 ² 1 est per 5 divisibil	ë, sive 6² per 5 divisum dat r	esiduum +1, ergo $p=2$, et iden	n dabunt hae potestates
	•		
		· · · ·	

176 **EULERI OPERA POSTHUMA.** Arithm 1211 (6¹⁴, 6²⁶, 6³⁸, 6⁵⁰, 6⁵², etc., "tum"etiam 6⁹, ---6²¹, --6³³, 6⁴⁵, 6⁵⁷, etc. Examinemus potestatem 650 num per 101 divisa relinquat --- 1: divisor: 101 residua — 650 4 5 + 1 + 101 = 102 = 6.17 649 agegerich 👬 👘 17 - 101 = -6.14648 $-14 - 202 = -216 = -6^3$ $\{ e_{i} \}$ 645 --- 1 65 ····· 1 --- 101 ---- 6.17 · · ···· $\pi \in \mathfrak{M}(t)$ and the another the sum of the second the second se M(0)6ª Littlere . Albert Ar ---- 14 -196 + 202 = + 6Examinetur potestas 633 an per 67 divisa relinquat --- 1: divisor: 67 . . --residua

	the for the second of the second s	iyo karke mo	1 + 1 - 67 = -6.11	
$2\pi \frac{1}{2} = \left(1 \left(1 \left(1 \right)^2 \right) + M_{1}^2 \right) +$			<u> </u>	E FORTZE
	, 6 ³¹		— 13 67 — 6.9	
	627			to house (at 72)
	621	a (1.)	-+ 196 vel - 5	
	6°	the state of the s	25	
	<u>к</u> 6 ³		-+- 350 vel 15	
	6°	-	-+- 135 134 vel` -+- 1	
•				

Utra formula $a^p \pm 1$ per numerum primum 2p + 1 sit divisibilis sequens tabella ostendit:

· · ·	or arrismus sequens tanena	Jolenun:
	2p 1	2p -+- 1
pro a == 3	pro a = 5	pro a = 6
$12n \pm 1$ $3^p - 1$	$20n \pm 1$ $5^p - 1$	$24n \pm 1$ 6
$12n \pm 5$ $3^{p} - 1$	$20n = 3$ $5^{p} + 1$	$24n \pm 5$ 6 ^p -
	$20n \pm 7$ $5^{p} + 1$	$24n \pm 7$ 6 ^p +
	$20n \pm 9$ $5^p - 1$	$24n \pm 11$ 6 ⁷ +
pro a = 8	pro a == 10	pro a == 11
$32n \pm 1 8^p - 1$	$40n = 1 10^p - 1$	$44n \pm 1$ 11 ²
$32n \pm 3$ $8^{p} - 1$	$40n \pm 3 10^p - 1$	$44n \pm 3$ 11/-
$32n \pm 5 8^{p} + 1$	$40n \pm 7 10^{p} + 1$	$44n \pm 5$ $11^{p_{13}}$
$32n \pm 7 8^{p} - 1$	$40n \pm 9 10^p - 1$	$44n \pm 7$ 11 ^p - 1
$32n \pm 9 8^{p} - 1$	$40n \pm 11 10^{p} + 1$	$44n \pm 9 11^{p}$
$32n \pm 11 8^{p} + 1$	$40n \pm 13$ $10^p - 1$	44n±13 111
$32n \pm 13$ $8^{p} + 1$	$40n \pm 17$ $10^{p} + 1$	44n±15 112+
$32n \pm 15$ $8^p - 1$	$40n \pm 19 10^{p} + 1$	$44n \pm 17$ 11 ^B +
		$44n \pm 19$ $11^{p} = 1$
		44n ± 21 11 ²¹
	$2p + 1$ $pro a = 3$ $12n \pm 1 \qquad 3^{p} - 1$ $12n \pm 5 \qquad 3^{p} + 1$ $pro a = 8$ $32n \pm 1 \qquad 8^{p} - 1$ $32n \pm 3 \qquad 8^{p} + 1$ $32n \pm 5 \qquad 8^{p} + 1$ $32n \pm 7 \qquad 8^{p} - 1$ $32n \pm 9 \qquad 8^{p} - 1$ $32n \pm 11 \qquad 8^{p} + 1$ $32n \pm 13 \qquad 8^{p} + 1$	$pro a = 3$ $pro a = 5$ $12n \pm 1$ $3^{p} - 1$ $20n \pm 1$ $5^{p} - 1$ $12n \pm 5$ $3^{p} + 1$ $20n \pm 3$ $5^{p} + 1$ $12n \pm 5$ $3^{p} + 1$ $20n \pm 3$ $5^{p} - 1$ $20n \pm 7$ $5^{p} - 1$ $20n \pm 7$ $5^{p} - 1$ $20n \pm 7$ $5^{p} - 1$ $20n \pm 9$ $5^{p} - 1$ $pro a = 8$ $pro a = 10$ $32n \pm 1$ $8^{p} - 1$ $40n \pm 1$ $10^{p} - 1$ $32n \pm 3$ $8^{p} + 1$ $40n \pm 3$ $10^{p} - 1$ $32n \pm 5$ $8^{p} + 1$ $40n \pm 7$ $10^{p} + 1$ $32n \pm 7$ $8^{p} - 1$ $40n \pm 9$ $10^{p} - 1$ $32n \pm 9$ $8^{p} - 1$ $40n \pm 11$ $10^{p} + 1$ $32n \pm 11$ $8^{p} + 1$ $40n \pm 13$ $10^{p} - 1$ $32n \pm 13$ $8^{p} + 1$ $40n \pm 17$ $10^{p} + 1$

Fragmenta ex Adversariis depromta:

trikamatin	Fragmenta ex Adversariis depromta.	177
BECH LAT	1 International and 10 comments have an instance of 101 K of a set that	5 merche - 45. 11
mar provid = 12	idu di-te-prò a=13 cumuni maite un prìo a=14 fot-ut tu	= 80 m = 10 m = 458 m
$12^{p} - 1$	$52n \pm 0.466 + 13^{p} \pm 13^{q} \pm 13^{q$	60m 7:- 1815P-1
127-1-1 107 1	$32n \pm 56n \pm 56n \pm 56n \pm 13^{-1} + 1_{222} + $	$60_{2} + 11 + 15R - 1$
	$52n \pm 7 \text{ m} 13^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 14^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 16^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 16^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 16^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 16^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 16^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 16^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 9 \text{ m} 16^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 10^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 10^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 10^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 10^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 10^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 10^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 10^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 10^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 10^{p} + 1 \text{ , } \qquad \text{max} 56n \pm 10^{p} + 10^{$	60n = 12 15 ^p + 1
12^{-11}	$52n \pm 9$ $13^{p} - 1.6$ $a = 56n \pm 14$ $.14^{p} - 4$ and a	
$48n \pm 13$ $12^{p} - 1$	$52n \pm 11$ step $43^{p} \pm -1$ in $552n \pm 13$ at $64^{p} \pm -1$ in $64^{p} \pm -1$	
	$52n \pm 15$ $13n \pm 1$ $(n \pm 56n \pm 15n)$ $14n \pm 1$	
	$1 \mod 52n \pm 17$ $13n - 1 \mod 1$ $13n - 1 \mod 56n \pm 17$ $1 4 \lim_{n \to \infty} 1 \mod 1$	
1990年25日,120日 - 10日日日 1995年	$52n \pm 19$	
	$52n \pm 21$ (13 ^p + 1) $56n \pm 23$ 14 ^p + 1	ೆಗಿ ಕೆಸ್ಟಾರ್ - ಕೊತ್ತಾಗಿತ್ರಿಕೆ ಕ್ರಾಮಕರ್ಷಕರ್
	$52n \pm 23$ (13 ^p -1) (56n \pm 25 14 ^p -1)	. •
THE .g. J. T. m. A.	$52n \pm 25$ $13^{p} - 1$ $56n \pm 27$ $14^{p} + 1$	
Maria Ind	1 · ·	. p. 211—213. 215. 216.
	ny the state of the second line of the second line is	1
DE THEOREMA. Si pot	estas a^{ρ} per N divisa relinquat r, at potestas a? residuum s, ta	um formula s ^p tr r?, per
	en la denne en	
	um $q^p - r$ sit divisibilis per N, tum etiam $q^{rp} - r$ erit divisibil	
	sit divisibilis per N, etiam $a^{pq}_{\overline{u_{n}}}s^{p}$ grit divisibilis; unde sequ	
Manaka an	i $r = 1$, tum $s_{r,m}^{r}$ 1 grit divisibile.	···· ··· .
U.S. Alexandre State Sta	writ $r + \lambda N = a^{\alpha}s$, tum $a^{p-\alpha} - s$ est divisibile per N. Hic er	go est $r = a^{\alpha}s - \lambda N$ et -
$a = p - \alpha$; erit ergo	· · · · · · · · · · · · · · · · · · ·	-
	annumeritarily a source of the per N divisibile an all to	
		A. m. T. I. p. 214.
		医肺毛上法 翻著
ananni dinni is tois ni	modeling quadratorium or (English and an and an and in a second	h ann an is
	impar, ¹³ ium ¹ ²⁷ semper est numerus integer, qui quoties	
Adenia letiam letiae numer	us primus, sid quod examinetur: front T-1-al rohoup suppost	E action consideration 2.
2 ^p 1	$2^{p+2}+1$ 4.2 ^p +1 4.4 or mione act $2^{p}-2_{41}$	- unde seminare -
	erit sequens $\frac{2^{p+2}+1}{e^{2m+2}} = \frac{4\cdot 2^{p}+1}{2}$. At expriore est $2^{p} = 3y = 3y = 1$	romai os m oitst
$\overline{\mathbf{u}}$	rmetar sequens series of yet metadihter of metabut and and	fi fitte in contrast, distant
<i>p</i> 1,	3, 5, 7, (9), 11, 13, (15), $\frac{17}{12}$, $\frac{19}{1000}$	reic, non umroulizer
1 1 1 1 1 1 1 1 1 1	3, 11, 43, (171), 683, 2731, (10923), 43691, 174763,	etc.
T		
	$-g^2$, quae alios divisores non habet, nisi, in eadem forma conter	
	ne unico modo.; Si ergo hic numerus, unico modo in forma. ² r ²	
a second a s	luribus, modis, contineatur, tum, demum, crit; compositus; id, quo	
	m primum in-1 omma quadrata dividantur, inter residua am	
auhiassianon (174763 = 2)	$295_{1}^{2} + 713 = 2.294_{1}^{2} + 1891 = 2.293_{1}^{2} + 3065_{0} + (= 2.171_{2}^{2})$	- <u>+</u> ,341,5)-6123/934
	mousque instrume i plant finden. immerent inolore suiteron si	anaranodi odi azell
a inAtosinestanto calculo	demonstrari potest hunc numerum esse primum. Si enim habe	et divisorem, is primo
	quadrata hujus numeri, quae est 418, sive 2419. Secundo d	
L. Euleri Op. posthume. T.	-	23

LMEULERI OPERA POSTHUMA

Arithmetica

178

in forma=velo8n+-1, vel 8n+-3. *Fertic* divisor etiam formam habebit 19λ -+-1, ubi λ primo tesse=debet par erit ergo vel λ = 8n, vel 8n++2; vel 8n+4; vel 8n+6. Prima dat formam 8n+-1, quae congruit cum primer at λ = 8n+2; dat 8n+-39, idéoque $\lambda = 8n$ +2; excluditur; similiter $\lambda = 8n$ +4; dat 8n+-5, unde $\lambda = 8n$ -44 excluditur; at λ = 8n+6 dat 8n+3, Equiver falet. Duae tergo formae relinquantur pro λ ; 8n et 8n-44 isor 1-1. The posterior ison 2n is 2n for 2n erit 8n et 8n-44 Hi-abitem nümeric immores quam 419, omnes sunt compositi. 1 - 4 is 2n erit 1 - 4 is 2n erit 1 - 4 isom 2n erit 1 - 4 erit 1 - 4 isom 2n erit 1 -

1-6-141 825; 1029, 41, 53; 1889 1250.023 1-941 811, a159, 83, 107; 179. 42 Batt 1-6-141 78 Batt

A. m. T. J. p. 217.

L m. T. I. p. 211-213, 215, 216,

18. (J. A. Euler.)

Ut formulae $x^4 \rightarrow 1$ divisor sit 17, erit ...,x = 2, vel 8, vel 9, vel 15 Ut formulae $x^4 \rightarrow 1$ divisor sit 17, erit ...,x = 2, vel 8, vel 9, vel 15 Ut lejusdem formulae divisor sit the state of the product privite for x = 2, vel 8, vel 9, vel 17 x = 10, vel 22, vel 57, viel 37, vel 22, vel 57, viel 17 x = 10, vel 22, vel 57, viel 52, vel 177 x = 12, vel 37, vel 52, vel 52, vel 177 Informulae site of the state of

ogen live a 4 4

d) De divisorious & residuis humerorum quadratorum.

19.

A12 a. C. F. a. A

. 5

THEOREMA, cujus demonstratio desideratur.

Si pro divisore *d* inter residua quadratorum occurrati $\pm r$, tum etiam pro divisore 4nr - d, si fuerit numerita primus, sinter residua quadratorum idem quagratica esiduum $re \pm r$, tum etiam pro divisore 4nr - d, si fuerit numerita dratorum occurrit 2; ideoque quoties 8n - 7 fuerit numerus primus, (so divisore), inter, residua quadratorum reperiatur 2 necesse est. In anomali e anomali e and 4n - 7 fuerit numerus primus, (so divisore), inter, residua quadratorum Ratio in eo quaerenda videtur, quod si 8n - 7 est numerus primus, tum numerus residuorum semper est

II. Si per numerum primum 4n-1 omnia quadrata dividantur, inter residua non solümi occurret ipse and merus n, sed ettam omnes ejus divisores signo 4 affecti; ndem enim signo - affecti erunt non-residuat

Haec duo theoremata ita generalius proponi possunt: Denetante i numerum imparem quemcunque, outral si per numerum primum 4n-t-in quadrata dividantur, inter residua occurrent omnes divisores numeri undacitam signore in quamasigno - affectione site to mup ironana super such on the ring divisores numerity

The same of states

Fragmenta ex Adversariis depromta. ...

Constitution: Hine si 4n - i est numerus primus et d'aliquis divisor: numeri h sempers dari poterit **bindubzoitij** py pertillumonumerum 4n - i divisibilis. $a \le 1 - 1 - a \le constitution = 1 - a \le 1 + a \le$

Representation $M = M^{2}$ is the condition of $2\mathbf{1}$ is M = 1, M =

ocurrat datus numerus $\pm a = 1$ in in the collider of the order of the product of the order of

 $\frac{1}{1-1} = 4n \pm 1 = 4an \pm 4c^2 \pm 4c \pm 1, z = an \pm c^2 \pm c, z = z = z = 0$ $\frac{1}{1-1} = 4n \pm 1 = 4an \pm 4c^2 \pm 4c \pm 1, z = 4c \pm 1, z = an \pm c^2 \pm c, z = z = 0$ $\frac{1}{1-1} = an \pm c^2 \pm c, z = 1 = an \pm 1 = 1 = an \pm 1 = 1 = an \pm 1$

The final state of the second state of the se

The second seco

L. EULERI ORERA GROSTHUMA. www

Arithmetre

 $(1222)_{1} \text{ Sife } a = 3_{2}, \text{ ubi } r = 0; 2 \text{ et } 0 = 4_{2} \text{ largo } t_{2} \text{ similar produit } t_{2} \text{ ubias cases posterior set with transmission of the transmission of tr$

3) Sit a = 5, ubi r = 0, 2, 1 et q = 3, 4, sive = -1, -2. Pro I. n = 5p + 0, 1, 2; 4n + 1 = 20p + 1, (5), 9; formula divisibiles $x^2 \pm 5y^2$ et $5^{2n} - 1$; pro II. n = 5p - 1, -2; 4n + 1 = 20p - 3, -7; formula divisibilis $5^{2n} + 1$; pro II. n = 5p - 1, -2; 4n + 1 = 20p - 3, -7; formula divisibiles $x^2 \pm 5y^2$; $5^{2n - 1} - 1$; $(1 + 0)^{41}$ pro IV. n = 5p + 1, 2; 4n - 1 = 20p + 3, 7, formula divisibiles $x^2 + 5y^2$ et $5^{2n - 1} + 1$; $(1 + 0)^{41}$ pro IV. n = 5p + 1, 2; 4n - 1 = 20p + 3, 7, formula divisibiles $x^2 + 5y^2$ et $5^{2n - 1} + 1$; $(1 + 0)^{41}$ pro II. n = 6p + 0, 2; 4n + 1 = 24p + 1; formula divisibiles $x^2 \pm 6y^2$; et $6^{2n - 1} + 1$; $(1 + 0)^{41} + 1 + 1 = 24p + 5$, 13; -7; formula divisibiles $6^{2n} - 1$; pro III. n = 6p + 1, 3, -2, -1; 4n + 1 = 24p + 5, 13; -7; formula divisibiles $6^{2n} - 1 - 1$; pro III. n = 6p - 1, -3, -2, -1; 4n - 1 = 24p - 5, -13, -7; formula divisibiles $x^2 \pm 6y^2$ et $6^{2n} - 1 - 1$; pro IV. n = 6p - 1, -3, +2, +1; 4n - 1 = 24p - 5, -13, -7; formula divisibiles $x^2 + 6y^2$ et $6^{2n} - 1 - 1$; pro IV. n = 6p - 1, -3, +2, +1; 4n - 1 = 24p - 5, -13, -7; formula divisibiles $x^2 + 6y^2$ et $6^{2n} - 1 - 1$; Div not and united; in the interpreterm referrited q; valores entimely divisibles $x^2 + 6y^2$ et $6^{2n} - 1 - 1$; -12;

Idem inconveniens occurret," quoties n'est numerus par, id vero incongruum its diluendum videtur për divisorëm 6 dividi debeant numeri 0, 2, 6, 12, 20, etc. utrinque diviso per 2, habebuntur numeri 0, 6, 10, etc. per 3 dividendi; unde manifesto oritur residuum 1 praeter praecedentia, quod ergo ex ϕ explidebet: Ita si a = 10, primo pro r reperimus hos valores 0, 2, 6; per binarium autem dividendo insuper un dunt ad r 1, 3, ita, ut valorës ipsius r jam sint 0, 1, 2, 3, 6, ergo ipsius ϕ : contint 4, 5, 7, 8, 9, 4r + 1 = 1, (5), 9, 13, (25); $4\phi + 1 = 17$, 21, 29, 33, 37, sive 17, -19, -11, 27, 20, hic ergo etiam numerus 9 ab ϕ ad r est transferendus. If the number of the per solution of the period. The period of the period

Vera autem solutio hujus difficultatis in indole numeri a est quaerenda, qui si fuerit primus, valore all r et ϱ_1 supra assignati recte, se habent i sin autem est compositus, valores quidem pro r oriundi recte se habent sed i non, omnes, per regulam supra datam reperiuntur, sed aliunde insuper alii accedunt. Ut enim, formul $(ab)^x - 1$ divisibilis sit per numerum primum 2x + 1, id duplici modo contingere potest: priori quando a^{-1} et $b^x_{i} - 1$ divisibilis sit per numerum primum 2x + 1, id duplici modo contingere potest: priori quando a^{-1} et $b^x_{i} - 1$ divisibilis ($ab)^x - 1$, atque hos casus regula nostra suppeditat. Praeterea vero formul $(ab)^x_{i} - 1$, prodit formula divisibilis $(ab)^x - 1$, atque hos casus regula nostra suppeditat. Praeterea vero formul $(ab)^x_{i} - 1$, priori divisibilis, si istae $a^x_{i} + 1$, et $b^x_{i} + 1$ fuerint divisibiles; cum enim ex priori sequatur $(ab)^x_{i}$ divisibilis, auferendo hinc $b^x + 1$ remanet $(ab)^x - 1$ divisibilis. Hinc igitur novi valores ad τ accedunt supra, ad ϱ perperam erant relation. Totum igitur, hoc argumentum accuratius sequenti modo simulque core nius pertractatur.

Denotet 2m + 1 semper numerum primum, et supra affirmavimus, si fuerit 2m + 1 = 4ab + ii (denotant numeros impares), tum in residuis quadratorum tam +a quam -a reperiri; sin autem fuerit 2m + 1 = 4abtum tantum +a in residuis occurrere; utroque autem casu, hoc est si $2m + 1 = 4ab \pm ii$; formulam a_{1}^{m} divisibilem esse per 2m + 1. Hujus quidem demonstratio nondum perfecta habetur, sed tamen non longe abe

Fragmenta ex Adversariis depromta.

dependir, cum enim quadrata per numerum <math>2m + 1 dividi debeant, ut residua eruantur; per 2m + 1 = 4ab + iipsum quadratum ii, et residuum erit — 4ab, ideoque etiam — ab, et quia divisor est formae (4n-1-1, ab erit residuum. Superest igitur tantum, ut demonstretur, tam -1-a quam -1-b seorsim inter residua beginnere; si enim ambo essent non-residua, nihilominus productum ab foret residuum. Ad hoc dilucidandum, proponatur divisor primus $2m + 1 = 4ab + (2c + 1)^2$, its ut ab certe sit residuum, quoniam hic numerus plut The aliis modis similiter exhiberi potest. Statuamus $2m + 1 = 4p + (2q + 1)^2$, et nunc etiam p certe erit $p = ab + cc + c - qq - q_{s,c}$ ubi: q_{c} pro lubitu assumere licet, sicque plura alia residua prodibunt, inter quae si occurrat alteruter numerus a vel b, etiam ther certe erit residuum. Ut hoc uberius explicetur, notasse juvabit, inter residua primum omnia occurrere qua- β_{i} deinde si occurrant numeri α , β_{i} , γ_{i} etc., etiam producta ex binis vel pluribus occurrent. Et si occurrant α_{α} et α_{γ} , et α_{γ} The Explicit LinSit a = 2, b = 2, deeque $2m + 1 = 16 + (2c + 1)^2$ and the second of an a string party of the second secon p = 4 - 2 = 2, ergo 2 certe estresiduim. and a made homony second also and a bang aparts of the art, whereas a second a $\mathbf{SiP2}_{j} = \mathbf{SiP2}_{j} + \mathbf{1} = \mathbf{5}, \quad \mathbf{erit}^{d} p = \mathbf{4} + \mathbf{6} - qq - q = \mathbf{10} - (0, 2, \mathbf{6}, \mathbf{12}) \quad \mathbf{et} \quad \mathbf{sumto} \quad q = \mathbf{1}, \quad \mathbf{erit}^{d} p = \mathbf{8} = \mathbf{2}, \mathbf{4}, \quad \mathbf{10} = \mathbf{10} - (0, 2, \mathbf{6}, \mathbf{12}) \quad \mathbf{et} \quad \mathbf{sumto} \quad q = \mathbf{1}, \quad \mathbf{erit}^{d} p = \mathbf{10} - \mathbf{10} + \mathbf{1$ 2 residuum. Sit c = 4 sive 2m + 1 = 97, unde p = 24 - qq - q; sumatur q = 2, erit p = 18, ideoque 2 residuum. The second seco g = 6 + 12 - qq - q = 18 - qq - q; sumatur q = 0 fit p = 2.9, ergo et 2 et 3 residua. Courrent . EXEMPLUM III. Sil a = 3 et b = 3 et $2m + 1 = 36 + (2c + 1)^2$. Sil c = 0, ut fiat 2m + 1 = 37, ergo $g = \frac{1}{2} - \frac{1}{2}$ $p = 9 + 6 - gq - q = 15 - (0, 2, 6), ergo p = 15 - 12 = 3.1 \text{ or due to the state of the second o$ EXEMPLUM IV. 1. Sit ab = 2.3.5, ideoque 2m +-1 = 8.3.5 + (2c+-1)². Sumto c=5; ut sit 2m + 1 = 241, p = 2.3.5 + 30 - qq - q = 60 - (0, 2, 6, 12, 20, 30, 42, 56)erit . 460-6 dat 54=6.9, ergo 6 est residuum, ergo et 5, deinde p=60-12 dat 48=3.16, unde 3 est residuum et 2, sicque singuli factores 2, 3, 5 sunt residuare and the state of the EXEMPLUM V. Sit ab = 3.5.7 = 105, ideoque $2m + 1 = 420 + (2c + 1)^2$ et sumto c = 0, 2m + 1 = 421, p = 105 - q (q + 1) = 105 - (0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110).ande Hunc 105 - 30 = 75 = 3.25, ergo, 3 set residuum, ideoque et 35. Deinde p = 105 - 42 = 63 = 7.9, ideoque Tresiduum ut et 5; sicque singuli factores sunt residuar an average al another and a Hinc ergo tuto concludi posse videtur; quotcunque etiam factores habeat productum qb, singulos semper muoque inter residua occurrere, quod idem simili modo de altera forma 4ab -- (2e=-1)? ostenditur; posito enim $and a = (2c + 1)^2 = 4p - (2q + 1)^2, a = ab(-cc) - c + qq + q)^2$ un p'certo est residuum. (1) the left 27 fai 10 fil (1) and the left 1) film i et al EXEMPLUM I. Sit $ab = 2, 2, 2m + 1 = 16 - (2c + 1)^2$, sum to c = 1, 2m + 1 = 7, ergo $\exists q, \quad \forall 0 = k_1! \quad , 0 p = 4 - 2 + qq + q = 2 + qq + q, \quad \forall = k - 1 + q < j$ nde si q = 0, patet 2 esse residuum. (2), 83, 63, 82, 42, 42, 44, 4, d = 1 (d) d = 1 (d) qEXEMPLUM II. Sit ab = 2.3 = 6, crit $2m + 1 = 24 - (2c + 1)^2$; posito c = 0, 2m + 1 = 23, ergo $p = 6 + qq \leftrightarrow q \equiv 6 \Rightarrow (0, 2, 6, 42, 20), (unde) p = 6 \rightarrow 2 \equiv 8 \equiv 2.4$ 1999 2 residuum, ideoque et 3, sive p = 6 + 6 = 12 = 3.4; ergo 3 residuum. EXEMPLUM III. Sit ab = 2.2.3.5 = 60 et $2m - 1 = 240 - (2c - 1)^2$; posito

c = 0, 2m + 1 = 239, unde p = 60 + (0, 2, 6, 42, 20, 30, 42, etc.)

182

· ...LEGEULERI: OPERA POSTHUMA.

Arithmetica

Hine p == 60 ++ 12 == 72 == 2.36, rergon2 est residuum bi Porro p == 60 ++ 20 == 5 (16), ergon 5 vesiduum, ideouna etiam 3. 5 Sive sumto 1 pi= 60 ++ 80 -+ 90 ++ 10.97 ergo 10 iresiduum phinche fiam 5:00 Sumto autem onto 10.97 2mbin 1 :==: 191 oprimus,' ergomig v-1- and , miorizandanol ja , analast ratio isoroque anarbiert tiro du 1- min Hine statime p = 48 = 3:16 (dat) 3 oproversiduo in deinde p = 50 = 2:25 (dat 2 oproversiduo, nPorro autonomia this above a multip man p1= 48144421= 90 == 1019 p2 ergout00 résiduum; ideolale ret 51 illinia silona sille alla animore lies, steque plart alla readua prodibicat, inter quae si occuerat alterater manerus « vel 6, etian -sup seconoso sinuo anunity multiproceconsideratio formulae 2montal = 4ab da il ani 13 anuntaren line stres uni uhi primo inquirendumu quibusnam casibus 'a finter residua' reperiatur. Quia in semperi est numerus format 4r-+-1, "mostra: formulavita veferetur" 4ab 🖽 (4r-1) ("at formula" 4r-+-1) continet primo; omnia quadrata imparia quae quidem cum 4ab numeros primos dare possunt, majora autem infra 4a deprimi possunt, dum ab ils sulla trahitur 4a quoțies fieri possit, hocque modo pro quovis casu numeri a, formula 47-1,1, certos sortietur valores minores, quam 4a, ac si a fuerit numerus primus, hoc modo omnes prodeunt idonei valores producti 1, qui autem numeri hujus formae non accurrunt, cos formula 40-1-1 indicemus, atque his numeris utriusque generis 4r + 1 et 4q + 1 pro quovis numero primo a definitis, sequentia habebimus theoremata.

I. Si fuerit 2m+1 = 4ab + (4r+1), tum formula $a^m - 1$ semper erit divisibilis per 2m+1, ac cash signi superioris tam +a quam -a inter residua quadratorum reperientur, casu autem signi inferioris, tantum +a erit residuum, et -a non-residuum.

II. Si fuerit $2m+1 = 4ab \pm (4o+1)$, tum semper formula a^m+1 dividi poterit per 2m+1, tum vero pro signo superiore + neque a nec -a erit residuum, sive neque xx + ayy nec xx - ayy unquam per 2m+1dividi poterit. Pro signo autem inferiore -, inter residua erit -a, sive formula xx+ayy divisibilits erit per 2m+1; probe autem hic notetur, bacc tantum valere, si a fuerit numerus primus, numeri enim compositi aliam requirunt evolutionem Nunc igitur pro singulis numeris primis a exhibeamus numeros illos duplicis generis in formulis 4r+1 et 4o+4; contentos a = 0 and a = 0 and a = 0 and a = 0.

 $\begin{array}{l} \sup_{a \to 5} \left\{ \begin{array}{c} 4n \to 1 \to 1, & 9, & 21, & 29, & 41, & 49, & 61, & 69, & 81, & 189, & 6666 & dir. & & & 7 \end{array} \right\} \left\{ \begin{array}{c} 4n \to 1 \to 1, & 9, & 21, & 29, & 41, & 49, & 61, & 69, & 81, & 189, & 6666 & dir. & & & 7 \end{array} \right\} \left\{ \begin{array}{c} 4n \to 1 \to 13, & 17, & 33, & 37, & 53, & 57, & 73, & 77, & 93, & 97 \end{array} \right\} \left\{ \begin{array}{c} 4n \to 1 \to 13, & 17, & 33, & 37, & 53, & 57, & 73, & 77, & 93, & 97 \end{array} \right\} \left\{ \begin{array}{c} 4n \to 1 \to 13, & 17, & 33, & 37, & 53, & 57, & 73, & 77, & 93, & 97 \end{array} \right\} \left\{ \begin{array}{c} 4n \to 1 \to 13, & 17, & 33, & 37, & 53, & 57, & 73, & 77, & 93, & 97 \end{array} \right\} \left\{ \begin{array}{c} 4n \to 1 \to 13, & 17, & 33, & 37, & 53, & 57, & 73, & 77, & 93, & 97 \end{array} \right\} \left\{ \begin{array}{c} 4n \to 1 \to 13, & 17, & 33, & 37, & 53, & 57, & 73, & 77, & 93, & 97 \end{array} \right\} \left\{ \begin{array}{c} 4n \to 1 \to 13, & 17, & 33, & 37, & 53, & 57, & 73, & 77, & 93, & 97 \end{array} \right\} \left\{ \begin{array}{c} 4n \to 1 \to 13, & 17, & 33, & 37, & 53, & 57, & 73, & 77, & 93, & 97 \end{array} \right\} \left\{ \begin{array}{c} 4n \to 1 \to 13, & 17, & 33, & 37, & 53, & 57, & 73, & 77, & 93, & 97 \end{array} \right\} \left\{ \begin{array}{c} 4n \to 1 \to 13, & 17, & 12, & 13, & 12, &$

6.20

Geminas has series pro quovis numero primo a facile in infinitum continuare licet, seas sautem in periodos distinximus, quarum prima conțineț numeros formae 4a-1-1, minores quam 4a, secunda periodus continet cosdem numeros -1-4a. Tertia conțineț numeros secundae periodi -1.4a et ita porro.

Hinc igitur pro casibus, quibus a est primus, judicare flicet, sutrum formula $a^m - 1$ an $a^m + 1$ per numerum primum 2m - 1 sit divisibilis; prius scilicet evenit, quoties fluerit $2m - 1 = 4ab \pm (4r - 1)$, posterius vero geoties fuerit $2m - 1 = 4ab \pm (4q - 1)$. Circa has series notari oportet, in qualible periodo contineri $\frac{a-1}{2}$ terminos, ita ut in ordine 4q - 1 totidem sint termini quot in 4r - 1; deinde omnes termini ordinis 4r - 1 vel addute flowing in constant prime in a sint termini duot in 4r - 1; deinde omnes termini ordinis 4r - 1 vel addute flowing quadrata, vel tales, ut 4r - 1 - 4ar fieri possit quadratum. Contra vero numeri 4q - 1 omnes ita flue flowing combination of culture interval in the possit quadratum. Quicunque numerus pro n capiatur, and poup in the second interval in a point interval in the possit quadratum quicunque numerus pro n capiatur. PROBLEMA. Nunc videamus, quomodo judicium institui debeat, quando numerus a habet factores, scilicet

tum etiam investigentus tam terminos 4r-1-1 quam 40-1 tali numero a convenientes.

1 he e 1 and 12, 24, 26, 37, 55, 33, 64, 16, 77, 65, 93

Solutio. Sit a = fq et f et g numeri primi. Quaerantur primo pro f numeri tam formae 4r + 1 quam 4q + 1, qui ita designentur f(4r + 4) et f(4q + 1), eodenque modo, pro numero g habeantur formulae f(4r + 1) et f(4q + 4), et f(4q + 1), eodenque modo, pro numero g habeantur formulae f(4r + 1) et f(4q + 1), tum vero etiam communes ordinibus f(4r - 1) et f(4q + 1), tum vero etiam communes ordinibus f(4r - 1) et f(4q + 1), tum vero etiam communes ordinibus f(4r - 1) et f(4q + 1).

COROLLARIUM 1. Si fuerit $g = f_r$ ita ut a fiat quadratum = ff, tum pro ordine 4r + 1 omnes plane numeri ordinis 4n + 1 occurrent, alter vero ordo 4q + 1 plane manehit vacuus, id quad etiam inde manifestum est, quad si a fuerit quadratum = ff, semper formulam $a^m - 4 = f_2^{2m} - 1$ esse divisibilem per numerum 2m + 1. COROLLARIUM 2. Sin autem factores f et g fuerint dispares, ex praecedentibus ordinibus serierum facile pro quavis numero a = fg termini utriusque fordinis colligentur; quemadmodum ex sequentibus exemplis patebit. Rea EXEMPLENTI, Sit $a = 2a^3$, ideoque 4q = 24a = 24a

EXEMPLUM 2. Sit a = 2.5 = 10 et 4a = 40. Hic termini communes ordinum ${}^{2}(4r+1)$ et ${}^{5}(4r+1)$ sunt 1, 9, at termini communes ordinum ${}^{2}(4o+1)$ et ${}^{5}(4o+1)$ sunt 13, 37. At pro ordine 4o+1 sunt termini communes ${}^{2}(4o+1)$ et ${}^{5}(4o+1)$, 17, 33, at ordines ${}^{5}(4r+1)$ et ${}^{2}(4o+1)$ communes habent 21, 29, unde fit

a = 10, $4a = 40 \begin{cases} 4r + 1 - 1 - 1 + 1 + 1 - 1 \\ 4q + 1 - 1 - 1 - 17 \\ 21 \\ 29 \\ 33 \\ 4q + 1 - 1 - 17 \end{cases}$ (41, 49, 53, 77, 81, 89, 93)

Arithmetica

L.»EULERI OPERA POSTHUMA

echolEx EMPERIMUS. 20 Si a 2.7. 14 cet 4a 156 an alloch a, ambay quamba strong any earse and article undens builtons admining abundar of 11001, 305, 13, 25, 25, 25, 35, 57, 261, 65, 669, 81, 9101 au anter sami said omiExmerelun 4.11 Sit a 315 15 15 16 40 a 60 orano 1 and 1 a and 1 a and 1 mur animation . I tallet das =4, 4 1 = i'1, 17, 149, 153, 161, 77, 1109 anime exilidiaische tis a tall mundre me inquituon ubolang bulikan 4 ali 13, 29,437, 24, 73,489,7497 . 1 -- 46 - dud i 1 act. diam. lor la statistica initial concert alle a statistical to the statistic relation of the statistic termini communes ordinibus r sunt omnes, qui pro g habentur, at termini ordinibus e communes sunt nulli ergo pro hoc casu ordo 47-1-1 congruit cum numero g, similique modo congruit ordo 40-1-1. Id quod hi Casibus apparet ledad w surement obcarp, the other initial anticipation of the base of the sure of the a = 8, 4a = 324q + 1 = 5, 13, 21, 29, 37, 45, 53, 61, 69, 77, 85, 93anap 1 - - 26 accred and branter & and second of the 1, 13, 25, 37, [49, 61, 73, 85,] 97 = " till our 1308 N He Monnagers commander () to set in The will ellimited wind housed winner withing to X. m. T. I. p. 226 2235 tox pracedentiture prices at divisor duriff 3/p v: Pres 2m v v una i cuada a ""- 2 fore divi dalem per 2m - 1. while commune divisor [4]or to P. per quen aufin (Mark) the f" - 1 at g" - 1 entre to rand de rande sequitar. Si fuerit 4n-+1 numerus primus, in residuis quadratorum non solum hi, numeri n gq. sin qr. sed etiam $2n_{ij}$ Quia numerus residuorum diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia prodibunt, si loco gasubstituantur numeri diversorum est $= 2n_{ij}$ compia p impilor (1-4-adir 19-(1-4-adi)) andichera con0seds.o2;.03 invest (2ni+-1); v according 162-(-adir) to (1-4-adi) mmaile ergo, haec residua, erunt, ut sequens tabella indicat, ubi ultima columna ostenditica quadrata nunde haec residua pascuntur: 10 1 + (4) + and milition communica mailer anor must fill + off + 10 "-+ - (5) - and initial communica initial

n = 2 in the of mathematical mathematical set n = n around any object units in n = 2 $(2n-1)^2$

 $\frac{1}{10\pi}$ and $\frac{1}{12\pi}$ a in milinie in 4-1 occurrent, after vare maile i planer planer in quod chum inte manifestum . I show an equilation of $(-\frac{m}{n}) = 20^{-m}$ and $(-\frac{m}{2n}) = 20^{-m}$ and $(-\frac{m}{2n}) = 0$ Construction 2. She anteen factores for grant dealarder, ev prassedentibles arditibles accerten facile . didating aligners and incorpose on nuclearchers 4m2-1- 3m spilles and represented in merer of the second arroup of

Nune autem demonstrandum restat, etiam omnes factores horum residuorum esse residua, quod eo magis est mirandum biquod cumi etiam hae formulae (+-of) audinihuo angiurust onny is 170 . ST 23 . 32 audinougo's mil adine instant community is all promoting good of the property of the sound on the state of the sound of the s pariter residua exhibeant, tamen non omnes factores etiam futuri sint residua.

A. m. T. I. p. 255

 $\frac{23}{(N. Fuss I.)}$ REEDED 2. SHE THE REPORT OF A DESCRIPTION OF A DESCRIPANTO OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIO inin Obsien vario. Formula 22 1 divisibilis erit per sequentes numeros quadratos: inine et 16 . C If show $R \le 112$ update some norther to $1 \le 5t^2$ so allow on $R \le 7t^2$ is $1 \le 7t^2$. Boundary $1 \le 5t^2$ is fuerit $x = 5^2 t \pm 7$

[0] 00 01 13201 0 0 01 221 = 70 0 0 01Advine Ote w III. 4. 172 14 16 2 1721 38

Fragmenta ex Adversariis depromta.

IV. per 25^2 si fuerit $x = 25^2 t \pm 57$

V.	п	292	$x = 29^{2}t \pm 10^{10}$	<i>k</i> .1
	μ	<i></i>	<i>w</i> — <i>_ v v _ _</i>	4+

$\mathbf{Y}_{\mathbf{r}} = \mathbf{Z} \mathbf{J}^{\mathbf{r}} \mathbf{U} = \mathbf{Z} \mathbf{J}^{r$
in in the bar a choose it is that VI. The 372 is he range 372 1 117° a channel radii a constant "
VII. • 41^2 • $x = 41^2 t \pm 378$.itsacret analytic
while the second in the same start of the strength of the start of the second start of
$[ansali transmission - income a transmission TX] = [1] 61^{21} and 10^{10} x = 61^{2} t \pm 682 [10] and unlike any ability t = 1^{10} and$
X. • 65^2 • $x = 65^2 t \pm 268^{-h}$ • $t = 268^{-h}$ • $t = 268^{-h}$
under, Lebensel en octonomic cuxile di se7322 nore, let "x ≟7327 ≟be74" ac nhoorni reali ornanozari.
Hinc etiam valores ipsius x assignari poterunt, ut haec formula xx - ax per 'eosdem' números fiat divisibilis;
sique $xx + aa$ divisibilis erit per 41 ² , si fuerit $x = 41^2 t + 378a$; ita hoc problema resolvi potest, quo' quae-
figure valores ipsius x , ut have formula $xx + aa$ divisibilis flat per $(ff + gg)^2$.
The problem of the p
Solutio. Primo patet, si satisfaciat $x == \alpha$, etiam satisfacturum esse $x == m (a^2 + b^2) \pm \alpha$. Deinde sumto
Solution rinno patet, si satisfaciat $a = a$, etam satisfaciat in esse $a = m(a + b) = a$. Solution satisfaciat $a = a + bb$ prove $\frac{aa + bb}{b} = \frac{m(aa + bb) \pm a}{b} = m(aa + bb) \pm a$
x = -b satisfacti, quia fit $xx + 1 = -bb$. Ponatur ergo $x = -b$, qui ergo numerus denet esse
$x = \frac{a}{b}$ satisfacit, quia fit $xx + 1 = \frac{aa+bb}{bb}$. Ponatur ergo $x = \frac{m(aa+bb)\pm a}{b}$, qui ergo numerus debet esse auromini incui da tana tana tana tana tana tana tana t
$\frac{dk_{2}}{dk_{2}} = \frac{1}{2} \left[\frac{dk_{2}}{dk_{2}} + \frac{1}{2} \left$
proxime acqualis, equal fit is $ab - \beta a = \pm 1$. Sumatur ergo $m = \beta$ eritque $a = \beta b - \frac{a(\beta a \pm 1)}{b}$. Cum igitur
$\frac{1}{2} (aa + bb) = (aa + bb$
иза, Риовлема. Invenire numerium w, ut formula w - Apidivisibilis. fiat per a - b a mabre in inventor introdu
$\begin{array}{c} \text{Hupps} Solutio. Primo patet hoe fieri, si x = \frac{a}{b} Ponatur ergo x = \frac{m(a^4 + b^4) = \pm a}{b} = \frac{mb^3}{b} = \frac{a(ma^3 \pm 1)}{b} Quaetration and the second s$
ratur nunc fractio $\frac{\alpha}{2}$ proxime actualis buic \rightarrow , ita nt sit $Ba^3 - \alpha b = \pm 1$, et sumatur $m = \beta$ eritque $x = \beta b^3 + \alpha a$,
And β and β from
Potuissemus etiam ponere aa $m(a^4 + b^4) \pm aa$ $a^2(ma^2 \pm 1)$
$x = \frac{aa}{bb} $ fiat gitur, $x = \frac{m(a^4 + b^4) \pm aa}{bb} = \frac{m(a^2 \pm 1)}{bb} = m($
Quaeratur nunc fractio $\frac{\gamma}{\delta}$ proxime aequalis ipsi $\frac{aa}{bb}$, ut sit $\gamma bb - \delta aa = \pm 1$, sumaturque $m = \delta$ eritque
$x = \delta bb + \gamma aa \text{et generaliter} x = m (a^4 + b^4) \pm (\delta bb + \gamma aa),$
quod ergo debet esse quadratum, cujus radix jam ante est assignata, unde patel hanc formulam
$m(a^4 + b^4) \pm (\gamma aa + \delta bb)$
semper ad quadratum reduci posse, sive si omnia quadrata dividantur per divisorem $a^2 - b^4$, inter residua certe
occurret tam yaa - δbb quam — yaa - δbb . Sit $a=3$ et $b=2$ et quaeratur fractio - proxime aequais insi - , Elemento encommente zo no contratavio economico o centra contrata contrata artico - proxime aequais insi - , co
The second second second second second second is a second
proxime $=\frac{6}{3}$, quod fit sumendo $\alpha = 3$ et $\beta = 1$, tum erit $\alpha = 97m \pm 33$. Patet ergo tam $47^4 + 1$
quam 33 ⁴ 1 divisibile esse per 97.
Diversa. In the second of the
2 4.
normality supplied Severa minima possible size in a (Kraffa) schwarter werder in the Severa in the
Formulae in producendis numeris primis foecundae:
1. $x^2 + x + 17$ dat: 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 289.
$x^2 + x^2 + x + 41$ dat: 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281.
amt autem "demonstratum est," nullam dari bujusmodi formulam algebraicam, cujus omnes plane termini sint
umerisprimit in the more than matter to south out the to the to the state of the state of Atm. T. P. 234.19

-L. Euleri Op. posthuma. T. I.

ARIASSALLA

L.M.EULERI, OPERA, POSTHUMA.

The of Patrician 25 and for Waterman VI

1 (N. Fuss L)

THEOREMA. Haec formula x^{2n} $x^n + 4$ semper est divisibilis per xx + x + 1, dummodo n non sit mult tiplum ternarii. HEE the very the many 11.1

DEMONSTRATIO. Si enim illa formula multiplicetur per $x_{en}^n = 1$, productum $x^{3n} = 1$ semper est divisibilit per $x^3 - 1$, ideoque etiam per $xx - t_{xx} + 1$; quia ergo multiplicator, $x^n - 1$ non est divisibilis, necesse est ipsame formulam esse divisibilem. Q. e. d. 80% A V 60 and W · 65 ·

THEOREMA. Haec formula $x_{1}^{4n} + x_{1}^{3n} + x_{1}^{2n} + x_{1}^{n} + 1$ semper; est divisibilis per $x^{4} + x^{3} + x^{2} + x + 1$, during made exponents an non fuerit, multiplum ipsius Sharad and in , hurmond inauticas a saind souds a antira in DEMONSTRATIO similis pracedenti ai mare a l'a sur dired is its un tire dilidiciril au prime ant

THEOREMA. Si capiatur angulus $m = \left(\frac{m}{n+1}\right) 360^{\circ}$, haec formula $x_{n}^{2n} = 2x_{n}^{n} \cos \theta + 1$ semper est divisibility per hanc $xx - 2x\cos\vartheta + 1$. AVE as we have find that the assent on anomalia original A. M. T. D. 1985 Rori rin. Printo pulet, si talisforial a . co. elian substachmun esse sumun vielede sunte and todah araman her in a todah min - to ogin minner . I to an it is an in and the an Тиеокема, cujus demonstratio etiamnunc desideratur. Si haec formula 4mnk-+-maa-+-nbb fuerit numerus primus, puta P, tum semper assignari possunt numeri x et y, ut fiat mxx - hyy = P. $\texttt{subs} Sitem = 3, \ n = 2, \ a = 1, \ \texttt{et} \ b = 1, \ \texttt{erit} \ \textit{maa-f-nbb} = 5 \ \texttt{et} \ \textit{4mnb} + 5 = 24k + 5.55 \text{Sumatur} \ b = 24k +$ P = 53 et esse debebit 3xx + 2yy = 53, sit x = 1 et y = 5. Plerumque quidem tales numeri productette dantur integri, interdum tamen non nisi fractos assignare dicet, veluti si fuerit m= 7 et n= 2; praeteres vero a=1 et b=1, ita ut sit P=56k+9, unde sumto k=4 fit P=233, qui numerus in integris esse pequi $a = 1 \quad \text{et} \quad 0 = 1 \quad \text{in the set} \quad x = 367 + 5, \quad \text{under summer direct } \quad x = 5 \quad \text{rescaled in the set} \quad y = 1922 \quad \text{rescaled$ A. m. T. I. p. 300 199 - 1 - Politing the state of the state of

Shutter, and b sumplime

Arithmetica

n. 1 (*d - * nj m a² me² set ² n THEOREMA. Non dantur tria biquadrata, quorum summa esset divisibilis vel per 5, vel per 29, que sola excipiuntur.

A. m. T. H. p. 161 анына (

 $m_{1}^{*} + m_{0}^{*}$ is the maximum property in the set of $\mathbf{28}$.

Observatio. Proposito quocunque numero primo p = 2n - 1, omnes numeri eo minores, qui entre 1, 2, 3, 4... 2n, semper tali ordine disponi possunt, ut certis multiplis ipsius p aucti, progressionem geome and a subserve relation of the manager (x) and (x) si singuli termini per p divisi deprimantur, omnes numeri ipso p minores prodeant, uti ex sequentibus exemption patebit. Notetur autem potestatem x^{2n} hoc modo semper dare unitatem, propterea quod x^{2n} . 1 semper patebit. p dividi potest, unde sequentes potestates $x^{2n} + 1$, x^{2n-2} , x^{2n-3} , etc. eosdem reproducunt numeros, all ab initio.

I. Sit p = 3 et n = 1 et progressio geometrica erit 1, x, xx. Sumto ergo x = 2, progressio geometrica erit 1, 2, 1, 2, 1, 2, 1, 2, etc.

II. Sit p = 5 et n = 2 et progressio geometrica x_1, x_2, x^2, x^3 , etc. Hinc sumto x = 2 habetur

sumto suite x = 3, erit ea (1, 3) 4, 2, 1, 3, 4, 2, 1, etc. To be the sum of the second state of the suite of the second state of the suite of 1

III. Sit p = 7 et n = 3 reperts progressio 1, $x_n, x^2 + x^3 + x^4$, etc., Hinc sum to x = 2, erit ea $A_n, 2 + 2$ unde patet, hinc: tantum terminos pares oriri, unde x, ita sumi debet, ut fiat $xx - 2 = 7m_2$ ideoque x = 3progressio geometrica erit 1, 3, 2, 6, 4, 5, 1, 3, 2, etc. Loco x autem etiam sumi posset alia potestasi

si modo λ ad 6 fuerit primus, ita sumto $\lambda = 5$, capi poterit x = 5, unde oritur 1; 5, 4, 6, 2, 3, 1, quae est aprioris retrograda. Semper aulem series retrograda aeque satisfacit." 2 É ì. ĩ. introduce the second s trailuriteriteri andricity dissifer 18973 Hic autem primo etiam retrograda valet: mono evidenmen ", "6," 3," 7, 9, 10, "5," 8, 14, 02, - 1. to be a unit analy 20 Praeterea posito $x = x^3$, x^7 , x^9 , qui numeri sunt 8, 7 et 6, tum erit progressio: The state of the s cujus retrograda oritur sumto x = 7. m = 1). Porture him of automas actions: V. Sit p = 13 et n = 6, at sum to x = 2, erit progressio 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Dein pro x sumi possunt numeri 6, 11, 7. Sumto igitur x = 6, ea erit 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1. REFLEXIONES GENERALES. 1. Perpetuo bic potestati x^n conveniet numerus 2n. Cum enim ejus quadratum x^{2n} det 1, erit $x^n = \sqrt{1}$, ergo $x^n = -1 = p - 1$ 2. Si potestati x^{2} respondeat numerus a, tum potestati x^{n+2} respondebit numerus p-a=2n+1-a. Cum enim sit $x^{2} = -a$ $\stackrel{e}{\text{et}} x^{n} = -1$; erit $x^{2} + \frac{in}{2} = \frac{i}{2}a = \frac{p}{2}a = 2n - 1 - a$. Sufficit ergo seriem usque ad medium 2n continuare, quia sequentes sunt complementa priorum. Cum enim sit ee 3:: Posito x = a, ejus reciprocum vocemus $\frac{1}{a}$, sive $\frac{mp+1}{a}$, ut prodeat numerus integer, quem designemus per af ut sit $x = \frac{1}{a}$, codemque modo $\beta = \frac{1}{b}$, $\gamma = \frac{1}{c}$ etc. Ita casu p = 13, is fueritation intro a one alum $a = 2_{101}3, 4, 5, 6, 7,$ etc. erit $\alpha = 7, 19, 10, 8, 11, 2$. Notetur, enim complementorum, reciproca etiam esse, complementa, suguit in a complementa in the subranpos opult. Constitutis his reciprocis, si fuerit an stum erit an strange of propterea, quod production potestatum est $x^{2n} \Leftrightarrow \mathbf{I}_{m}$ il coque $a\alpha = 1$. Deinde vidimus esse $x^{n} d a^{2} \Rightarrow p = a$, erit igitur $x^{n} \sin^{2} \Rightarrow p = a$, it $a_{m} d a_{m} d a_{m}$ termino, simul quatuor innotescant, quod exemplis illustretur. $a^{av} = (1 - a^{2v}) = 1 - a^{av}$ which animally the second s Sit $p \Rightarrow 49$, m = 91, 16 real metallicity is $1 + e^{2m}$, multimetally $e^{2m} + 1$, m = 91, 10 = 20, $m = 10^{-10}$ Parro quia $a^{20} - 1$ decisibile per et 81 $a = a^{20} a^{20} - 1$ deviabile per 21 si $b = a^{20}$; high sequence for 1. A when the second state of the second state the how many te on the second with the second of the second second with the second with the second with the second s Consequences formula d' + 1 divisibilitien (1 hill was der 27 3, 10 36 Porre inia d' - 1 divisibile per Information in the provide the standard minght strange to be builded in the standard minght stranget stranget stranget stranget stranget stranget stranget s 474 J.T. p. 176 471. -- $p-\beta$. C x^{16}

The ignitive notion of a law is night that $p_1 = 0$ is $p_2 = 0$ is $p_1 = 0$ in $p_2 = 0$ is $p_1 = 0$ in $p_2 = 0$ in = 0$ in

LISSEULERISOPERA POSTHUMA.

ter mary ri (\$1,5 2) .4, 5 8, 161 13, 107, 5 14, e 9, ort 8, ig 47, 6 45, Alam Bert 6, and 2, g 5, ort 40; he & obour
1 2 3 4 5 6 7. 8 9 10 11 12 13 14 15 16 17 1951-1112 01016 10 10 10 10 10 10 10 10 10 10 10 10 10
Loco x autem quoque sumi possunt numeri potestati x^{λ} respondentes, si modo λ ad 18 fuerit primus. Cum
autem $18 = 2.3^2$, multitudo numerorum ad 18 primorum est 6 et valores pro λ sunt 1, 5, 7, 11, 13, 17, und
pro x sumi possunt hi numeri 2, 13, 14, 10, 3, 15, unde sex progressiones geometricas formare licet, quarum
tres erunt priorum retrogradae.
EXEMPLUM. Sit $p = 41$ et $n = 20$, et sumatur $\alpha = 2$, unde progressio geometrica oritur
4 9 6 8 16 29 92 K 40 90 to
unde pro x^{20} prodit +-1, ita ut sit $2^{20} = -1-1$, unde patet esse $xx = 2$, ideoque $x = \frac{1}{2}(2-1-4.1m) = 17$ (posito $m = 7$). Factum hine est sequens schema:
m = 7). Factum hine est sequens schema:
41) 0 1 1 OF STREAM INC. Start OTHER IN THE OF THE REPORT OF STREAM
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 34 13 22 7 33 19
$\frac{4}{5} \frac{4}{5} \frac{4}{15} \frac{14}{3} \frac{5}{5} \frac{24}{25} \frac{37}{34} \frac{36}{36} \frac{36}{38} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
6 8 16 10 26 33 36 31
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$10 - 1 - 1 = \frac{8}{10}$ $16 - 18 = 20 - 28 - 25 - 38 - 21 - 18 - 19 - 1 = 16 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^{24 mar}Jam² ad¹¹ 40⁻ valores¹ ipsius¹¹ 1 primi¹ sunt 1, 3, 7,¹9, 11, 1473, 17, 19, 21, 23, 127, 29, 31,¹33, 37, 39 unde pro x accipi poterunt sequentes numeri: 17, 34, 13, 26, 11, 22, 6, 12, 24, 7, 28, 15, 30, 19, 35, 29, Si sumsissemus x = 3, prodiisset progressio

1, **3**, **9**, **27**, **40**, **5** = 0 **1**, **2**, **3**, **6**, **7** = 0 100

sequeretur $3^4 = x^{20}$, ergo $3 = x^5$. Supra autem invenimus esse $2 = x^2$, ergo $4 = x^4$, unde oritur $x = \frac{13}{4}$ sive $x = \frac{3+41m}{4} = 11$. Cum igitur formula $a^{40} = 1$ semper dividi queat per 44 h. e. si fuerit $x = x^2$, deno taine 'x numero quocunque; ista formula $b^{20} = 4$ -dividi poterit per 41; isi fuerit b = aa, h. e. si fuerit $b = x^2 d$. Quoniam igitur $a^{40} - 1 = (a^{20} - 1) (a^{20} + 1)$, prior vero factor $a^{20} - 1$ divisibilis sit casibus $a = x^{2^2}$; sequiture reliquis casibus, h. e. casibus $a = x^{2^2 + 1}$, formulam $a^{20} + 1$ divisibilem esse per 41, h. e. si fuerit 4 = 1 a = 17, 34, 27, 13, 26, 11; 22; 3; 46; 42; 24; 107, 14; 28; 415, 30, 19, 38, 35, 29.Porro quia $a^{20} - 1$ divisibile per 41 si $a = x^{2^2}$, erit $b^{10} - 4$ divisibile per 41 si $b = x^{4^2}$; hinc sequitur formulam $b^{10} + 1$ divisibilem esse per 44 si $b = x^{4^2 + 2}$. Porro $a^8 - 1$ divisibile per 41 si $a = x^{5^2}$. At $a^4 - 1$ divisibile per 41 si $a = x^{10^2}$, ergo $a^4 + 4$ divisibile per 41 si $a = x^{5}, x^{15}, x^{25}, x^{25}$, etc. h. e. si $a = x^{10^2 + 5}$ Consequenter formula $a^4 + 1$ divisibilis per 41 his casibus: a = 27, 3, 14, 38. Porro quia $a^4 - 1$ divisibile per 41, si $a = x^{10^2}$, ergo $a^4 + 4$ divisibile per 41 si $a = x^{10^2} + 1$ divisibile per 41, si $a = x^{10^2}$, et $a^2 - 1$ per 41, si $a = x^{20^2}$, sequitur fore $a^2 + 1$ divisibile per 41, si a fuerit $x^{20^2 + 10}$, qui casus sunt a = 32 et 9, hoc est in genere si $a = 41m \pm 9$.

REGULA FACILIS explorandi numeros formae 4m - 1, qui desinunt vel in 3, vel in 7, utrum sint primi, nec net all Sit N talis numerus, et a. 2N subtrahatur quadratum proxime minus, desinens, in 5, cujus radix sit 570, sitque residuum = R. Ad hoc continuo addantur numeri 100(n - 1), 100(n - 3), 100(n - 5), 100(n - 7), etc.

Fragmenta ex Adversariis depromta.

poduantirit.

in prodeant sequentes numeri: R, R-1-100 (n-1); R-1-200 (n-2); R-1-300 (n-3); etc. Quodsi jami inter hos numeros unicus occurrat quadratus, tum numerus propositus Nicerio rest primus, vel per hoc quadratum divifibilis; sin autem-vel nullus occurrat quadratus; vel duo pluresve, tum numerus Ninon est primus. Sit N=637, erit 2N=1274. Proximum quadratum in 5 desinens erit $1225 = 5^2 \cdot 7^2$; ideoque n=7 et numeri addendi numero R=49 erunt 600, 400, 200, ande prodit 649, 1049, 1249; inter quos numeros unicum occurrit quadratum 49, unde numerus propositus vel crit-primus, vel per 49 divisibilis.

Sit W=1073, erit 2N=2146; proximum quadratum in 5 desinens =2025=52:92, funde n=9; et R=124. Numerinaddendi sunt 800, 600, 400, 200 eritque 921, 1521, 1921, 2121; inter-quos sunt quadrata 121 et 1521, inder quadrata 121 et 1521, inder quadrata 121 et 1521, inter-quos sunt quadrata 121 et 1521, in

mingSit N = 697, 2N = 1394; proximum quadratum in 5 desinens $1225 = 5^2.7^2$; R = 169 et numeri addendi R00, 1200; inde prodeunt 769, 1169, 1369. Hic due occurrunt quadrata $169 = 13^2$ et $1369 = 37^2$, unde numerus ille nonitest primus, est enim 697 = 17.41 contributed and provide the set of the set of

A. m. T. II. p. 188.

and non-tor remain more relation of the second second in a second second

(Golovin.)

874 전19	TABULA exhibens pe	r intervallum 4	20 omnes nur	neros, qui	restant,	deletis numeris s	equentium formarum:
	8 Brinnagies, tous les nombre	n 1-2 . 4n + 3,	5n + 1 5n-	+ 4	-3, 7n+	5 et 7n 6.	(abitrate)
	lander Bann Art B	0	78 148	232	310	373 .abst trach	2555 ⁵¹⁹ 86 2538.355
ы ы.т.	n-1 1-1-1 1: costile, pre	18 Languard Riv	85 4 162	310 ² 38	312 . arganos arg	378 .	e nu l V. sine
	in hos 1-1 no . 1-4 s				322	382 474-540 847 General	eah à 14 a mar Inan
	also mog illus i in s			252	330 GGOR 6 198	385	eon of mote
		28 1	00 172	253	333	393 ''	
1		30 1	02 177 ^{° M}	268		400	·
	h-s=genotess with the	37 1	05 190	270	340	403 ⁰⁶ (10372) in	
	General San San Managara San Managara San Managara	42 1	12 (0 193 1	273	345	400	et games to a de mar.
	2004 (17) 2017 - 17 2017 -	57 1	20 205	277	350	417 BY3	Alors je dis qu'on ai
	2200 - 1	e [*] 58 [*] 7 3	30^{-4} 210^{-2}	280	=352 n,-	4 2 0, £	(1449 paralatery - 1740)
	α στο 1			, -		-(6).) 🕴 == V	
	[4] M. Sandara and S. Sandara and S Sandara and Sandara and Sandar Sandara and Sandara and San Sandara and Sandara and Sandara Sandara and Sandara and Sandara Sandara and Sandara and S Sandara and Sandara and Sandar Sandara and Sandara and Sandara and Sandara and		42 225	288	358	-16.7.7 6 27 1 1	issues fier
	Real Production of the second se	72 14	5 228	298	372	ments alum	nà spinon al siall.
	Gergen (* 1997) 1990 2004 - State State (* 1997)	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	-1-1×2-4-72	31-4- 5 -4- 5 -	1 4 all at 1 all	in an - Y	A. m. T. II. p. 195.

pertinoments 31 of the per about the formation of allow the site formation or

21.1.4

ATTE NO A 4- 1 (N. V. Fuss I) - wing to A - amop- g appoint 1 . LAORON .

Arithmetica

.mLm EULERL OBERAS POSTHUMA.

and Hari Sinp, is quide, superior formular ducta fin. $w^m + n^n$ is priore subtrabative; erit residuum and $(w^m + y^m)$, $w^m + y^m + y$

quod eige effam est divisibile per $(x^m - y^m)$: P quan $(x^m - y^n)$: P at que interviewers $(x^m - y^m)$: P is P is $(x^m - y^n)$: P is $(x^m - y^n)$: P at que interviewers $(x^m - y^m)$: P is $(x^m - y^n)$: P interviewers $(x^m - y^n)$: P is $(x^m - y^n)$: $(x^m - y^n)$: P is $(x^m - y^n)$: $(x^m - y^n)$: $(x^m - y^n)$: P is $(x^m - y^n)$: $(x^m - y^n)$:

iberd DERIORSTRATTO: Ponatör $m = p\Delta$ et $n = v\Delta \phi$ et quiac Δ estemaximus communis divisor, erunt p' et repriminter sol: Dari figitur poteitunt mumerie a setuppintation $d\mu = pv = 100$ Hind figitur quoque lerit $(x^{am} + y^{am})$ similique mode $(x^{\beta n} - y^{\beta n})$: P, unde per praceedens theoremi erit $(x^{am} + \theta^{n} + y^{am} - \theta^{n})$: P esteveré exponen $dm = \beta n = ap\Delta - \beta v\Delta = \Delta$ ficonsequenter cerit $(x^{\Delta} - y^{\Delta})$: P out antizional antizional $\lambda = 0$ fice $\lambda = 0$. If P = 0 and $\lambda = 0$ for $\lambda = 0$ for $\lambda = 0$ for $\lambda = 0$ and $\lambda = 0$ for $\lambda = 0$ for

B. Partitio numerorum in summas polygonalium.

(Airthort) cumulation per intervaliant states intervaliant states and the second mainter states interval and the second secon Caractère général pour juger, si un nombre entier quelconque N'est somme de trois triangles, tous les nombres ÷. 10. 915 ()<u>-</u>2(-35 plus petits étant tels. Soit N-A un nombre moindre quelconque qui soit égal à ces trois triangles: $\Delta p \rightarrow \Delta q \rightarrow \Delta r$; ensuite pre nant pour a et b des nombres que conques et posant A = ab, s'il arrive que p - q, ou p - r, ou q - r solter à a-b, alors le nombre proposé W sera somme de trois triangles, et un seul cas de a et b suffit pour cela 111 ぞこむ 611 复钟 (Lexell.) 40 L 501 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$ DEMONSTRATION. Ayant posé N $ab_{\overline{(1)}}\Delta p + \Delta q + \Delta r$, soit $p - q_{\overline{(1)}}a - b$, et pour cet effet mettons p = aet q = x + b, de sorte que $N - ab = \Delta (x + a) + \Delta (x + b) + \Delta r.$ Alors je dis qu'on aura $N = \Delta (x + a + b) + \Delta x + \Delta r_i$ $\Delta(w + a + b) = \frac{xx + 2(a + b)x + (a + b)^2 + x + a + b}{x + a + b}$ car puisque $N = \frac{1}{2} \left(xx - \frac{1}{2} \left(a - \frac{1}{2} b \right) x + \frac{(a - 1)^2}{(a - 1)^2} b + \frac{1}{2} a - \frac{1}{2} \frac{1}{2}$ on aura Mais la première formule donne $N-ab = \frac{x^2 + 2ax + a^2 + x + a}{x^2 + 2bx + b^2 + x + b} + \Delta r$ 201F ag.14 27 an ≉ ce qui étant ôté de celle-là donne ab = ab, ce qu'il fallait démontrer.

, COROLL. 1. Puisque p - q = a - b et p = x + a et q = x + b, on aura

x = p - a = q + b; "done: x + a + b = p - b = q - a;

par conséquent, i dès qu'on aura a marrama datonele que a in mi estidizione marca contentanti internatione datonele que an in mi estidizione marca contentanti internationele datonele que an in mi estidizione marca contentanti internationele datonele que an internatione $N_{\rm eff} = a_{\rm eff} = b_{\rm eff} + b_{\rm eff}$

Fragmenta ex Adversariis depromta.

1. a=1 done.8 17- 1=10--3--3 -2-ou-by 17=10---6--1-e-sinotype q org obdi

2. a=2, ion aira 17-4=13=1+6-6 dong 17=1-15

3. a = 3, son anna 17 - 9 = 8 = 6 = -1 - -1 donc 17 = 6 + -10 - -1

4. a=4, in ania 17-16= (1=1+-0-+0 done 17=1-+-15

Caractères semblables pour la résolution des nombres en quatre carrés.

Solt le nombre proposé $=N$ et un nombre plus petit quelconque $N-2ab$ qui soit $=pp-qq+rr+s$. S'il candinomin de nombre de prime comme contracte contracte de prime
car celle-là $N=2ab+pp+pp-2p(a-b)+(a-b)^2+rr+ss$
car celle-là et celle-ci $N = 2ab + pp + pp - 2p(a-b) + (a-b)^2 + rr + ss$ pp + pp + 2pb - 2ap + bb + aa + rr + ss
Masont evidemment egales.
COROLL. Prenant $b=a$, si parmi les quatre carrés dont la somme donne $N-2aa$, deux se trouvent égaux
entre eux, de sorte que N-2aa=2pp +-rr +-ss, alors on aura
$N = (p + a)^2 + (p - a)^2 + rr + ss.$
EXEMPLES. Soit proposé le nombre $N=71$ et soit
1. $a=1$, on aura $71-2=69=4+4+36+25$ d'où l'on conclut $71=9+1+36+25$.
2. Prenant $a=2$, on aura 71 - 8 - 63 - 9 + 9 + 9 + 36, et partant 71 - 36 + 9 + 1 - 25.
3. Soit $a=3$ et puisque $71-18=53=49+4+0+0$, il s'en suit $71=49+49+9+9$.
3. Soit $a=3$ et puisque $71-18=53=49+4+0+0$, il s'en suit $71=49+4+9+9=9$. 4. Soit $a=4$; puisque $71-32=39=36+1+1+1$, il y aura $71=36+1+25+9$. 5. Soit $a=4$; puisque $71-32=39=36+1+1+1$, il y aura $71=36+1+25+9$.
5. Solt $a=5$; pulsque $71-50=21=4+4+4+9$; donc $71=9+4+4+4+9$.
1 m 1 m 00 07
A market of the set of
A communer of is more due to in the second
anterdoning) is by it is, minoreally inverses and (N. Rissal) over is an applitude work by , i theread is a first in a start and is a start and is a first in a start and is a start and is a first in a start and is a start
Monie PROBLEMAN: Sicomnes : numeri: minores quam: N.sint resolubiles in tres numeros trigonales, sipsum mume-
this account of Sint share of a policial function of any land to accide a solid and annume to be contain success
The "Solution Sint way y et z radices numerorum trigonalium, quorum summa aequetur numero Ni ita ut sit
$\frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2}$
collini degi da enterinto est de la surgio de $N-p$, pro quo radices trigonalium sint a, b, c, ut sit l'un consideretur numerus minor quicunqué $N-p$, pro quo radices trigonalium sint a, b, c, ut sit una destante anticipationes anticipat
$N - p = \frac{aa + a}{2} + \frac{bb + b}{2} + \frac{co + c}{2}$
Sumanus autem hic esse $b=a+d$; tum vero statuatur $z=c$, ita ut esse debeat
$\frac{2}{2} + \frac{2}{2} + \frac{2}$
Fiat nunc $x = a - n$ ettiy = b + in eritqué aug
1xx - 1 - x = aa - (2n - 1)a + n(n - 1) et $yy - 1 - y = bb - 1 - (2n - 1)b - n(n - 1)$, is it
quibus valoribus substitutis prodit 1 2p = 2bn - 2an + 2nn, sive $n = (b - a)n + nn$ (i) (i) (i) (i)
Cum igitur sit $b = a - d$ ideoque $b - a = d$, erit $p = dn + nn$. Hinc pro variis valoribus littérarúm d et n littera
P sequentes accipiet valores. Sit primo $n = 1$ erit $p = d+1$
$x \leq x \leq y = 2$ existenté $n=2$ fiet $p=2d-4$ $z \leq y \leq x \leq y$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
p = 4d + 16 $i = 1$
n = 5 $p = 5d + 25.$

and smith of

Arithmetica.

Inde pro p sequentes oriuntur valores d = -2, -14, -100, -1, -2, -3, -1004, -155

$$(1-i) \quad n \doteq 1 \cdot 1 \cdot 1 \cdot p = 1 + 1 + 1 + 0, = 4, = 3, = 4, = 5, = 6$$

$$+ 5 n = 3:7 - p = +3; -6 - 6; = 9, -12, -15, -18, -21, -24$$

n = 4

4. J.

it? m-p it m-p it d_{1} d_{2} d_{1} d_{2} d_{3} d_{4} d_{1} d_{1} d_{2} d_{3} d_{4} d_{4} d_{1} d_{1} d_{2} d_{3} d_{4} d_{4} $\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{2}}}}} \frac{a}{a} - \frac{1}{1}$ h pullon mi $z_F | a$ -1-44 Ñ - 1 : b x : y = bim th x n N-2alege hennanhigs failt supply inequired as such: cash and t againt ad here :a-+-2 x =y =Ъ N--- 3 ZUS Balağ esh. . x 12 $y = \underbrace{b}_{-1-2} \underbrace{b}_{-1-2}$ y =now to 2010年末5月 2 **N--- 4**)ulmar մ⇔ հ a—3 4103 M . e ti N = 5-+-4 y =

hanner His positis ambarum x et y inventio succedet, si inter ternas radices a, b, c, primo pro numero N-1 fueri = a + 1, vel b = a - 1, ho b = a, sive si duae fuerint aequales. Secundo si pro numero N-2 fuerit vel b=est si differentia fuerit inter binas == 1, tum vero duplex solutio locum habebit. Tertio si pro N-3 fuerie vel b = a+2, vel b = a-2, hoc est si binae radices binario discrepent. Quarto si pro numero N-4 fuerit ve b = a + 3, vel b = a, vel b = a - 3, hoc est si differentia inter binas radices fuerint vel = 0, vel = 3. Quinto si productional de la constante de la numero N-5 fuerit $b = a \pm 4$ h. e. si differentia interspinas radices fuerit = ± 4 . Sexto si pro numero Nfuerit vel $b = a \pm 5$, vel $b = a \pm 1$, hoc est si inter radices binas occurrat differentia vel 1, vel 5. Quamobren sindemonstrari posset;) semper unum saltem horum casuum docum habere debere; tum demonstratum fore omnes numeros esse summas trium trigonalium. Quod cum de minoribus numeris certum per se situ pro ma joribus autem · continuo plures · casus · examinandi occurrant, i eo aninus dubitaris potest, quin : resolutio: semper si locum habitura, idque plerumque pluribus modis, quo accedit, quod pro majoribus numeris fere omnes numer N-p pluribus modis in tres trigonales resolvi possint. Quod quo clarius pateat has resolutiones ab ipso initio separative entres etcars a are raised and numerorum secundum ternas radices contemplemur:

	\cdot r	adic	es	[· ·	•	÷ ·				1.0							···	
numeri	<i>a</i> ,	Ь,	C	vel	l rad	lices	ve	l radic	es	5	ar ar	Inter-	(: : • • •	énti (he all th			at an		े. 	
1	0,	0,	1					с.,	• .	- 	Hinc	erge) exa	minem	is num	erum	N=	=13	et h	abebin	1116
. 2	0,	1,	1	ĺ			i	. î ,				Ϋ́,	ř	12				<i>b</i> ,			
3	1,	1,	1	0,	0,	2							pro	N:	=12:	$\mathbf{y} \in I$);-, -	3 , - •	3 . k		triff.
4	0,	1,	2		۱ -+	.\ ∮	, Cal		P (nge de		·	4 9 is	1 al.	, - 0494 -	. v 1	l,	1,	Ц.	: به دیر	
5	1,	1,	2												at a c	- G - 2	2 ,5 e f	2, 🖓	3 5 a s	ha ch	<u>in</u>
6	0,	2,	2	0,	0,	3.	al a	,		1.140		(* .	pro	N-2	= 11:	0), :	1,	4		
1.4433 X 6	a 1 , i	⊎ 2, ⊴	2 ₁₁	÷ 0,	H 1 ;	3	12001	(2,)	we Ge	1. A.	\mathbf{x}_{i}	;	pro	N 3 :	⊨1 0≎		ці — (D, <i>i</i>	4	នម្នាស់ ព	ad)
. 8	1,	1,	3		÷.		ſ '	- 1	i te s	···· - 3	1.1	Y		an ai	t izi		, ' 4	2,71	3 аң	(Realige	6 S.
9	2,	2,	2	0,	2,	3								N-4:	· •						
10	0,	0,	4	1,	2,	3		1 -		<i>.</i> t		•		`		0	, 2	2, 3	3		
11	0,	1,	4					.4.5	()	1		-	\mathbf{pro}	N-5 =	= 8:	1	, 1	, 3	;	1	
12	0,	3,	3	1,	1,	- 4	2,	2, . 3	kas s			÷		etc.			et	С,			

193

PROBLEMA. Si omnes numeri minores quam N fuerint summae quatuor quadratorum, ipsum numerum N A A DECEMPTOR in quatuor quadrata resolvere. senting from some of the Solutio. Sint pro numero quocunque minore N-p quadratorum radices a, b, f, g, unde pro numero N

statuantur radices x, y et f, g, ac ponatur x = a + -a et $y = b + \beta$, eritque ab hoc N - p subtracto

 $p = 2a\alpha + \alpha\alpha + 2b\beta + \beta\beta.$ Constraint and the states a second

 $\beta = 1$ and sumatur $\alpha = -n$ et $\beta = -n$, ut fiat p = 2n(b-a) + 2nn; quare si fuerit b = a - d, habebitur p = 2(nd - nn), qui numerus duplo major est quam casu praecedente, pro numeris trigonalibus; unde eadem criteria locum habebunt, quae ante, si modo numerus p duplo major capiatur. Ita resolutio numeri N-p succedet

si pro numero	N—2 fuerit	b=a tum erit	x = a - 1,	y=b+1		
1	N-4	b = a + 1	<i>x==a</i> -1, 3	y=b.1.1	de la presenta de la compañía de la	
	N-6	b=a-1-2	x = a - 1,	y=b-+-1	<i>i</i> ,	
	<i>N</i> —8	b=a-+-3	x = a - 1,	y=b+1	• • •	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		b = a	x = a - 2,,	<i>y</i> =−2	to esta da Lidar	til herrit."
	<i>N</i> — 10	b = a - 4	etc.	etc.		
e e si Si e si e	etç.	elc.		e of the off bootst	s welling to the second	NSTRUCTION OF

Ic ergo patet, pro hoc casu numerum criteriorum esse duplo majorem quam casu praecedente: Verum quia he quatuor occurrunt radices, etiam hic multo probabilius est, inter quaternas radices occurrere duas, quarum differentia sit vel 0, vel 1, vel 2, vel 3, vel etc. Quin etiam plerique numeri pluribus modis in quatuor quadrata resolvi poterunt, unde hoc judicium acque certum esse potest ac praecedens.

Рковьема. Si omnes numeri minores quam N fuerint resolubiles in quinque numeros pentagonales, ipsum numerum N in tales partes resolvere.

ana Solutio. Sint pro numero N-p radices quinque pentagonalium a, b, f, g, h, unde pro ipso numero N statuantur quinque radices x, y, f, g, h, ac ponatur $x = a + \alpha$ et $y = b + \beta$, eritque

$$\frac{3ax - x}{2} - \left(\frac{3aa - a}{2}\right) = \frac{6aa - 3aa - a}{2} \quad \text{et} \quad \frac{3yy - y}{2} - \left(\frac{3bb - a}{2}\right) = \frac{6b\beta + 3\beta\beta - \beta}{2},$$

unde fiet
$$p = 3aa + \frac{3aa - a}{2} + 3b\beta + \frac{3\beta\beta - \beta}{2}.$$

Sumatur nunc $\alpha = -n$ et $\beta = +n$ eritque p = 3n(b-a) + 3nn; quare si fuerit b = a + d, fiet p = 3(nd + nn), ita te ut hoc casu p sit triplo majus quam pro trigonalibus, unde eadem criteria locum habebunt, si modo ipso p valor triplo major tribuatur; hinc igitur resolutio semper succedet

	numero			b = a
531 -		<i>N</i> 6	с <u>,</u>	b=a-i−1
		N9		b = a - 2
		N 12	, [:])	b = a + 3
		11 - 12	•)	b = a

aulus criteriis, si unicum tantum locum habuerit, resolutio numeri N certe succedit. Hic quidem triplo Dincibra habentur criteria. Verum inter quinque radices reperientur binae, quarum differentia sit vel 0, e 1, vel 2, vel 3, etc. Praeterea vero etiam plerique numeri multo pluribus modis in quinque pentagonales resolvi possunt.

PROBLEMA GENERALE circa numeros polygonales quoscunque, quorum laterum numerus sit $=\pi$.

Si omnes numeri minores quam N resolvi queant in π numeros polygonales, etiam ipsum numerum N in tales resolvere.

L. Euleri Op. posihuma. T. I.

1877 1979

AND BARTS STATIST

in the second

and the straight is

-95-04

L. EULERI OPERA POSTHUMA.

Arithmetica

aloaté acet

SOLUTIO. Sint pro numero quocunque minore, $N_{\overline{n}}$, p, radices polygonalium a, b, f, g, h, i, k, etc. η Tun vero pro ipso numero N radices x, y, f, g, h, i, k, etc. Sit autem in genere x = a + a, $y = b + \beta$, β , $\eta = t_{\overline{\alpha}}$ radicis x numerus polygonalis est $(\pi - 2)mx - \frac{1}{2}(\pi - 4)x$

Superior of the supplicity
$$(\pi - 2) x x \to \frac{1}{2} (\pi - 4) x \to 1$$

posito x = a + a, iste numerus polygonalis erit

$$\frac{4}{2}(\pi - 2)aa + (\pi - 2)aa + \frac{1}{2}(\pi - 4)a + \frac{1}{2}(\pi - 4)a - \frac{1}{2}(\pi - 4)a - \frac{1}{2}(\pi - 4)a,$$

unde si subtrahatur polygonalis ipsius a, remanet

$$(\pi - 2) \alpha \alpha - \frac{1}{2} (\pi - 2) \alpha \alpha - \frac{1}{2} (\pi - 4) \alpha;$$

hinc ergo si N-p ab N subtrahatur, relinquetur

1.1.5.7.

quare si capiamus a=0

$$(\pi - 2) \alpha \alpha + \frac{1}{2} (\pi - 2) \alpha \alpha - \frac{1}{2} (\pi - 4) \alpha + (\pi - 2) b\beta + \frac{1}{2} (\pi - 2) \beta \beta - \frac{1}{2} (\pi - 4) \beta.$$

Sumatur nunc $\alpha = -n$ et $\beta = +n$ fietque $p = n'(\pi - 2)(b - a) + (\pi - 2)nn$; quamobrem si fuerit b = a + d, err $p = n(\pi - 2)d + (\pi - 2)nn = (\pi - 2)(nd + nn)$;

ideoque $\pi-2$ vicibus major quam pro	numeris trigonalibus; quocirca (criteria ita se habebunt:
Si pro numero	$N - (\pi - 2)$, fuerit: $b = a^{-1}$	
$1 = 41 \pm 8^{-1}$ $(1 \pm 1)^{-1} \pm 10^{-1}$	$N-2(\pi-2), \qquad \forall b=a+-$	1 good in which is a constrained of the second state of the
and the second	$N-3$ $(\pi-2), \qquad b=a+2$	
	$\frac{1}{N} = b \left(\frac{1}{2} - 2 \right)$	3 eigen an the property friendly
and the second sec	$(\mathbf{u}, \mathbf{b}) = \mathbf{a}_{\mathbf{u}}, (\mathbf{u}, \mathbf{b}) = \mathbf{a}_{\mathbf{u}}, \mathbf{b} = \mathbf{a}_{\mathbf{u}}, \mathbf{b}$	
	, etc. etc.	

Nisi ergo omnia haec criteria fallant, numerus N certe in π numeros polygonales resolvi potest. Pro theoremate igitur Fermatii demonstrando requiritur, ut demonstretur, fieri omnino non posse, ut omnia plane haectori teria simul fallant.

SCHOLION. Quemadmodum haec criteria deducta sunt ex consideratione binarum radicum x et y, cum binis datis a et b collatarum, ita eliam simpliciora criteria exhiberi possunt, si unica radix x cum a compa retur, manente y = b. Tum igitur erit

$$p = (\pi - 2) \alpha \alpha + \frac{1}{2} (\pi - 2) \alpha \alpha - \frac{1}{2} (\pi - 4) \alpha;$$
, fiet
$$p = \frac{1}{2} (\pi - 2) \alpha \alpha - \frac{1}{2} (\pi - 4) \alpha.$$

Quod si ergo pro numero unico N - p occurrat unica radix = 0. resolutio etiam certe succedet. Quocirca displate ciendum erit, num pro aliquo horum numerorum ipso N minorum:

$$N-1$$
, $N-\pi$, $N-(3\pi-3)$, $N-(6\pi-8)$, $N-(10\pi-15)$ etc.

inter ejus radices una occurrat = 0. Quod si semel tantum evenerit, numerus N certe resolutionem admitter Sin autem hoc criterium unquam succedat, tum demum superiora criteria examinari poterunt.

SCHOLION. Talia criteria possunt etiam derivari ex comparatione ternarum radicum x, y_1 , z, ponent $x = a + \alpha$; $y = b + \beta$ et $z = c + \gamma$, tum enim erit

$$p = (\pi - 2) (a\alpha + b\beta + c\gamma) + \frac{1}{2} (\pi - 2) (\alpha \alpha + \beta \beta + \gamma \gamma) - \frac{1}{2} (\pi - 4) (\alpha + \beta + \gamma),$$

. unde si sumatur $\alpha + \beta + \gamma = 0$ simulque fuerit $a\alpha + b\beta + c\gamma = 0$, obtinebitur

$$p = \frac{1}{2} (\pi - 2) (\alpha \alpha + \beta \beta + \gamma \gamma).$$

 $a = 0, \text{ under fit } \beta = -\alpha - \beta, \text{ erit } a\alpha + b\beta - c\alpha - c\beta = 0, \text{ under fit } \beta = 0, \beta$

 $\sum_{\alpha \to -\beta}^{a} c = \frac{a\alpha + b\beta}{\alpha + \beta}; \quad \lim ight rent p = (\pi - 2) \cdot (\alpha \alpha + \alpha \beta + \beta \beta);$ mam ob rem, si pro numero N-p inter ejus radices, quarum numerus est π , tres reperiantur a, b, c, ita $a\alpha \rightarrow b\beta$ comparatae, ut sit $c = \frac{a\alpha \rightarrow b\beta}{\alpha \rightarrow \beta}$, tum resolutio certe succedet. Sumatur ex. gr. $\alpha = n$ et $\beta = n$, eritque $c = -\frac{b\beta}{\alpha \rightarrow \beta}$ <u>____</u> sive a - b = 2c, vel a = 2c - b, ex qua conditione sequitur, numeros b, c, a esse in progressione arithmetica, quia hinc fiet c-b=a-c. Quare si pro numero N-p=N-3nn $(\pi-2)$ inter ejus radices ternae sint in progressione arithmetica, numerus N semper erit resolubilis. Similique modo multitudo criteriorum pro lubita angeri poterit, quorum si unicum successerit, resolutio numeri N locum habebit. Totum ergo negotium huc est reductum, ut demonstretur, nunquam fieri posse, ut omnia ista criteria simul fallant. In quo negotio imprimis erit perpendendum: in omnibus numeris minoribus N-p omnes plane combinationes radicum 0, 1, 2, 3, 4, 5, etc., marum quidem numeri polygonales simul sumti numerum N non superant, occurrere; unde demonstrandum erit: fieri non posse, ut in omnibus his combinationibus omnia nostra criteria simul fallant. Tum vero etiam hoc erit perpendendum, in numeris minoribus pro N assumtis resolutionem semper locum habere, ita, ut demonstratio tantum pro majoribus numeris sit suscipienda; ubi non solum numerus criteriorum major evadet, sed etiam numerus omnium combinationum. Quodsi enim nostra criteria unquam fallerent, id maxime metuen-Tum foret in numeris minoribus. manner ppetropper and the rest of the set of the set of the set of the property for the set of the Alind tentamen in theorema Fermatianum inquinendi, and the second second second

Sit series numerorum polygonalium 0, 1, $A_3 = B_3 = C_3 = D_3$ etc. is posito numero laterum $= n^2 + 2$, erit A = n + 2, B = 3n + 3, C = 6n + 4, D = 10n + 5, E = 15n + 6, F = 21n + 7, G = 28n + 8, etc. et in genere pro radice x numerus polygonalis the second second second $=\frac{1}{2}nxx-\frac{1}{2}(n^{\prime}-2)x.$

Bulhus positis videamus, quot numeris hujus seriei opus sit ad singulos numeros producendos. Ac primo quidem ab 1 usque ad A quilibet numerus N, minor quam A, componitur ex N'unitatibus, unde pro numeris ab f ad A ad summum opus est A. Nunc ad intervallum ab A ad B progrediamur, et quia A--1 constat ex duobus, A-+2 ex tribus, A-+3 ex quatuor, usque ad A-+n-i-1 qui est primus qui postulat n-1-2 partes, praecedentes vero omnes ex paucioribus constant; est vero $A \rightarrow n \rightarrow 1 = 2n \rightarrow 3$, unde videtur sequentem numerum 2n+4 requirere n+3, quia autem est 2n+4=2A, hic numerus tantum duos postulat; sequens igitur 2n+5postulat 3, 2n - 6 postulat 4, 2n - 7 postulat 5 etc. et 24 - n postulat n - 2. Est vero 24 - n = 3n - 4; at rero hic numerus est B-+-1, ideoque tantum postulat duos; unde pater usque ad B unicum esse numerum scilicet 2n+3, qui n+2 partes postulat, omnes reliqui pauciores. Nunc a B ad C progrediamur, ac manifestum est, Bine omnes numeros minores quam B + 2n + 3 ad summum requirere n + 2, numerus autem B + 2n + 3 = 5n + 6ridetur n-4-3 partes requirere : vest vero 5n-4-6 = 31 - 2n = 41 - n - 2, ubi 44 constat quatuor partibus et n-2 ex n-2 partibus, unde ipse numerus 44 + n-2 constat ex n-2. Verum hic excipiendus est casus, $1 = 2^{-1}$ and $1 = 2^{-1}$ first merativum: hoc autem casu numerus noster B = 2n = 3 first $2^{-1} = 2^{-1}$ unde casu erit C-1-1, ideoque duabus tantum constat partibus: Casu autem n=2 fit 5n 1-6=C, ideoque ipse est numerus polygonalis; reliquis vero casibus, ubi n > 2, iste numerus 5n + 6 secundus est, qui n + 2 partes postulat, dum minores omnes practer 2n-3 paucioribus constant. Sequens autem numerus 5n-7=2A+B; Hegque tribus tantum constat partibus. Hunc sequens, 5n + 8, constabit quatuor, ac landem $5n - 7 - 10^{-1}$ Constabilit ex n + 2; est vero 5n + 7 + n - 1 = C + 2, ideoque constat tantum tribus. Nunc a C ad D progremanur usque, ubi primum occurrit C-1-2n-1-3, qui dubius videri potest. Est vero

 $mbsaber(j \in \mathbb{N}, j \in \mathbb{N}) = C + 2n + 3 = 8n + 7 = 2B + 2n + 1 = 2B + A + n + 1,$

196

quarum partium numerus est n + 2, qui ergo set tertius numerus n - 1 - 2 partes postulans. Quia deinde all 2n-3 usque ad 5n-6 omnes numeri postulant partes pauciores quam n-2, numerus sequens dubius-error $C \rightarrow 5n \rightarrow 6 = 11n \rightarrow 10$, qui autem jam superat D et ad sequens intervallum pertinet. Simili modo progredientes a D versus E, ubi primum numerum dubium reperimus D + 2n + 3 = 12n + 8 = 2C, qui ergo duabus tanti constat partibus, unde ulterius progredi licet, usque ad 2C-1-n, qui constabil ex n-1-2. Sequens est 2C + n + 1 = 13n + 9,qui videtur $n \rightarrow 3$ partes requirere: est vero $13n \rightarrow 9 = D \rightarrow B \rightarrow -1$, qui ergo in tres partes resolvitur. Hinc pr grediemur usque ad 14n + 9 = 2C + 2n + 1 = 2C + A + n - 1, sicque partium numerus reducitur ad n + 1sequens vero numerus 4n + 10 = D + 4n + 5 = D + B + A sicque tribus constat partibus, unde progredi lice usque ad 14n + 10 + n - 1 = 15n + 9 quod jam superat El a lè la 10,1 El parente . m. T. I. р. 336 - 340. madigenad ЗЙ. (Lexell.) Demonstratio sequens, ardua Viro Celeb. la Grange debetur: Si fuerit Aa = pp + qq + rr + ss, ubi sumere licet pp + qq, ut cum a communem non habeat divisorem Ponatur pp + qq = t et rr + ss = u, ut sit Aa = t + u, et per t multiplicando Aat = tt + tu. Cum nunc sit tu = (pp + qq) (rr + ss), erit summa duorum quadratorum; ergo ponatur = xx + yy, eritque $x \doteq pr \pm qs$ y = ps = qr, ita ut sit Aat = u + xx + yy. Jam quaerantur numeri α , β , γ ; δ , ut fiat $x = t\alpha - i - a\gamma \quad \text{et} \quad y = t\beta - i - a\delta,$ quod cum infinitis modis fieri possit, casu simplicissimo α et β capere licebit minores quam $\frac{1}{2}\alpha$, eritque aig $Aat = u (1 + \alpha \alpha + \beta \beta) + 2at (\alpha \gamma + \beta \delta) + aa (\gamma \gamma + \delta \delta).$ Debet ergo primum membrum $1 + \alpha \alpha + \beta \beta$ factorem habere α , quia autem t ad α est primus, necesse est and 1 - $\alpha \alpha + \beta \beta$ divisibile sit per a; ponatur ergo 1 - $\alpha \alpha + \beta \beta = aa'$, ita ut nunc habeamus $dt = a'tt + 2t (\alpha \gamma - 1 - \beta \delta) - 1 - a (\gamma \gamma - 1 - \delta \delta),$ quae per a multiplicata fit $Aa't = a'a't(ay = \beta\delta) - faa'(yy - \delta\delta),$ ېغه سيې formula per *i* divisibilis. In ultimo membro loco aa restituatur $1 + \alpha \alpha + \beta \beta$, ut habeamus 1 帮助的 10 $Aa't = a'a'u + 2a't (\alpha\gamma + \beta\delta) + (\alpha\alpha + \beta\beta) (\gamma\gamma + \delta\delta) + \gamma\gamma + \delta\delta,$ cujus formulae ad dextram tria priora membra manifesto reducuntur ad $(a't + \alpha\gamma + \beta\delta)^2 + (\beta\gamma - \alpha\delta)^2$ and the start of $Aa't = (a't - \alpha\gamma + \beta\delta)^2 + (\beta\gamma - \alpha\delta)^2 + \gamma\gamma + \delta\delta.$ ita ut nunc habeamus Supra autem vidimus yy 4-88 per t esse divisibile, unde etiam summam duorum priorum quadratorum $(\alpha' \iota - \alpha \gamma - \alpha \beta \delta)^2 - (\beta \gamma - \alpha \delta)^2 = (\beta \gamma - \alpha \delta)^2 + (\beta \gamma - \alpha \delta)^2 = (\beta$ per 1 divisibilem esse oportet, ita ut uterque quotus fiat summa duorum quadratorum, quare si faciamus a $\frac{(a't - ay - \beta\delta)^2 - (\beta\gamma - a\delta)^2}{r} = p'p' + q'q' \quad \text{et} \quad \frac{\gamma\gamma - \delta\delta}{r} = r'r' + s's'$ late real in habebimus Aa' = p'p' + q'q' + r'r' + s's' scilicet summae quatuor quadratorum. Hic vero imprimis notandum est fore a' < a. Cum enim sit $a' = \frac{1 - a a - \beta \beta}{a}$, ac ut vidimus $\alpha < \frac{1}{2}a \quad \text{et} \quad \beta < \frac{1}{2}a, \quad \text{erit} \quad 1 + \alpha\alpha + \beta\beta < 1 + \frac{1}{2}aa,$ unde sequitur fore $a' < \frac{1}{2}a + \frac{1}{a}$, idéoque certe minor quam a, vel $a' < \frac{1}{2}a + 1$. Consequenter si productum

Ad fuerit summa quatuor quadratorum, ctiam hoc minus productum Aa' erit talis summa, hocque modo continuo ad minora hujusmodi producta Aa", Aa"' etc. progredi licet, sicque tandem necessario pervenietur ad productum A.1, ideoque A summa quatuor quadratorum. Quae est demonstratio insignis illíus et demonstratu difficillimi theorematis, quod si quispiam numerus A fuerit divisor summae quatuor quadratorum, quae quidem inter se factorem non habeant communem, tum ipsum numerum A fore quoque summam quatuor quadratorum, seu, quod eodem redit, summam quatuor quadratorum alios non admittere divisores nisi qui ipsi sint summae quatuor quadratorum.

(Krafft.)

Ejusdom theorematis demonstratio mea (scil. Euleri).

LEMMA I. Si N et n fuerint numeri inter se primi, tum quicunque numerus A ita potest repraesentari, It sit A = Nx + ny, et quia hoc infinitis modis fieri potest, dabitur casus, quo $x < \frac{1}{2}n$. Sit enim $A = N_{f-1}n_{g}$, erit etiam $A = N(f - \lambda n) + n(g + \lambda N)$,

unde, quantumvis magnus fuerit numerus f, ita accipere licebit λ , ut fiat $f - \lambda n < n$; tum vero si f etiamnunc faerit $> \frac{1}{2}n$, tum f - n certe minus erit, quam $\frac{1}{2}n$: hic enim ipsi numeri spectantur, et perinde est, sive sint positivi, sive negativi. anter a contra contra contra con

LEMMA H. Productum ex binis numeris, quorum uterque est summa quatuor quadratorum, in quatuor The contract stands to the second s quadrata resolvere.

Sit hujusmodi productum
$$(a^2 + b^2 + c^2 + d^2) (\alpha^2 + \beta^2 + \gamma^2 + \delta^2),$$

ac simatur $A = -a\alpha + b\beta + c\gamma + d\delta, \quad B = -a\beta - b\alpha - c\delta + d\gamma$
 $C = -a\gamma + b\delta - c\alpha - d\beta, \quad D = -a\delta - b\gamma + c\beta - d\alpha,$

quorum quadrata si invicem addantur, omnia duplicia producta ex binis se mutuo tollent, et quodvis quadratum latinarum literarum multiplicatur per omnia quadrata litterarum graecarum, atque binc manifesto fiet

$$(a^{2} + b^{2} + c^{2} + d^{2}) (a^{2} + \beta^{2} + \gamma^{2} + \delta^{2}) = A^{2} + B^{2} + C^{2} + D^{2}.$$

THEOREMA. Si numerus primus N fuerit divisor summae quatuor guadratorum $P^2 + Q^2 + R^2 + S^2$, tum ille ipse numerus N erit summa quatuor quadratorum.

DEMONSTRATIO. Quantumvis magni fuerint numeri P, Q, R, S, eos semper deprimere licebit infra $\frac{1}{2}N$; nam si loco P scribatur P-2N, summa illa etiamnunc erit per N divisibilis; quod etiam de reliquis Q, R et S valet, sicque singulae radices infra N deprimentur; ac si P adhuc majus fuerit quam $\frac{1}{2}N$, ejus loco scribatur N = P, quod certo erit minus quam $\frac{1}{2}N$. Sit ergo $p^2 + q^2 + r^2 + s^2$ ista quatuor quadratorum summa per N divisibilis, ita, ut singulae radices minores sint quam $\frac{1}{2}N$, ac denotet *n* quotum resultantem, ut sit

$$Nn = p^2 + q^2 + r^2 + s^2$$

ndenna o e reas autos et haec summa minor-erit quam N^2 , sieque certo erit n < N. Jam sequenti modo istae quatuor radices exhibeantur secundum lemma I.

$$p = Na - n\alpha, \quad q = Nb - n\beta, \quad r = Nc - n\gamma, \quad s = Nd - n\delta,$$

Thi litteras a, b, c, d its assumere licebit, ut sint minores quam $\frac{1}{2}n$, sive boc fiat negative, sive positive. His jam valoribus substitutis habebimus

 $Nn = N^2 (a^2 + b^2 + c^2 + d^2) + 2Nn (a\alpha + b\beta + c\gamma + d\delta) + n^2 (\alpha^2 + \beta^2 + \gamma^2 + \delta^2),$ (1) notetur esse, per lemma II, $a\alpha + b\beta + c\gamma + d\delta = A$. Duo posteriora membra sponte sunt divisibilia per n; (2) $\beta^2 S^0$ necesse est at atian minute of the sum of t erro necesse est, ut etiam primum per n sit divisibile. At N^2 dividi nequit per n, ergo necesse est, ut $b^2 + c^2 + d^2$ sit per *n* divisibile. Ponatur ergo

L. EULERI OPERA POSTHUMA.

Arithmetica

 $= -\operatorname{decta} \operatorname{support} a^2 + b^2 + c^2 + d^2 = nn', \quad \text{et quia} \quad a < \frac{1}{2}n, \quad b < \frac{1}{2}n, \quad \text{et quia} \quad b < \frac{1}{2}n, \quad b < \frac{1}{2}n$ erit summa $a^2 + b^2 + c^2 + d^2 < n^2$, ideoque $nn < n^2$, ergo n < n, and it is a second seco nisi forte sit n = 1. Divisa ergo per n'illa acquatione proditionamp contact base i attact the contact base is the contact base in the contact base is the contact base in the contact base is the contact quae per n' multiplicelur; ut liabeamus and a newsennin me sie eine mer mer an eine an eine ormaline me $Nn' \rightleftharpoons N^2 n'^2 + 2Nn'A + nn'(\alpha^2 + \beta^2 + \gamma^2 + \delta^2);$ hepp quia autem $nn' = a^2 + b^2 + c^2 + d^2$, ultimum illud membrum abit in an training $(a^2 - + b^2 - + c^2 - + d^2) (a^2 + \beta^2 - + \beta^2) = A^2 - + B^2 + C^2 - + D^2$

per lemma II; consequenter

$$Nn' = N^2 n'^2 + 2Nn'A + A^2 + B^2 + C^2 + D^2 = (Nn' + A)^2 + B^2 + C^2 + D^2.$$

Sicque formula Nn etiam erit summa quatuor quadratorum, existente n' < n. Eodem modo pervenire head ad formas ulteriores Nn'', Nn''' etc. ita, ut sit n'' < n', n''' < n'' etc. sicque tandem perveniri necesse est a formam N.1, quae ergo etiam est summa quatuor quadratorum. Q. E. D.

Hine etiam sequents THEOREMA facilius demonstrari potest, quam hactenus est factum: a contemp facility facility 😳 Summa duorum quadratorum inter se primorum alios non admittit divisores, nisi qui ipsi sint summa duorum quadratorum.

LEMMA. Productum ex duabus, summis duorum quadratorum insum in duo quadrata resolvere. Sit productum $(a^2 + b^2)(\alpha^2 + \beta^2)$, et sumtis $A = a\alpha + b\beta$ et $B = a\beta - b\alpha$, erit

$$(a^2 + b^2)(\alpha^2 + \beta^2) = A^2 + B^2.$$

and the second second first Si nunc N fuerit divisor formae $p^2 + q^2$, posito quoto = n, habetur $Nn = p^2 + q^2$. Nunc igitur p et q ita et hibeantur, ut sit p = Na + na et $q = Nb + n\beta$, ita, ut a et b sint minores quam $\frac{1}{2}n$; hincque $a^2 + b^2 < 0$ quo substituto fit

 $= N^2 (a_1^2 + b_1^2) + 2Nn_i (a_2^2 + b_1^2) + 2Nn_i (a_2^2 + b_1^2) + n_1^2 (a_1^2 + b_1^2) + 2Nn_i (a_1^2 + b_1^2) + 2Nn_i (a_2^2 + b_1^2) + 2Nn_i (a_1^2 + b_1^2) + 2Nn_$ dan sizer er er quae cum per n divisibilis esse debeat, statuatur 22- b² mn, et diviso per ne erit i the on real containe

$$N := N^2 n' + 2NA + n (\alpha^2 + \beta^2).$$

Multiplicetur per n', erit $N^n \cong N^2 n'^2 \oplus 2Nn' A \oplus nn! (\alpha^2 \oplus \beta^2)$ unless β and β and at $nn'(\alpha^2 + \beta^2) = A^2 + B^2$, ergo annoted and there expenses on A - submer of

sicque
$$Nn' = N^2 n'^2 + 2Nn' A + A^2 + B^2 = (Nn' + A)^2 + B^2$$

sicque Nn' est etiam summa duorum quadratorum, ubi $n' < \frac{1}{2}n$. Hocque modo ulterius progrediendo mai bu
venietur ad N.1. Consequenter; N certo erit summa duorum quadratorum.

计标准站 静脉上 计算法参数 HERE AND LOS AND SHIEL Alia demonstrațio simplicior ejusdem theorématis.

an an ailing 1.4.1 Si numerus quicunque N fuerit divisor summae quatuor quadratorum $P^2 + Q^2 + R^2 + S^2$, quae singu seorsim per eum non sint divisibilia, ille ipse numerus quoque erit summa quatuor quadratorum.

- GERTER OFFICE 化磷石油 放开机 $\frac{1}{2}N^2$. Ponatur enim DEMONSTRATIO. I. Illa quadrata semper ad alia reduci possunt minora quam

 $P = \mathfrak{U}N \neq p, \quad Q = \mathfrak{D}N \neq q, \quad R = \mathfrak{C}N \neq r, \quad S = \mathfrak{D}N \neq s,$

ubi literae I, D, C, D ita assumi possunt, ut numeri p, q, r, s infra semissem numeri N deprimantur, quint substitutis evidens est, formulam $p^2 + q^2 + r^2 + s^2$, quae utique minor erit quam N^2 , divisibilem fore Alaphication and inelfa et quotum fore minorem quam N.

II. Sit ergo iste quotus = n, ut sit $Nn = p^2 + q^2 + r^2 + s^2$, et ratione hujus numeri n radices istor to a state of the second over the second putper quadratorum ita exhiberi poterunt $p = a + \alpha n$, $q = b + \beta n$, $n = c + \gamma n$ et $s = d + \delta n$,

in the so-weather

sicque N

Bellin M

 $\frac{1}{2}n$ deprimere licebit, b, c et d etiam valores negativi admittantur, hos numeros itidem infra. $\frac{1}{2}n$ deprimere licebit, and with $a^2 + b^2 + c^2 + d^2 < n^2$... adam page And Color His autem valoribus substitutis fiet and the state of the teter montantin south estimates $a^{2} + b^{2} + c^{2} + d^{2} + 2n (aa + b\beta + c\gamma + d\delta) + n^{2} (a^{2} + \beta^{2} + \gamma^{2} + \delta^{2}), a = 0$ nna formula per lemma praemissum abit in hanc Anterior and Anterior Concerns $Nn := a^2 + b^2 + c^2 + d^2 + 2nA + n^2(\alpha^2 + \beta^2 + \gamma^2 + \delta^2),$ and a more guae-cum sit divisibilis per n et bina posteriora membrà jam in se sint per n divisibilia, necesse est, ut etiam pars prima $a^2 + b^2 + c^2 + d^2$ factorem habeat n. Quare ponatur $a^2 + b^2 + c^2 + d^2 = nn'$ et dividendo per m $N = n' + 2A + n (\alpha^2 + \beta^2 + \gamma^2 + \delta^2);$ o is attenta receipto IV. Multiplicemus nunc in n', et in postremo membro loco nn' substituamus valorem $a^2 - b^2 + c^2 + d^2$, in prodeat $Nn' = n'^2 + 2n' A + (a^2 + b^2 + c^2 + d^2)(a^2 + \beta^2 + \gamma^2 + \delta^2).$ per lemma praemissum boc postremum membrum transformatur in $A^2 + B^2 + C^2 + D^2$, ita, ut nunc ha- $Nn' = n'^2 + 2n'A + A^2 + B^2 + C^2 + D^2$ beamus 1110 Altra to a $Nn' = (n' + A)^2 + B^2 + C^2 + D^2 = summae quatuor quadratorum.$ sive V. Cum autem sit $nn' = a^2 + b^2 + c^2 + d^2 < n^2$, utique erit n' < n. Quemadmodum igitur ex forma Nn, muae erat summa quatuor quadratorum, pervenimus ad hanc minorem Nn', etiam aequalem summae quatuor madratorum; ita ulterius pervenire licebit ad formulas Nn'', Nn''' etc. itidem quatuor quadratis aequales, ita, Withimeri n', n'', etc. continuo diminuantur. Tandem ergo haec diminutio usque ad unitatem deducetur; Ta; ut tum futurum sit N.1; hoc est ipse numerus propositus N aequalis summae quatuor quadratorum. Q. E. D. COROLL'ARIUM 1. Haec adeo demonstratio locum habet, etiamsi N non fuerit numerus primus; dummodo ergo numerus quicunque N fuerit factor vel divisor summae cujuspiam quatuor quadratorum, tum certe is ipse numerus quoque erit summa quatuor quadratorum. COROLLARIUM 2. Quodsi ergo demonstrari posset, proposito quocunque numero N, semper exhiberi posse summam quatuor quadratorum per eum divisibilem, tum utique completa haberetur demonstratio theorematis Allius Fermatiani, quod omnis numerus sit summa quatuor quadratorum, vel etiam pauciorum. THEOREMA. Proposito quocunque numero primo N, semper exhiberi possunt quatuor quadrata, singula munora quam $\frac{1}{4}N^2$, quorum summa per illum numerum sit divisibilis. r dat ar receive filier in men e con-DEMONSTRATIO. I. Ratione numeri propositi N omnes plane numeri in aliqua sequentium formularum λN , $\lambda N + 1$, $\lambda N + 2$, $\lambda N + 3$, $\lambda N + 4$, $\dots \lambda N + (N - 1)$, erunt contenti manum numerus est = N. Singulae autem hae formae non omnes continent numeros quadratos; dantur scilicet ulter illas ejusmodi formulae, quae numeros quadratos involvunt, reliquae vero quadrata prorsus excludunt. Seposita enim prima forma λN , quae ipsa multipla numeri N continet, reliquarum primae λN -+-1 et ultimae N + N - 1, vel $(\lambda + 1) N - 1$ quadrata in eadem formula continebuntur, nempe $\lambda N + 1$. Eodem modo quadrata secundae et penultimae formulae continentur in formula $\lambda N + 4$. Simili modo quadrata tertiae et antemenultimae continebuntur in formula $\lambda N \rightarrow 9$, quarum formularum multitudo est $\frac{4}{9}(N-1)$, quae scilicet in se complectuntur quadrata. Reliquae formulae omnes ab his diversae quadrata penitus excludunt, quarum nu-There it deminst $\frac{1}{2}$ (N-1) and the formula that the formula for the formula of the formula for the formula for the formula for the formula for the formula formula for the formula formula formula for the formula formula formula for the formula fo M_{2} Sint formulae, illae, quadrata, admittentes: $\lambda N + a$, $\lambda N + b$, $\lambda N + c$, $\lambda N + d$, etc., quarum numerus est 2 N-1) et modo vidimus, inter hos numeros a, b, c, d, etc. reperiri quadratos 1, 4, 9, 16, etc. quamdiu alleet sunt minores, quam N. Majorum enim residua ex divisione per N relicta sumuntur. Formulae autem madrata penitus excludentes, sint: $\lambda N + \alpha$, $\lambda N + \beta$, $\lambda N + \gamma$, $\lambda N + \delta$, etc., quorum numerus itidem est 11. Domains and inclusion manual stationary and a second

L. BULERI OPERA POSTHUMA

Arithmetica

to sto hitel

III. Facile autem demonstrari potest, binas formulas prioris classis in se multiplicatas etiamnunc ad pri rem classem pertinere, scilicet cum prior classis contineat formas a, b, c, d, etiam continebit producta exibini vel quotcunque horum numerorum. Scilicet producta ex binis numeris prioris classis etiam in priore class occurrent, cujusmodi sunt aa, bb, cc, etc. Tum vero productum ex numero prioris classis in numerum post rioris classis cadet in classem posteriorem. Denique productum ex binis numeris posterioris classis etiam cade in classem priorem.

IV. Jam si in prima classe occurreret formula $\lambda N - a$, sive quod eodem redit, $\lambda N - N - a$, darentur quadrata formae $\lambda N - a$ et $\lambda N - a$, quorum ergo summa foret per N divisibilis. Quare si quis neget, dari summa quatuor quadratorum per N divisibilem, multo magis negare debebit, dari adeo summam duorum quadratorum divisibilem.

V. Quo igitur nostrum theorema demonstremus, sumamus tantisper, non dari summam quatuor vel. par ciorum quadratorum, quae non esset divisibilis per numerum propositum N, atque ostendemus hinc maxima absurda esse secutura.

VI. Ista igitur opinione quasi adoptata, quia numerus $\rightarrow a$ vel N-a in priore classe non occurrit, cerie occurret in posteriore classe inter numeros α , β , γ , δ_i ; ergo inter numeros α , β , γ , δ occurrent numeri -b, -c, -d, ideoque etiam negativa quadrata -1, -4; -3, -6

VII. Eodem' modo ostendi potest, numerum -a - b certe non in priori classe contineri; si enim ibi contineretur, darentur tres numeri quadrati formarum $\lambda N - a$, $\lambda N - b$ et $\lambda N - a - b$, quorum summa esset per divisibilis; quod cum hypothesi repugnet, hic numerus -a - b in posteriori classe reperiatur necesse est.

VIII. Quia autem in posteriori classe reperitur -1, productum ex -1 in -a - b, id est -a + b in prima classe continetur; sicque in priori classe jam occurrerent numeri 1, 2, 4, 5, 8, 9, 10, 13; eorundem autem negativa occurrent in classe posteriori.

IX. Cum ergo formulae $\lambda N + 1$ et $\lambda N + 2$ sint prioris classis, ibidem non continebitur formula $\lambda N + 3$ quia alioquin haberemus tria quadrata harum formularum, quorum summa foret per N divisibilis. Quia ergo -3 non in priori classe continetur, continebitur in posteriori; ejus vero productum in -1, hoc est + 3, con tinebitur in priori.

X. Sit autem generalius f numerus quicunque primae classis, atque dico, in priori classe formulan $\lambda N - f - 1$ non contineri, quia darentur tria quadrata, scilicet $\lambda N + 1$, $\lambda N + f$, et $\lambda N - 1 - f$, quorum summa foret divisibilis per N; unde numerus -f - 1 in classe posteriori reperiatur necesse est; ejus vero negativum +f + 1 in priorem classem cadet.

XI. Admissa ergo illa hypothesi, si formula quaecunque $\lambda N + f$ in prima classe contineatur, ibidem quoque occurret formula $\lambda N + f + 1$; quocirca in prima classe occurrerent omnes istat formulae:

 $\lambda N \rightarrow 1$, $\lambda N \rightarrow 2$, $\lambda N \rightarrow 3$, $\lambda N \rightarrow 4$, etc.

hoc est omnes plane formulae forent prioris classis, simul vero in classem posteriorem ingrederentur omnes iste formulae: $\lambda N - 1$, $\lambda N - 2$, $\lambda N - 3$, $\lambda N - 4$, etc. hoc est omnes plane formulae tam in priore quam in posteriore classe occurrerent. Quare cum ante sit osten sum, in priore classe tantum occurrere $\frac{1}{2}(N-1)$ formulas et totidem in posteriore, absurdum est manifestum quod inde ortum est, quod falso supposuimus, non dari summam trium quadratorum per N divisibilem) quan obrem verum erit, dari summas trium quadratorum per N divisibiles. Multo magis ergo dantur summae qu tuor quadratorum per N divisibiles. Q. E. D.

COROLLARIUM. Cum ergo, proposito numero primo quocunque N, dentur summae non solum quantu sed etiam trium quadratorum per illum divisibiles, ipse ille numerus N erit quoque summa quatuor quatu torum, vel et pauciorum, et cum producta ex binis vel pluribus numeris, quorum singuli sunt summae quatu

and such is

Li Euleri Op. posthuma. T. L

qpadratorum, sint etiam summae quatuor quadratorum, jam rigorosissime demonstratum est, omnes plane numeros esse summas quatuor quadratorum. OBSERVATIO SINGULARIS. Cum productum ex binis numeris, quorum uterque est summa duorum quadratorum, etiam sit summa duorum quadratorum, tum vero etiam productum ex duobus numeris, quorum nterque est summa quatuor quadratorum, quoque sit summa quatuor quadratorum. Hinc concludendum videtur, idem etiam de summis trium quadratorum valere, quod autem longe secus se habet, neque etiam eo modo, quo in lemmate superiore sumus usi, talis forma $(a^2 + b^2 + c^2)(a^2 + \beta^2 + \gamma^2)$ ad tria quadrata revocari potest. Fieri enim saepe potest, ut productum ex binis summis trium quadratorum non in pauciora quam quatuor quadrata resolvi possit, veluti 3 = 1 + 1 + 1 + 1 et 21 = 1 + 4 + 16; "horum tamen productum 63 nullo modo in pauciora quam quatuor quadrata potest resolvi, quandoquidem est numerus formae 8n - 1 sive 8n + 7.

A. m. T. I. p. 177-186.

(N. Fuss I.)

. Тиконемы. Nulli numeri in sequentibus formulis contenti in duos numeros trigonales resolvi possunt: 1 The 9n -- 5, 8 and the second to the second to an under some makes an shearth anould 1910 1 49n-4- 5, 19, 26, 33, 40, 47 and a start of and and and the Start of ्राव्या संसर्ग को जिल्ला ति व स III.___81n + 47, 74 opennentinen IV. 121n + 8, 19, 41, 52, 63, 74, 85, 96, 107, 118 V. 361n + 14, 33, 52, 71, 109, 128, 147, 166, 185, 204, 223, 242, 261, 280, 299, 318, 337, 356. Specimen DEMONSTRATIONIS pro formula 49n + 19: Sit 49n -- 19 = $\frac{aa-b}{2}$ + $\frac{bb-b}{2}$, erit multiplicando per 8 392n + 152 = 4aa + 4a + 4bb + 4b,ergo $392n + 154 = (2a + 1)^2 + (2b + 1)^2$, ideoque summa duorum quadrátorum. At numerus 392n + 154factorem habet 7, ideoque duorum quadratorum summa esse nequit. **PROBLEMA.** Numeros in hac forma contentos xx + 7 in quatuor quadrata resolvere. Solutio. Formula xx + 7 transformatur in has: $(x-1)^2 + 2x + 6$, vel $(x-2)^2 + 4x + 3$, vel $(x-3)^2 + 6x - 2$, vel $(x-4)^2 + 8x - 9$, respectively. $(x-n)^2 + 2nx - nn + 7$, vel in genere unde si 2nx — nn – 1–7 in tria vel pauciora quadrata resolvi potest, quaesito satisfiet. Plerumque statim una harum formularum priorum negotium conficit. Verum dantur etiam casus, quibus longe progredi oportet. Veluti si x Tuerit 75, usque ad n = 11 progredi oportet, tum enim fiet $75^2 + 7 = 64^2 + 1650 - 121 + 7 = 64^2 + 1536.$ WHAT AND A CONTRACT OF A CONTRACT OF $1536 = 16 \cdot 96 = 16^2, 6$, at 6 = 4 + 1 + 1, Est vero unde quatuor quadrata erunt $64^2 + 16^2 + 32^2 + 16^2$. Aliud exemplum multo notabilius est, quo x = 181; tum enim formulae supra datae frustra tentantur, donec Additional and the second second المرتبع والمراجع والمراجع والمراجع perveniatur ad n = 53, tum autem fiet Maria $181^2 + 7 = 128^2 + 19186 - 2802 = 128^2 + 16384 = 128^2 + 128^2$ Seque hic numerus ad duo quadrata est reductus, neque ullo alio modo vel in tria, vel in plura adhuc quadrata resolvi potest. Carlo and El Alighter Al test for the s Hac occasione sequens theorems omnem attentionem meretur. TREOREMA. Omnis potestas binarii 2ⁿ semper est numerus in hac formula contentus: xx + 7yy. 26

LEULERI OPERA POSTHUMA.

 $D_{EMONSTRATIO}^{(1)}$ Sumto enim $x = \frac{1}{2}$ et $y = \frac{1}{2}$ prodit xx = 7yy = 2. Notum autem est omnes point states formulae xx-1-7yy in eadem formula contineri, quandoquidem est $(aa + 7bb)(cc + 7dd) = (ac \pm 7bd)^2 + 7(ad \mp bc)^2.$ Hine igitur, per factores imaginarios erit undin other and anterior p heidang aminta die a gree Binomii autem $\frac{1+\gamma}{2} = \frac{1+\gamma}{4} - \frac{1+\gamma}{2} - \frac{1-\gamma}{2}$, $\frac{1-\gamma}{2} - \frac{\gamma}{2}$, erif ergo $2^n = \left(\frac{1+\gamma}{2} - \frac{\gamma}{2}\right)^n \cdot \left(\frac{1-\gamma}{2} - \frac{\gamma}{2}\right)^n$. Binomii autem $\frac{1+\gamma-7}{2}$ potestates sequenti modo progrediuntur $\frac{1+\gamma'-7}{2}^{2}$ · Bergensteinen - Sum Hitte $\frac{-5-\gamma-7}{2} = \left(\frac{1+\gamma-7}{2}\right)^3$ ast - TH g I F m Z $\frac{1-3\nu'-7}{2} = \frac{3}{2} \left(\frac{1+\nu'-7}{2}\right)^4$ the one we have advantaged as early apply of environmentations of the environmentation of the environm Harum formularum ambae partes seriem recurrentem constituunt, cujus scala relationis est 1, -2, under ex. gr. ponatur $\frac{1+1^2-7}{2} = A$, et quia omnes hae formulae per 2 dividuntur, istae formulae sequenti mode continuantur: $2A^{8} = -31 - 3V - 7$ 2A = 1 + V - 7 $2A^{9} = -5 - 17 \ V - 7$ $2A^3 = -5 - V - 7$ $2A^{10} = 57 - 11 \gamma - 7$ $2A^{4} = 1 - 3V - 7 \qquad 2A^{11} = 67 + 23V - 7$ $2A^{5} = 11 - V - 7 \qquad 2A^{12} = -47 + 45V - 7$ $2A^4 = 1 - 3V - 7$ $2A^{6} = 9 + 5^{7} V - 7^{-3} V - 7 - 2A^{13} = -181 - 7 - 7$ annade to $2A^{7}$ - 13 - 7 V - 7 conserve aneter of the state of the Cum igitur sit topresents which some with a statement that a week could $\left(\frac{1+\nu'-7}{2}\right)^{13} = \frac{-184-\nu'-7}{2}, \text{ erit} \quad \left(\frac{1-\nu'-7}{2}\right)^{13} = \frac{-181+\nu'-7}{2}, \text{ indeque } -2^{13} = \frac{181^2+7}{4}$ 2^{15} = 181 $^{2-1}$ 7. Street the ergo Ratio autem scalae relationis in hoc sita est, quod si ponatur 11886. HU $z = \frac{1 + \sqrt{-7}}{2}$, fit $z = \frac{1}{2} = \frac{\sqrt{-7}}{2}$ et sumtis quadratis erit zz=z-2, unde nascitur scala relationis 1, -2. In superiori progressione, ubi omit termini in forma a + b V - 7 continentur, ii casus maxime sunt notatu digni, quibus b est vel -1, vel quibus casibus pars rationalis fit-maxima. Hincque sequens problema omnino peculiarem postulat solutionem PROBLEMA. Cum sit uti vidimus $\left(\frac{1+\gamma'-7}{2}\right)^n = \frac{a+b\gamma'-7}{2}$, investigare eos exponentes n, pro quibus $b = \pm 1$, id quod fieri observavimus casibus n = 1, 2, 3, 5, 13. Quaerantur igitur casus sequentes. Solutio. Cum esse debeat $b = \pm 1$, reducatur formula $\frac{1+\gamma'-7}{2}$ ad hanc formam $p(\cos\varphi + \gamma' - 1, \sin\varphi)$ eritque $p\cos\varphi = \frac{1}{2}$ et $p\sin\varphi = \frac{1}{2}$ V7, unde fit $tang\varphi = V7$, hincque $\sin\varphi = V\frac{7}{8}$ et $\cos\varphi = V\frac{1}{8}$, sicque erit p=1Invento igitur angulo φ , ut sit tang $\varphi = V7$ erit primo $\frac{1+\nu'-7}{2} = \frac{1+\nu'-7}{2} \frac{1+\nu'-7}{2} = \frac{1+\nu'-7}{2} \frac{1+\nu'-7}{2} = 2^2 (\cos \varphi + \nu'-1) \sin \varphi$ 116 1

Anaestio igitur huc redit, ut membrum imaginarium fiat quam minimum, id quod evenit, quando angulus no mam minime differt ab π , vel 2π , vel etc. vel $i\pi$. Quod si ergo statuamus $n\varphi = i\pi$ erit $\frac{n}{i} = \frac{\pi}{n}$, quamobrem quaerantur fractiones proxime acquales ipsi $\frac{\pi}{m}$, carumque numeratores dabunt valores pro n. Cum igitur sit 분수가 문 tang $\varphi = V7$ erit *l*.tang $\varphi = 0.4225490$, unde $\varphi = 69^{\circ} 17' 43'' = 249463''$. $\pi = 180^{\circ} = 648000''$, unde $\frac{\pi}{\varphi} = \frac{648000}{249463} = \frac{n}{i}$. $\sqrt{m_{h}^2-3}$ At vero Rvolvatur ergo haec fractio per continuam divisionem, eruntque quotientes 2, 1, 1, 2, 16, 7. Ex his quotis formentur sequentes fractiones 11 - 11 - 11 - 11 h $\frac{1}{0}, \frac{2}{1}, \frac{3}{1}, \frac{5}{2}, \frac{13}{5}, \frac{213}{82},$ ex quarum numeratoribus statim patet, quaesito satisfieri casibus 1, 2, 3, 5, 13, unde tuto affirmare licet idem 1. - 11 - S evenire casu n = 213. Consideremus casum n = 13, eritque $13 \varphi = 900^{\circ} 50' 19'' = 180^{\circ} 50' 19''.$ $12^{\frac{13}{2}} = 1.9566950$. Nunc vero est T. 12 $l2^{\frac{13}{2}} = 1.9566950$ $l2^{\frac{13}{2}} = 1.9566950$ unde fiet $\frac{l\cos 13\varphi = 9,9999534}{1,9566484}$, lsin 13 $\varphi = 8,1654040$ 0,1220990 $2^{\frac{13}{2}}\cos 13\varphi = -90,5 = -\frac{181}{2}, \qquad 2^{\frac{13}{2}}\sin 13\varphi = -1,32 = -\frac{1}{2}V7,$ $2^{\frac{13}{2}}\sin 13\varphi \sqrt{-1} = -\frac{1}{2}\sqrt{-7}$, unde patet esse $\left(\frac{1+\sqrt{-7}}{2}\right)^{13} = -\frac{181-\sqrt{-7}}{2}$ eritque Cum sit 181²-+ 7 = 2 (2⁷)², erit 181² = 2 - 7. Consideretur formula 2xx - 7yy reddaturque quadratum : Ponatur x = 2y + z eritque yy + 8yz + 2zz, cujus radix statuatur $y \rightarrow \frac{p}{q}z$, eritque $8y \rightarrow 2z = \frac{2p}{q}y \rightarrow \frac{pp}{qq}z$, unde fit $\frac{y}{z} = \frac{pp - 2qq}{8qq - 2pq}$ Statuatur ergo y = pp - 2qq et z = 8qq - 2pq, eritque radix illa quadrata 8pq - pp - 2qq, in qua ergo forma contineri debet 181, quod fit si q=5 et p-4q=13, ideoque p=33, vel p=7, ergo y=-1 et z=130et x = 128. Eritque ergo $181^2 = 2.128^2 - 7$, uti habuimus $181^2 - 7 = 2(2^7)^2$. A. m. T. II. p. 110-113. **1 (\$%E() 36. (J. A. Euler.) Hujus seriei: 1², 3², 6², 10², 15², etc. ad minimum duodecim termini conjungi debent, ut omnes numeri prodeant. At seriei 3^n , 4^n , 5^n , 6^n , etc. ad minimum tot termini jungi debent quot indicat baec formula $\frac{3^n}{5^n} + 2^n - 2 = T,$ numerus inleger proxime minor capi debet ubi pro 57 n = 1, 2, 3, 4, 5, 6,7, 8. la da ta Mara fit = 1, 4, 9, 49, 37, 573, 5443, 279, 555Pro númeris figuratis litera T ita se habet:

L. EULERI OPERA POSTHUMA,

Arithmetic adio.juibur bur rodit. ut membrum inagina 33. hat quan minimum. Il Fudd evenit, quando angulus we 110 min 1 ... 35) 6. 10, 15 ... 21 m 1... 350 est mit 1919 en 16 mar 25 ... 4 " 4 ... 2 ... 4 ... 3 anti 30 ... 4 ... 60 ... a-1-2 **5 1.5.14.30. 55 6**^a **1.3.4 a. 6 4 4 a. 10 4 10** 1, 4, 10, 20, 35, 56 a - b1. 5. 15. 35. 70 5 10 1. 6. 20. 50. 105 1. 8. 10 1. 4 4 a. 10 4 5a. 20 4 15a $a \rightarrow 6$ normalia States and $. \frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R$ *а-*н-8 41 diam shi /1 / . at . b. f . f . g subolump an a (man) and ith manufaces set about as a unif Omnes illae superiores series numerorum figuratorum sequenti forma generali comprehendi possunt - utirum (n+1)(n+2a) (n+1)(n+2)(n+3a) (n-1)(n+2)(n+3)(n+4a)n→-a etc. $1; -\frac{1}{4}; -\frac{1.2}{4}; -\frac{1.2}{4.2}; -\frac{1.2.3}{4.2}; -\frac{1.2.3.4}{4.2};$ pro qua superior littera T fit = a + 2n - 2. united as the contract and the state of the A. m. T. I. p. 234. 235 网络白银石 网络半田 对新门报航 医前颌上的前侧 - i arta z men annale C. Analysis Diophanteas 1 mil Quaestiones ad resolutionem unius acquationis ducentes. $TT = \frac{1}{2} ST = \frac{37}{(J. A. Euler.)_{2}} = \frac{1}{(J. A. Euler.)_{2}} =$ **PROBLEMA.** Si fuerit $x^3 = m$; et proposita sit formula axx + bx + c, invenire multiplicatorem $pxx + qx^3$ (axx + bx + c)(pxx + qx + r)ç. ut productum figt numerus absolutus non amplius involvens x_n posito goilicet $x^3 = m_1 = 181$ into 121 in m SOLUTIO. Productum ergo erit the second states and the second s $\frac{1}{10^{12}} - \frac{1}{10^{12}} - \frac{1}{10^{12}$ suppliere.

Debet ergo poin br + cq + map = 0 et ar + bq + cp = 0, tum enim productum erit ar + cq + map = 0 $m_{ind} = -\frac{br}{c} - \frac{c}{c},$

unde fit bcr + ccq = maar + mabq; hinc mabq - ccq = bcr - maar, 11.57

consequenter
$$\frac{q}{r} = \frac{bc - maa}{mab - cc}$$

Capiatur ergo q = bc - maa; r = mab - co; erit p = ac - bb; ita ut multiplicator quaesitus sit and an entre entre interval and a set of the entre entre interval and the entre entre interval and the entre entre interval and the entre Strip 1

$$(ac - bb) \underset{d}{xx} + (bc - maa) \underset{d}{x} + mab - cc;$$

$$3mabc - m^2 a^3 - mb^3 - c^3.$$

ac tum productum erit

PROBLEMA. Invenire numeros x et y, ut fiat $xy(xx - yy) = \alpha nn$, existente α numero primo: ubr hi cas sunt notandi:

38,

I. Si $\alpha = 7$, sumatur x = 16 et y = 9, tum enim fit xy (xx - yy) = 7. 16. 9. 25.

II. Si $\alpha = 13$, sumatur x = 325 et y = 36, erit xy (xx - yy) = 13.25.361361.289.

DARC 1

nginanin

A. m. T. I. p. 50.54

204

lemilirit. III. Si $\alpha = 23$, sumatur $x = 156^2$ et $y = 133^2$, erit $xy (xx - yy) = 23, 156^2$. 133². 289. 42025. IV. Ut $\alpha = 41$, capiatur $x = 21^2$ et $y = 20^2$, erit $xy (xx - yy) = 41.21^2.20^2.29^2$. V. Ut fiat $\alpha = 31$, sumatur $x = 40^2$ et $y = 9^2$, fit enim $xy'(xx'-yy) = 31.9^2$, 40^2 , 7^2 , 41^2 . VI. In genere si capiatur x = 4pp qq et $y = (pp - qq)^2$, fiet $xy (xx - yy) := (pp - qq + 2pq) (2pq - pp + qq) \cdot \Box .$ Tinde si sit 2pq + pp - qq = aa, fit $\alpha = 2pq - pp + gq$, at illa formula 2pq + pp - qq fit quadratum sumendo Cate of the Contract of the p = 2rs p = 2rr + ss - 2rs. The similar of the provided set of the set $xy'(xx - yy) = 8pp \cdot qq'(8p^4 + 2q^4) \Box = (4p^4 + q^4) \Box$ mide ill $a = 4p^4 + p^4 = (2pp + 2pq + qq)(2pp - 2pq + qq).$ Unde si fuerit $2pp \rightarrow 2pq \rightarrow qq \equiv \Box$, tunc erit $\alpha = 2pp - 2pq \rightarrow qq$. At illud evenit si p = 2rs et q = rr - ss - 2rs, unde fit $\alpha = pp + (p-q)^2$. VIII. Ex casu VII, si p = 5 et q = 7, capiatur $x = 99^2$ et y = 1, erit $\alpha = 29$ et $xy (xx - yy) = 29 \Box$; Tel si capiatur $x = 29.13^2$ et $y = 70^2$. land a political plant a property of the State of the and Green A. m. T. J. p. 21. 22 離離 御 朝 祝 みまま の オ .39. (Lexell.) PROBLEMA. Invenire numeros x, y, z, ut fiat $\alpha x \alpha + \beta y y = \gamma z z$, siquidem cognitus fuerit casus $= \frac{\beta gg}{2} = \frac{\beta gg}{2} =$ SOLUTIO. Statuatur $\alpha xx + \beta yy = (\alpha ff + \beta gg) (\alpha pp + \beta qq)^2$, tum enim erit $\alpha xx + \beta yy = \gamma hh (\alpha pp + \beta qq)^2$, sicque erit, $z = h (\alpha pp + \beta qq)$; illud autem hoc modo per factores praestetur. Sit $xV\alpha + yV - \beta = (fV\alpha + gV - \beta)(pV\alpha + qV - \beta)^2$, tum enim sponle fit $x V \alpha - y V - \beta = (f V \alpha - g V - \beta) (p V \alpha - q V - \beta)^2$, quarum formularum productum ipsa est aequatio supposita. Prior autem evoluta dat $x V \alpha + y V - \beta = \alpha f p p V \alpha - \beta f q q V \alpha = 2 \beta g p q V \alpha$ $+ \alpha g p \mathcal{V} - \beta - \beta g q g \mathcal{V} - \beta + 2 \alpha f p q \mathcal{V} - \beta$ $x = f(\alpha p p_{v \to v} \beta q q) - 2\beta g p q$ $y := g(\alpha pp - \beta qq) - 2\alpha fpq$ $z = h \left(\alpha p p + \beta q q \right).$ ac tum erit 10.07.07.07.07 24.1 Verum haec solutio nondum est generalis, eodem modo enim ponere potuissemus 11011 $\alpha xx + \beta yy = (\alpha ff + \beta gg) (pp + \alpha \beta gq)^2$ unde fit $z = h (pp + \alpha \beta qq)$. Pro hoc ergo casu statuatur $x \mathcal{V} \alpha + y \mathcal{V} - \beta = (f \mathcal{V} \alpha + g \mathcal{V} - \beta) (p + q \mathcal{V} - \alpha \beta)^2,$ $x := f\left(pp - \alpha\beta \, qq\right) - 2g\beta \, pq$ cujus evolutio praebet $y = g(pp - \alpha\beta qq) + 2f\alpha pq.$ verum ne hi ambo quidem casus solutionem praebent generalem, cum sine dubio ejusmodi casus dentur, quibus z non per h fit divisibile, quare pro solutione generali statuatur $\alpha xx + \beta yy = (\alpha ff + \beta gg) (\alpha npp + \beta nqq)^2$, unde fit $z = hn (\alpha pp + \beta qq)$, ubi forte n potest esse fractio denominatoris h. Statuatur igitur $x \mathcal{V} a + y \mathcal{V} - \beta = (f \mathcal{V} a + g \mathcal{V} - \beta) (p \mathcal{V} a n + g \mathcal{V} - \beta n)^2,$ cujus evolutio praebet part a commence of a second

L. EULERI OPERA POSTHUMA.

 $F(\alpha npp - \beta nqq) - 2\beta ngpq, \quad y = g(\alpha npp - \beta nqq) + 2\alpha nfpq.$

Videamus igitur an esse possit $n = \frac{1}{h}$, manentibus x et y integris. Cum igitur sit

$$x = \frac{f(app - \beta qq) - 2\beta g pq}{f(app - \beta qq) + 2\alpha f pq}$$

quod evenit si p et q ita sumantur, ut $fq \rightarrow -gp$ fiat per h divisibile.

The Mill of Million and the second of

and the moder of the set of about as a few I. Krafft.)

Problematis supra propositi solutio facillime sequenti modo absolvetur, siquidem constet unus casus sit $\alpha ff \rightarrow \beta gg = \gamma hh$, ubi scilicet x = f, y = g et z = h. Statuamus $x = fp \rightarrow \beta gq$ et $y = gp - \alpha fq$, tum enim en $\alpha xx + \beta yy = pp \ (\alpha ff + \beta gg) + \alpha \beta gg \ (\alpha ff + \beta gg) = \gamma hh \ (pp + \alpha \beta gq).$

Sicque aequatio adhuc resolvenda erit $hh(pp + \alpha\beta qq) = zz$, ita ut $pp + \alpha\beta qq$ debeat reddi quadratum, quod fi capiendo $p = rr - \alpha \beta ss$ et q = 2rs, tum enim fit $\mathbb{V}_{1}\{\{_{2}^{R_{1}}, \hat{\chi}_{k}\}$

$$pp \rightarrow \alpha\beta qq = (rr \rightarrow \alpha\beta ss)^2$$

Ideoque
$$z = h (rr + \alpha\beta ss)$$
. Ipsarum vero x et y valores erunt
 $x = f (rr - \alpha\beta ss) + 2\beta grs, \quad y = g (rr - \alpha\beta ss) - 2\alpha frs,$

ubi numeri r et s pro lubita assumi possunt. (Conf. Comment. arithm. T. I. p. 556.)

A. m. T. I. p. 95. 96. 98. 99

A. m. T. I. p. 130

0100119

- . (. j.) - **12. d**

Arithmetic

11

抗抗菌

ander in

40.

(J. A. Euler.) Hill and a 4 THEOREMA. Si fuerint naa $-pbb = \Box = cc$ et nff $-ggg = \Box = hh$, tum semper assignare licet x et y ut sit $nxx \rightarrow pgyy = \Box = zz$. This while the characteristic production dy = (z + b) (z + b)

DEMONSTRATIO. Cum sit $pbb = cc - naa^{\circ}$ et qgg = hh - nff, erit productum $pgbbgg = (cc - naa) (hh - nff) = (ch + naf)^2 - n (ah + fc)^2,$ unde manifestum est fore $n (ah + fc)^2 + pqbbgg = (ch + naf)^2$, sicque erit

وحدوات الإلا الحجيريا م

x = ah + fc, -y = bg et, z = ch + naf, -

41.

(N. Fuss I.)

PROBLEMA. Resolvere acquationem $\lambda zz := \mu xx + \nu yy$, ex cognito casu $\lambda cc := \mu aa + \nu bb$. Set. Mar Solutio. A priore aequatione in cc ducta subtrahatur posterior in zz ducta, eritque (app)

$$0 = \mu \left(ccxx - aazz \right) + \nu \left(ccyy - bbzz \right),$$

ive
$$\mu (ccxx - aazz) = \nu (bbzz - ccyy)$$
, hinc $\frac{\mu (cx + az)}{bz - cy} = \frac{\nu (bz)}{cx}$

Utraque haec fractio statuatur $= \frac{p}{q}$ et ex priore elicitur

 $x = \mu \nu a a q$

$$\frac{\mu c q x + p c y}{b p - \mu a q} \quad \text{et ex altera} \quad z = \frac{c p x - v c q y}{v b a + a p},$$

qui duo valores inter se aequati dant

$$\frac{y}{x} = \frac{\mu r bc qq + 2\mu ac pq - bc pp}{\mu r ac qq - 2r bc pq - ac pp}$$

Statuatur ergo

1171

$$x = \mu v \, aqq - 2vbpq - app \quad \text{et} \quad y = \mu v \, bqq + 2\mu \, apq - bpp$$

ive
$$x = a(\mu v qq - pp) - 2vbpq \quad \text{et} \quad y = b(\mu v qq - pp) + 2\mu apq$$

Fragmenta ex Adversariis depromta. 207
$\begin{array}{ccc} \begin{array}{c} \begin{array}{c} z \\ \end{array} (bp - \mu aq) = \mu qx + py = \mu \mu r aq^3 - \mu r bp qq + \mu appq - bp^3 \end{array}$
$= \mu aq(\mu\nu qq + pp) - bp(\mu\nu qq + pp) = (\mu\nu qq + pp)(\mu aq - bp)$
hinc $\frac{z}{c} = -(\mu \nu qq + pp)$ et $z = -c (\mu \nu qq + pp)$:
HALTA SOLUTIO. Quia semper f , g , h invenire licet; ut sit $hh = ff + \mu \nu gg$, per hanc acquationem mul-
$iplicetur \ cognita \ \lambda cc = \mu da + \nu bb \ eritque$
$\lambda cohh = \mu aaff + \mu \nu \nu bbgg + \nu bbff + \mu \mu \nu aagg = \mu (af + \nu bg)^2 + \nu (bf - \mu ag)^2$
Cum igitur esse debeat $\lambda zz = \mu xx + \nu yy$, capi poterit $z = ch$ deinde $\dot{x} = af + \nu bg$ et $y = bf - \mu ag$, at vero ut
fiat $h = ff + \mu \gamma gg$, debet esse
$f = \mu \gamma q g - p p$ et $g = 2pq$, eritque $h = \mu \gamma q g + p p$,
consequenter formula proposita ita resolvetur $x = a (\mu r qq - pp) - 1 - 2rbpq$ et $y = b (\mu r qq - pp) - 2\mu apq$ et $z = c (\mu r qq + pp)$.
Sectors
ECL PRIME HAR HAR Solution of the second state of the second stat
si loco λ , μ , ν , z , x , μ , c , a , b
si loco λ , μ , ν , z , x , y , c , a , b ponatur μ , λ , $-\nu$, x , z , y , a , c , b . The si loco p et q scribamus r et s obtinebimus
The si loco p et q scribamus r et s obtinebimus
$z = c (-\lambda v ss - rr) - 2vbrs, y = b (-\lambda v ss - rr) - 2\lambda crs, x = a (-\lambda v ss - rr).$
Eodem modo si formulae datae ita disponantur $vyy = \lambda zz - \mu xx$ et $vbb = \lambda cc - \mu da$, unde
si loco $\lambda, \mu, \nu, z, x, y, c, a, b$
ponatur ν , λ , $-\mu$, y , z , x , b , c , a
tim loco p et q , t et u , obtinebitur
$z = c \left(-\lambda \mu u u - tt\right) - 2\mu a t u, x = a \left(-\lambda \mu u u - tt\right) - 2\lambda c t u, y = b \left(-\lambda \mu u u + tt\right).$
Has igitur tres solutiones ita aspectui opponamus:
Solutiones x y
$\mathbf{F}^{(n)} = a(\mu\nu qq - pp) + 2\nu bpq, \qquad b(\mu\nu qq - pp) - 2\mu apq, \qquad c(\mu\nu qq - pp)$
$\mathbf{I} = a(rr - \lambda v ss) + 2\nu brs$
III $a(t-\lambda\mu uu) + 2\lambda ctu$, $b(t-\lambda\mu uu)$, $c(t-\lambda\mu uu) + 2\mu atu$ b $6aa - m + 6ma$
III $a(t - \lambda \mu uu) - t - 2\lambda ctu$, $b(t - \lambda \mu uu)$, $c(tt - \lambda \mu uu) - t - 2\mu atu$ III $6qq - pp - 6pq$, $6qq - pp - 4pq$, $6qq - pp$ III $rr - 15ss$, $rr - t - 15ss - t - 10rs$, $rr - t - 15ss - t - 10uu$, III $tt - 10uu - t0tu$, $tt - 10uu$, $tt - 10uu - tu$.
$III tt - 10uu + 10tu, \qquad tt - 10uu, \qquad tt + 10uu + 4tu.$
Ubi notatu dignum, quod ternae formulae in qualibet columna cosdem numeros praebere queant, dummodo
$fuerit \lambda cc = \mu aa + \nu bb.$
EXEMPLUM. Sit proposita haec formula $5zz = 2xx + 3yy$, ut sit $\lambda = 5$, $\mu = 2$ et $\nu = 3$, tum vero quia
$2^{1^2} = 2 \cdot 1^2 + 3 \cdot 1^2$, erit $c = 1$, $a = 1$ et $b = 1$, unde ternae nostrae solutiones in tabella hic supra apponamus.
Hinc, si $p = 4$ et $q = 1$, erit $x = 11$, $y = 1$ et $z = 7$; si $p = 4$ et $q = -1$, erit $x = \pm 1$, $y = 9$ et $z = 7$,
In valores satisfaciunt. Sit porro pro secunda solutione $r = 1$ et $s = 1$ eritque $x = \pm 14$ seu ± 7 , $y = 26$
Som 13, et z = 22 seu 11. Unde fit $5zz = 2xx + 3yy$ sive $605 = 98 + 507$. The Sit, $r = 1$ et $s = -1$, ut sit
14 seu 7, $y=6$ seu 3 et $z=10$ seu 5. Pro tertia sit $t=1$ et $y=1$ et erit $x=21$ seu 7, $y=\pm 9$
Set 3 et $z = 15$ set 5. Sit $t = 1$ et $u = -1$ fietque $x = 1$, $y = \pm 9$ et $z = 7$.
A. m. T. I. p. 299. 300.

L EULERI OPERA POSTHUMA.

by - in ware spin and marked and marked and the destate of the

allow and part of the general (J. A. (Euler.), and the

Criterium ad dignoscendum, utrum hujusmodi aequatio fxx + gyy = hzz sit possibilis, nec ne?

Sinest possibilis, casu h = a, tunc etiam erit possibilis casu $h = \frac{a(pp-1-fg)}{qq}$: hic scilicet pro p ejusmodi in merus sumi debet, ut $pp \rightarrow fg$ divisorem habeat a, fuerit nempe $pp \rightarrow fg \stackrel{\text{ur}}{=} ab$ et sumto $g \stackrel{\text{ur}}{=} a$ etiam casu de erit possibilis. Tum vero pro b eodem modo operatio instituatur, sicque continuo, ad minores numeros perve nietur, donec tandem judicium fiat facile, daraste to construction figure un the second the second tanta

EXEMPLUM. I. Sit 7xx + 113yy = 114zz, quae aequatio an sit possibilis, quaeritur. Hic est g = 113, et quaeritur an sit possibilis casu h = 114 = 2:3.19? Statuatur ergo

 $h = \frac{114(pp + 791)}{1000}$ et sunto p = 3 et q = 40, prodit casus $h = \frac{114.800}{-1600} = 57$.

II. Nunc iterum fiet $h = \frac{57(pp + 791)}{r}$ et fiat pp + 791 divisibile per 19, quod si fieri potest, dabitur casis quo p < 19. Ut, (ex. gr. pp + 12 fiat divisibile per 19, debet esse p = 8, unde $h = \frac{855}{3 \cdot 19} = 15$, debet esse p = 8, unde $h = \frac{855}{3 \cdot 19} = 15$

III. Quaestio ergo huc est reducta, an aequatio 7xx + 113yy = 15zz sit possibilis? quae hoc modo repu sentetur 15zz - 7xx = 113yy, ubi f = 15, g = -7, fg = -105 et h = 113. Nunc fiat $h = \frac{113(pp - 105)}{113(pp - 105)}$ reddatur pp - 105 divisibile per 113, quod fit sumendo p = 52, tum autem fiat $h = \frac{413.2599}{\Box} = \frac{113.413.25}{\Box}$ ergo quadrato sublato fit h=23 et quaestio huc est reducta, an acquatio 15zz - 7xx = 23yy sit possibilit

IV. Fiat ergo $h = \frac{23(pp - 105)}{\Box}$ sitque pp - 13 per 23 divisibile, sive pp = 23n + 13, quod fit si net p = 6, ergo $h = \frac{-23.69}{\Box} = -3$. Habetur igitur haec acquatio 15zz - 7xx = -3yy, sive 7xx - 3yy = 15zz,

ubi f = 7, g = -3 et fg = -21, h = 15.

V. Fiat nunc $h = \frac{15(pp-21)}{1}$. Sumatur p = 4, erit $h = \frac{-15 \cdot 5}{1} = -3$, ergo acquatio 7xx - 3yy = 1quod actu evenit și x = 0 et y = z, atque hinc sequitur ipsam aequationem propositam esse possibilem

Nota: Revera autem est possibilis: si enim capiatur z = 2 et y = 1, fit

7xx + 113 = 456 sive 7xx = 343 et $xx = 49 = \Box$.

Ita semper aequatio si fuerit possibilis, ad talem formam reduci poterit axx + byy = azzmanifesto satisfit sumendo y = 0 et z = x.

We was (Krafft.) a water on a matter for and

Judicium hoc reddi potest adhuc facilius hoc modo:

Cum sit $h = \frac{2 \cdot 3 \cdot 19(p^2 + 791)}{q^2}$, capiatur p ita, ut $p^2 + 791$ divisibile fiat per 2:3.19. Primo' autem fitu visibile" per 2," si p = 2n + 1; at vero per 3 fit divisibile, si p = 3n = 1. Utrumque igitur obtinetur p = 6n = 1. Restat, ut $p^2 + 791$ sit per 19 divisibile; quod fit, si p^2 per 19 divisum relinquat 7; sive den esse $p^2 = 19n + 7$, ergo 19n + 7 debet esse quadratum, quod fit, si n = 3, critque p = 8. In genere ergo fiet si p=19n=8; hoc est casibus p=8, p=11, p=27, p=30, p=46; p=49, p=65, etc. inter quot meros, reperitur statim 11, qui est formae 6n = 1. Sumatur ergo p = 11, eritque $p^2 = 791 = 912 = 11$ ergo $h = \frac{114^2 \cdot 8}{\Box}$ et sublatis quadratis h = 2. Res ergo eo redit, an sit $7x^2 + 113y^2 = 2z^2$. Quia hic est $h = 2z^2$. sumatur iterum $h = \frac{2(p^2 + 791)}{\sigma^2}$. Ponatur p = 7, erit $h = \frac{2.840}{\sigma^2} = 105$. Si sumsissemus p = 3, produ

ine misting

積優

Arithm

209

 $\frac{2}{qq}$ $\frac{800}{qq}$ = 1, et jam quaeritur, utrum possit esse $7x^2 + 143y^2 = z^2$. Sumatur ergo $h = \frac{1(p^2 + 791)}{qq}$ et sumatur qqet sumatur qqp = 0, erit $h = \frac{7.113}{qq}$, et cum quaestio sit de forma $7x^2 + 113y^2 = 7.113z^2$, débet esse x = 113v, idéoque $7.113v^2 + y^2 = 7z^2$. Felicissime succedit, si in acquatione $h = p^2 + .791$ capiatur p = 7.4. Tum erit $7^2 46 + 7.443 = 7.995$

$$h = \frac{1}{qq} = \frac{1}{qq} = 7_{n-1} + 1_{n-1} + 1_{n-1}$$

ergo ventum est ad $7x^2 + 113y^2 = 7z^2$, quod fit si y=0 et x=z, ergo proposita aequatio est possibilis. Haec, solutio isti innititur principio: si fuerit $fx^2 + gy^2 = hz^2$, multiplicetur utrinque per $p^2 + fgq^2$, fietque $h(p^2 + fgq^2)z^2 = fp^2x^2 + gp^2y^2 + f^2gq^2x^2 + fg^2q^2y^2 = f(px + gqy)^2 + g(py - fqx)^2$.

Ergo si ponatur x' = px + gqy et y' = py - fqx, erit $fx'^2 + gy'^2 = h(p^2 + fgq^2)z^2$; adeoque si acquatio proposita fuerit possibilis, etiam hace erit possibilis et vicissim.

Jam sumto q = 1, habebitur praecedens forma $h(p^2 + fg)$. Si nunc p ita sumi potest, ut $p^2 + fg$ divisorem habeat h, quod semper eveniet valore $p < \frac{1}{2}h$, et ponatur $p^2 + fg = hh'$, ita ut loco h habeatur h^2h' , sive imissõ quadrato simpliciter h'. Sicque loco h prodiit novus valor h' illo multo minor; cum enim sit $p < \frac{1}{2}h$, wit $hh' < \frac{1}{4}h^2 + fg$, ideoque $h' < \frac{1}{4}h + \frac{fg}{4}$. Sin autem pro p talis valor non detur, indicio id erit, aequatioheinipropositaim esse impossibilem; non autem hoc judicium inverti potest; dantur enim casus; quibus aequatio Rilatominos est impossibilis; veluti evenit in hoc exemplo $2x^2 + 3y^2 = 7z^2$, ubi f = 2; g = 3 iet h = 7. Hinc forms valor orietur h = 7 ($p^2 + 6$) et sunito p = 4 fit h = 1; unde novus valor erit $h = 1(p^2 + 6)$; qui dat traine g'''', 10, 15, etc., qui autem comnes: nullo modo satisfaciunt; nam facile ostendi potest; aequationem $2k^2 + 23y^2 = z^2$ esse impossibilem; non erit divisibile per 3, quia alioquin tota aequatio per 9 dividi posset, et posito $2k^2 + 3y^2 = z^2$ isse impossibilem; non erit divisibile per 3, quia alioquin tota aequatio per 9 dividi posset, et posito $2k^2 + 3y^2 = z^2$ isse forma aquadratum esse forma 2n + 1; ideoque $2x^2 = 3h + 2$ it ipsa formula $2x^2 + 3y^2$ erit numerus $2k^3 + 23y^2 = z^2$ base forma quadratum esse nequit. $4k^3 k^3 = 3k^2 + 1$, erit x^2 numerus formae 3n + 1; ideoque $2x^2 = 3h + 2$ it ipsa formula $2x^2 + 3y^2$ erit numerus forma $2k^3 + 23y^2 = k^2$ possibilis sit nec né. Multiplicetur enim utrinque per $p^2 + gpq + fh^2$, ut habeatur

 $(p^2 \rightarrow gpq \rightarrow fhq^2)(fx^2 \rightarrow gxy \rightarrow hy^2) \stackrel{\text{def}}{=} h(p^2 \rightarrow gpq \rightarrow fhq^2)(z^2) \stackrel{\text{def}}{=} z^2) \stackrel{\text{def}}{\to} (p^2 \rightarrow fhq^2)(z^2) \stackrel{\text{def}}{\to} z^2)$

The notation, prive production kemper reduct posse all forman $fX^2 + gXY + hY^2$, "giod com not tain facile def under the factores irrationales sequenti mode estendetor. All the factores is the exact the

and the second second

di tak

and high

haec ergo forma acqualis esse debet producto ex binis praecedentibus, quod fiet acquando alterutrum factore producto ex binis praecedentibus, scilicet and the way and the second se

$$fX + \frac{1}{2}gY + YVl = (fx + \frac{1}{2}gy + yVl)(p + \frac{1}{2}gq + qVl);$$

sic enim sumto Vl negative, sponte fiet

$$fX + \frac{1}{2}gY - YVl = (fx + \frac{1}{2}gy - yVl) (p + \frac{1}{2}gq - qVl);$$

sufficiet ergo alterutram ita evolvisse, ut membra rationalia et irrationalia seorsim inter se acquentur. Tum igitur fiet

$$X + \frac{1}{2}gY = (fx + \frac{1}{2}gy)(p + \frac{1}{2}gq) + lgy$$

$$= pfx + \frac{1}{2}gpy + \frac{1}{2}fgqx + \frac{1}{2}g^2qy - fhqy$$

$$Y = fqx + ggy + py,$$

qui posterior valor in priore substitutus praebet

shina secol fX = pfx - fhqy, hinc X = px - hqy et Y = fqx + gqy + py.

Hoc igitur demonstrato ex dato valore k alius investigetur k', ut sit $k' = k (p^2 + gpq + fhq^2)$, omissis factoribu quadratis, capiatur autem q = 1, ut fiat $k' = k (p^2 + gp + fh)$, et si aequatio est possibilis, loco p semper eins modi valorem reperire licet, ut formula $p^2 + gp + fh$ factorem habeat k, quae posita = kk' dabit novum valored k'; quod si succedit, talis valor ipsius p semper dabitur minor, quam $\frac{1}{2}h$, dum scilicet p tam negative quam positive accipiatur, et sic valor k' multo minor erit quam k, unde continuo ad minores valores pervenieture donec judicium facile reddatur.

Res exemplo illustratur: $5x^2 + 16xy + 7y^2$, ubi f = 5, g = 16, h = 7. Quaeramus casum possibilem, que k=7, quippe qui oriturati x=1 et y=1, ita ut sit $5x^2 + 16xy + 7y^2 = 7z^2$, qui autem maxime est obvius sumendo x=0 et y=z. Ergo alium eligamus sitque $5x^2 + 16xy + 7y^2 = 59z^2$ ut sit k=59. Jam quaerature $k' = k(p^2 = 16p + 35)$ et capiatur p ita, ut factor 59 tollatur, quod fit si p = 10, $k' = 59.295 = 5.59^2$, und k'=5 qui casus est obvius sumendo y=0 et $z=x_{introduct intervalent inte$ Caller a second h. Heide

PROBLEMA. Invenire numeros f et g, ut fiat $fx^2 + gy^2 = p^2 + fg$.

Solution Erit ergo $fg - fx^2 - gy^2 = -p^2$; addatur x^2y^2 eritque $(f - y^2)(g - x^2) = x^2y^2 - p^2$. $f-y^2 = xy-p$, erit $g-x^2 = xy+p$, ideoque $f=y^2+xy-p$ et $g=x^2+xy+p$, unde si f detur, $p = y^2 + xy - f$, erit $g = x^2 + y^2 + 2xy - f$, sive $f + g = (x + y)^2 = \Box$. Quoties ergo f + g fuerit quadrating problemati satisfit; satisfiet ergo quoque, dummodo fuerit $fm^2 - - gn^2 = \Box$.

THEOREMA. Si fuerit $fx^2 + gy^2 = sz^2$ casu, quo s = h; tum etiam aequatio subsistere potest, quoties fuerit s = h = 4nfg, dummodo hic numerus fuerit primus.

Hujus theorematis demonstratio etiamnum desideratur.

EXEMPLUM. Sit $2x^2 + 3y^2 = sz^2$ quod fieri potest si s = 5. Idem ergo praestari potest si fuerit s = 5 + 24unde hi numeri primi oriuntur: 5, 29, 53, 101, 149, 173, 197, 269, etc. Cum ergo sit $2x^2 + 3y^2 = 101z^2$, ut in superiori calculo sit h = 101; erit $s = 101(p^2 + 6)$. Fiat $p^2 - 6$ per 101 divisibile, sive $p^2 = 101m^2$ unde nascetur haec progressio arithmetica

ex qua vero illi numeri n valores excluduntur, qui habent sequentes formas

 $3\alpha + 1$, 4α , $4\alpha + 1$, $5\alpha + 1$, $5\alpha + 2$.

Casui nostro satisfit si p=14, unde fit s=2; qui vero casus $2x^2 + 3y^2 = 2z^2$ est obvius; fit enim y=0.

(1, 1, 1)

1. 1. 1. 1. 1.

20 (i) ···

eodem casu fit s=149; unde alius 149(p^2 ---6), ideoque 149n-6 debet esse quadratum; unde excluduntur:

 $3\alpha + 1$, 4α , $4\alpha + 1$, $5\alpha + 1$, $5\alpha + 2$,

remanent pro *n* ergo 3α , $3\alpha + 2$, etc. et in numeris 3, 14, 15, 23, ubi p = 21 satisfacit, seu n = 3; s = 149.3.149 = 3, unde iterum nascitur casus obvius. Omnes autem numeri primi pro s, quibus formula $2x^2 + 3y^2 = sz^2$ subsistere potest, continentur in his duabus formulis 24n + 5 et 24n + 11, quibus adjungi debent 2 et 3 et praeterea nulli alii satisfaciunt, ita, ut satisfacientes ordine sint:

2, 3, 5, 11, 29, 53, 59, 83, 101, 107, 131, 149, 173, 179, 197.

Aliud judicium, utrum talis aequatio $fx^2 + gy^2 = hz^2$ sit possibilis.

Dividantur omnia quadrata per numerum h et notentur residua, quae sint 1, a, b, c, d, etc. et quadratum x^2 det residuum a, y^2 vero det b, sicque formula $fx^2 + gy^2$ dabit residuum af + bg, quod cum per h debeat esse divisibile, fieri poterit af + bg = 0, ideoque $b = \frac{-af}{g}$; ergo quodvis residuum si per $\frac{-f}{g}$ multiplicetur, iterum erit residuum. Quia autem $\frac{-f}{g}$ est fractus, ejus loco scribatur $\frac{nh-f}{g}$, ubi n ita sumatur, ut nh - f fiat divisibile per g et quotus sit k, qui si inter residua reperiatur, aequatio erit possibilis; sin secus, impossibilis. Sie proposita aequatione $2x^2 + 3y^2 = 29z^2$, ubi f = 2, g = 3 et h = 29, quaerantur residua quadratorum per 29 divisorum, quae sunt numero 14, nempe:

• 1, 4, 9, 16, 25, 7, 20, 6, 23, 13, 5, 28, 24, 22.

Quaeratur ergo $\frac{29n-2}{3} = 9$ posito n = 1. Quia ergo 9 inter residua occurrit, haec forma est possibilis. Sin autem proponatur $2x^2 + 3y^2 = 17z^2$, quadrata per 17 divisa dant residua

1, 4, 9, 16, 8, 2, 15, 13.

Nunc debet esse $\frac{17n-2}{3}$ = numero integro 5, qui cum non sit inter residua, indicat aequationem esse impossibilem. Hoc vero judicium non certum videtur, nam si aequatio hac forma exhibeatur $17z^2-2x^2=3y^2$, ubi f=17, g=-2 et h=3, residuum quadratorum est unicum 1; at vero $\frac{3n-17}{-2}=7$, si n=1, et denuo per 3 dividendo prodit 1, quod est residuum, et tamen aequatio est impossibilis.

Notari meretur aequatio $7x^2 - 4 - 2y^2 = 23z^2$, quia ipse numerus 23 non in forma $7a^2 - 4 - 2b^2$ continetur, siquidem *a* et *b* sint integri; at si $a = \frac{1}{3}$ et $b = \frac{10}{3}$, fit utique $\frac{207}{9} = 23$. Per regulam primam autem ex 23 prodit alius $23(p^2 - 14)$. Sumatur p = 3 proditque unitas.

(J. A. Euler.)

Ut dubium circa criterium postremum tollatur, observandum est primum, criterium eo redire, num inter residua quadratorum per *h* divisorum occurrat numerus -fg, sive nh-fg, qui si non occurrat, acquatio fxx+gyy=hzz certe est impossibilis; sin autem occurrat, plus inde non sequitur, quam vel hanc ipsam acquationem fxx+gyy=hzz, vel istam xx+fgyy=hzz esse possibilem; unde fieri potest, ut prior non sit possibilis, tum autem certo posterior fit possibilis.

A. m. T. I. p. 201 - 207.

43.

(W. L. Krafft.)

PROBLEMA. Formulam $mx^3 + n$ quadratum reddere ex casu cognito $ma^3 + n = bb$. Solutio. Ponatur x = a + y et formula proposita fiet

bb -+ 3maay +- 3mayy +- my = 0,

L.s. EULERISOPERA POSTHUMA.

Arithmetic

udenbul ve start $b = \frac{3maa}{2b}y$; hujus quadratum cujus radix ponatur $b = \frac{3maa}{2b}y$; hujus quadratum $y = \frac{1}{2b}y$; hujus quadratum $y = \frac{1}{2b}y$; hujus quadratum $y = \frac{1}{2b}y$; hujus quadratum (tom ma a star is the star is the star is bb -1- 3maay -1 is some prachet of in a short alwayed with the next aniser property could $\frac{3a + y}{2a + y} = \frac{9md^4}{2a} \frac{9md^4}{4b} \frac{1}{2a} \frac{9m(bb + n)}{4b} \frac{1}{2a} \frac{1}{4b}$ $\frac{3a}{4} - \frac{9an}{4bb}, \text{ ergo } x = \frac{a}{4} - \frac{3ma}{4bb}. \text{ Sin autem radix ponatur } b - \frac{3ma}{2b} y - pyy, \text{ erit}$ 1100 unde y = -9mma4 3mpaay³ $3mayy + my^3 = 2bpyy + \frac{mmu}{4bb}$ - **-+**- *ppy**. b Jam fiat $3ma = 2bp + \frac{9mma^4}{4bb} = \frac{2bp}{4} + \frac{9am(bb-n)}{4bb}$; ergo h it it conclude the second se $\frac{1}{2} \frac{1}{2} \frac{1}$ e barry to it is include and Superest base acquatio $1 = \frac{3paa}{b} + \frac{ppy}{m}$, ergo a much more children and in the second state of a second stat $\frac{1}{m} = \frac{1}{m} = \frac{1}{b} = \frac{1}{b} = \frac{1}{b} = \frac{9ma^3}{bb} = \frac{27a^3mn}{8b^4} = \frac{1}{b} =$ $= -\frac{1}{8} - \frac{9n}{4bb} + \frac{27nn}{8b^4}, \quad \text{ergo} \quad y = \frac{m}{8pp} \left(-1 - \frac{18n}{bb} + \frac{27nn}{b^4} \right).$ and a setting the same a star star as Saltas at (Lexell.) 如何是一个人的事情 that in the Annotatio ad superiorem formulam $mx^3 + n = \Box$, ubi ex dato casu $ma^3 + n = bb$ ope transformation is elicuimus novum casum. Omni attentione dignum videtur, quod si n fuerit numerus quadratus = kk, ex casu cognito $ma^{-1}-kk$ immediate duo alli elici queant hoc modo: Ponatur x = az, ut habeatur ma $z^3 + kk = \Box$, hoc est $\sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{$ Resolvetur ergo formula $(bb - kk)z^3$ etiam in duos factores, quod duplici modo fieri potest: a ora obai **1.** Sit unus factor (b + k)zz = y + k, eritque alter (b - k)z = y - k, haec aequatio ab illa subtracta reli

$$z = \frac{-2k}{b + k}$$
, ergo $x = \frac{-2ak}{b + k}$

II. Sit jam prior factor (b-k)zz = y-k, et alter dabit (b-k)z = y-k, unde fit differentia (b-k)zz = (b-k)z = -2k, cujus una radix est z=1, et altera $z = \frac{2k}{b-k}$ et $x = \frac{2ak}{b-k}$.

quit (b-k)zz - (b-k)z = 2k, cujus una radix manifesto est z=1, unde pro altera fit

Unde, conficinus istud egregium, THEOREMA:

Si formula $mx^3 + kk$ fuerit quadratum casu x = a, ita ut sit $ma^3 + kk = bb$, tum etiam quadratum $a^{(1)} + b^{(2)} + b$

primo:
$$x = \frac{-2ak}{b+k}$$
, et altero: $x = \frac{-2ak}{b-k}$.

Exempli gratia, cum formula $90x^3 + 1$ fat quadratum casu $x = \frac{1}{2}$; fiet enim $90 \cdot \frac{1}{8} + 1 = \frac{49}{4}$, ubi est $a = \frac{1}{2}$, k = 1 et $b = \frac{7}{2}$; bini casus derivati erunt $x = -\frac{2}{9}$ et $x = -\frac{2}{5}$; ex priore enim fit $\frac{-10.8}{81} + 1 = \frac{49}{81}$ et ex posteriore $\frac{90.8}{5^3} + 1 = \frac{18.8}{25} + 1 = \frac{169}{25}$. A. m. T. I. p. 120. 121

and strict it.

Omni attentione digna est hace formula $181^2 + 7 = 32^3$; nam etsi $32 = 5^2 + 7$, 'tamen 'nullo modo est $131 + V - 7 = (5 + V - 7)^3$, verum tamen est 181 + \mathcal{V} -7 = $\left(\frac{1-3}{8}\mathcal{V}-7\right)(5+\mathcal{V}-7)^3$. Notandum autem est $\frac{1+3\gamma'-7}{8} \cdot \frac{1-3\gamma'-7}{8} = 1$; unde patet evolutionem illam per factores imaginarios profundiorem investigationem requirere. PROBLEMA. Invenire in integris quadratum et cubum, quorum differentia sit valde parva, veluti $32^{3} - 181^{2} = 7$ et $253^{2} - 40^{3} = 9$. Cum proxime esse debeat $x^2 = y^3$, ponatur $x = p^3 + a$, hincque fit $y = (p^3 + d)^{\frac{2}{3}} = pp + \frac{2}{3} \cdot \frac{a}{p} - \frac{aa}{9p^4}$ etc. 19 ke ::) funde si p et a ita sumantur, ut haec formula proxime aequetur numero integro y, problema erit solutum; veluti spin a=3 et p=2, formula illa dat y=5 et x=11, fit autem 11^2 proxime $=5^3$. A. m. T. I. p. 127. be developed when 45. " detroll where mand to will show with the (J. A. Euler.) Si debeat esse $13xx + 12 = \Box$, valores pro x erunt 510 d Ag. 1 + 1, 12 2, 1 13, 8 23, 7 5 guorum ordo ita se habet existence r = 11q - p, ubi numerus 11 inde oritur, quod sit $\frac{11}{9} = V(13, \frac{9}{4} + 1)$. Si debeat esse $5xx + 44 = \Box$, valores pro x erunt 1, 2, 5, 7, 14, 19, 37, 500 million of the data the end have in a sufficient - titter - ist - how by soguorum ordo ita se habet $-50, -19, -7, -2, -1, -5, -14, -37, \frac{12}{2}, p, q, r, p$ refer = 3q - p, propter $\frac{3}{2} = V(5u \frac{1}{4} + 1)$. Ut $3xx - 143 = \Box$ debet esse x = 7, 8, 9, 12, 16, 23, 28, quae multitudo est notatu digna et inde venit quod 143 == 11.13. $A.m.T.l.p.435.436_{a}$ and for a politic instantic politic de com **PROBLEMA.** Datis numeris a et b, invenire omnes numeros x, ut haec formula $ax \rightarrow b$ flat quadratum. Ponatur x = ayy + 2py + q et quadratum esse debet $aayy + 2apy + aq + b = \Box_{i}$, quod fit, si $p = \mathcal{V}(aq + b)$, so (aq + b)b = pp, erit and the second $x = ayy \pm 2py + q$, mae formula omnes solutiones continet.

L. EULERI OPERA POSTHUMA.

Arithmetica EXEMPLUM. Sit a=7 et b=2, et formula nostra 7x+2. Quia $7 \cdot 1 + 2 = 3^2$, erit q=1 et p=3ergo competicasus sunt x = 7yy = 6y + 1, quae formula prachet hos numeros pro x: 1. 1. 18 Existente prodit Ô $7 \pm 6 + 1; 2$ vel $\dot{\mathbf{2}}_{2}$ and μ and μ large μ $29 \pm 12;$ 17 vel 41 ualing $64 \pm 18;$ 46 vel 82 1910166 $113 \pm 24;$ 89 vel 137 4 ; :45 tine(f etc. Lex progressionis valorum pro x: ad -14, 17, 41, 46, 82, 89, 137, 3 24 12 Diff. 36 60 120 47. Zwei Trigonalzahlen zu finden, deren Produkt wieder eine Trigonalzahl sei. $\frac{xx+x}{2} \cdot \frac{yy+y}{2} = \frac{zz+z}{2}, \quad \text{oder} \quad x \ (x - 1) \ y \ (y - 1) = 2z \ (z - 1), \quad \text{oder}$ Also $pq \cdot x (x + 1) y (y + 1) = 2z (z + 1) \cdot pq.$) REPTOR Nun mache man px(y+1) = 2qz und qy(x-1-1) = p(z+1), so wird aus dem ersten Satze $z = \frac{px(y+1)}{2a}$, und aus dem andern: $z = \frac{qy(x+1)}{2a} - 1$. 1.1.1.1.1.1.1.1 2qqy(x + 1) - 2pq = ppx(y + 1),Daher 1 A welches sich auch so darstellen lässt xy (2qq - pp) + 2qqy - 2pq - ppx = 0.11:117 Es sei nun 2qq - pp = a, so ist $axy \rightarrow 2qqy - ppx - 2pq = 0$, und hieraus $y = \frac{ppx - 2pq}{ax + 2qq}$ $ay = \frac{appx + 2apq}{ax + 2qq}$ und $ay - pp = \frac{2apq - 2ppqq}{ax + 2qq}$ also

Es sei nunmehr 2pp qq - 2apq = 2pq(pq - a) = fg, so haben wir $pp - ay = \frac{fg}{ax + 2ag}$. Nun setze man ax + 2qq = 1so wird pp - ay = g, folglich $y = \frac{pp - g}{a}$ und $x = \frac{f - 2qq}{a}$, we leicht zu machen, dass a = 1 sei.

EXEMPEL. Man nehme p = 7, q = 5, a = 1, so ist fg = 34.70 = 4.5.7.17. Daher wird x = f - 50 und y = 49 - q.

Es sei g = 20, f = 119, so ist x = 69und y = 29; also die zwei Trigonalzahlen 35.69 und 15.29. Da nun $z = \frac{px(y+1)}{9} = 7.69.3 = 1449$, so ist $\frac{zz + z}{2} = 1449.725$, welches in der That = 69.35.29.15 ist.

1. 1. 16 8 3

E₅ sei ferner f = 85 = 5.17, so wird g = 4.7 = 28, x = 35, y = 21; mithin die beiden Trigonalzahlen (35.18 und 11.21. Es ist aber z = 7.7.11 = 539, also

$$\frac{z + z}{2} = 539.270 = 35.18.11.21$$

A. m. T. J. p. 254.

48.

(N. Fuss I.)

PROBLEMA. Invenire numeros integros x et y, ut fiat axx - byy = A.

Solutio. Primo notandum est hoc fieri non posse, nisi fuerit A = aff - bgg; deinde quaerantur per problema Pellianum numeri *m* et *n*, ut fiat mm = abnn + 1, sive m = V(abnn + 1). Cum ergo sit mm = abnn = 1, erit quoque $(mm - abnn)^{\lambda} = 1$; ponere igitur licebit

$$axx - byy = (aff - bgg) (mm - abnn)^{\lambda}$$
,

guae forma in factores irrationales resoluta dabit

158911

shike (Partit

Hann

$$x \vee a \rightarrow y \vee b = (f \vee a + g \vee b) (m + n \vee ab)^{\lambda},$$

quod posterius productum evolvatur et termini signo Va affecti acquentur ipsi xVa; reliqui termini signo Vbaffecti acquentur ipsi yVb, hocque modo tam x quam y per numeros integros determinabitur, quod exemplo illustremus:

EXEMPLUM. Quaerantur numeri x et y, ut fiat 3xx - yy = 2, ubi a=3 et b=1; erit autem 2=3ff-ggsumendo f=1 et $g=\pm 1$; quia igitur ab=3, fiet m=V(3nn+1). Sumendo n=1 et m=2, unde nostra formula erit $xV3 + y = (V3 + 1)(2 + V3)^{\lambda}$

> si $\lambda = 0$ erit $x \sqrt{3} + y = \sqrt{3} + 1$ $\lambda = 1$ $x \sqrt{3} + y = 3\sqrt{3} + 5$ $\lambda = 2$ $x \sqrt{3} + y = 11\sqrt{3} + 19$ $\lambda = 3$ $x \sqrt{3} + y = 44\sqrt{3} + 71$ between the production of λ .

Ceterum valores tam ipsius x quam ipsius y constituunt series recurrentes, quarum ultimus quisque terminus per 2m multiplicatus demto penultimo, praebet sequentem; sic in nostro exemplo, ubi 2m = 4, litterae x et y

ita procedant

x = 1, 3, 11, 41, 153y = 1, 5, 19, 71, 265.

Occasione problematis Pelliani, seu formulae m = V(abnn + 1), praeter casus, ubi est vel $ab = \alpha \alpha \pm 1$, vel $ab = \alpha \alpha \pm 2$, etiam sequentes casus generaliores locum habent, scilicet si fuerit $ab = \alpha \alpha \beta \beta \pm \beta$, fiet $nn = 4\alpha \alpha$ et $n = 2\alpha$ et $m = 2\alpha\alpha\beta \pm 1$. Deinde si fuerit $ab = \alpha\alpha\beta\beta \pm 2\beta$, erit $n = \alpha$ et $m = \alpha\alpha\beta \pm 1$.

A. m. T. I. p. 277.

straine.

49.

PROBLEMA. Invenire duos numeros p et q, ut fiat $(pp + 1)^2 + (qq + 1)^2 = \Box$. Solutio. Ponatur pp + 1 = xx - yy et qq + 1 = 2xy eritque pp = xx - yy - 1 et qq = 2xy - 1. Sit jam

L. EULERI OPERA (POSTHUMA)

noldestance is adding $\underline{1}$ $\underline{2z} + \underline{y} + \underline{1}$, $\underline{y} = \underline{1}$	rmi jam
Statuntum rung and the state and the state and the state of the state	imur-BL-
cui satisfit: $y = uz$ fielque $qq = nzz + n^{2}zz + n - 1$. Capiatur ergo $n = 2$, ut sit $y = 2z$, erit $qq = cui$ satisfit:	$=10z^{2}$
(1) Si $z = \frac{29}{3}$; tum erit $qq = \frac{49}{9}$, ergo $q = \frac{7}{3}$. Porro $y = \frac{4}{3}$, unde $x = \frac{29}{12}$ et $p = \frac{7}{4}$. Tum igi	tur formu
$\left(\frac{49}{16} + 1\right)^2 + \left(\frac{49}{9} + 1\right)^2$, erit quadratum radicis $xx + yy = \frac{841}{144} + \frac{16}{9} = \frac{1097}{144}$.	
2) Sumatur $z = \frac{2}{9}$, erit $qq = \frac{121}{81}$, hinc $q = \frac{416}{9}$; tum vero $y = \frac{4}{9}$ et $x = \frac{5zz - 1}{2z} = \frac{101}{36}$, et	rmo
k. " (alternative build for a providence contraction of a providence of the provi	ករោះសារែនា
and and antiparticle strained in the provide the set of the set and set and the maintained and the set of the	1102 3
3) Sumatur'z = 6, erif $qq = 36$ f''et $q = 19$, porro' $y = 12$ et $x = \frac{181}{12}$ et $p = \frac{109}{12}$, ergo'	1.4 min
$\left(\frac{109^2}{144} + 11\right)^2 + \left(361_{0.0} + 1\right)^2 = \left(\frac{181^2}{144} + 1144\right)^2.$	n aporto di M
* . Relative to the transference of $\mathbf{A}_{\mathrm{s}}(\mathbf{m}_{\mathrm{s}})\mathbf{T}_{\mathrm{s}}(\mathbf{r})$	I. p. 279a
i to be a contraction of the second as	
al music minute inputer a la company or della 50 come danser la tuta dava musularite en est	izog hom
adams of hange summarises where a Problems difficult in the second of the last summing	alierit Bre
quo quatuor biquadrata quaeruntur, quorum summa itidem sit biquadratum,	uur alanth
We different union from the side of side of A^{4} $= B^{4}$ $= C^{4}$ $+ B^{4}$ $= E^{4}$ $= 1$ (contrast interviewed) for the contrast of the side	17.1
siquidem fieri potest, sequenti modo tractandum videtur. In du su si super 14 223 bi 1 - 1	ofmanne
Statuatur scilicet $A^2 = \frac{pp + qq + rr - ss}{n^{1/(1-s)}}, B^2 = \frac{2ps}{n^{1/(1-s)}} C^2 = \frac{2qs}{n^{1/(1-s)}} et D^2 = \frac{2rs}{n^{1/(1-s)}}, \text{tum enim fiet}$	n nhưn đất t
$n = 1 - 2$; $n = 1$ in 2×10^{-1} in 1×10^{-1} in $\frac{1}{10} - \frac{1}{n'}$; then end here	t ninuniofi
$\frac{\mathcal{E} - i - i}{\mathcal{E}^2} = \frac{pp - i \cdot qq - i \cdot rr + ss}{v \cdot i - i \cdot i \cdot i \cdot r},$	t sliviniol t
ita, ut haec quinque formulae quadrata reddi debeant. Incipiamus a prima et ultima, ita, ut reddi de	t sliviniol t
ita, ut haec quinque formulae quadrata reddi debeant. Incipiamus a prima et ultima, ita, ut reddi debeant. Incipiamus a prima et ultima, ita, ut reddi debeant.	rinning t
ita, ut haec quinque formulae quadrata reddi debeant. ; Incipiamus a prima et ultima, ita, ut reddi debeant. ; Incipiamus	ebeat
ita, ut haec quinque formulae quadrata reddi debeant. ; Incipiamus a prima et ultima, ita, ut reddi debeant. ; Incipiamus	ebeat
ita, ut haec quinque formulae quadrata reddi debeant. ; Incipiamus a prima et ultima, ita, ut reddi debeant. ; Incipiamus et ultima, ita, ut reddi	ebeat
ita, ut haec quinque formulae quadrata reddi debeant. ; Incipiamus a prima et ultima, ita, ut reddi debeant. ; Incipiamus et ultima, ita, ut reddi et ultima et ultim	ebeat anoraias anoraias anoraias anoraias anoraias anorai
ila, ut haec quinque formulae quadrata reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i incipiamu	ebeat cooreiaa cooreiaa cooreiaa cooreiaa cooreiaa
ila, ut haec quinque formulae quadrata reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i incipiamu	ebeat cooreiaa cooreiaa cooreiaa cooreiaa cooreiaa
$ \begin{array}{c} I_{1} = 1 \\ I_{2} = \frac{pp + qq + irr + ss}{p} \\ I_{1} = 1 \\$	ebeat cooreiaa cooreiaa cooreiaa cooreiaa cooreiaa
ita, ut haec quinque formulae quadrata reddi debeant. ; Incipiamus a prima et ultima, ita, ut reddi debeant. ; Incipiamus et ultima, ita, ut reddi et ul	ebeat cooreiaa cooreiaa cooreiaa cooreiaa cooreiaa
ita, ut haec quinque formulae quadrata reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus et ultima, ita, ut reddi et ultima, ita, ut reddi et ultima, it	ebeat anoreday
ita, ut haec quinque formulae quadrata reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus et ultima, ita, ut reddi et ultima, ita, ut reddi et ultima, it	ebeat anoreday
ita, ut haec quinque formulae quadrata reddi debeant. i Incipiamus a prima et ultima, ita, ut reddi debeant. i Incipiamus et ultima, ita, ut reddi et ultima, ita, ut reddi et ultima, it	ebeat anoreday
$\begin{bmatrix} z_{1} + i & z_{2} \\ E^{2} $	ebeat anoreday

prodet jam hic restituamus $\alpha ff = a$ et $\beta gg = b$, colligitur $x^4 + y^4 + z^4 = \frac{1}{2}ab$ (aa + bb). Quaeritur ergo num muic aequationi satisfieri possit; tum autem fiet

$$n = \frac{1}{2}\alpha\beta, \quad s = 2nfg \quad \text{vel} \quad \alpha\beta fg, \quad \text{et} \quad p = \frac{xx}{fg}, \quad q = \frac{yy}{fy} \quad \text{et} \quad r = \frac{zz}{fy},$$

alque hinc porro A = a - b et E = a + b, B = 2x, C = 2y et D = 2z, rerum ne his quidem ambagibus est opus, cum enim fieri debeat $B^4 - C^4 + D^4 = E^4 - A^4$. Statuatur

A = a - b et E = a - b, fietque $E^4 - A^4 = 8a^3b - 8ab^3 = 8ab(aa - bb)$,

ergo utrinque per 16 dividendo prodit

and the second second

Sincicitary

 $\frac{1}{2} ab (aa + bb) = \frac{B^4 + C^4 + D^4}{16} = x^4 + y^4 + z^4.$

A. m. T. I. p. 281.

51.

Notatu digna est haec formula: $1 + z - z^3$, quae fit quadratum sumto $z = \frac{11}{9}$, qui tamen valor per regalas vulgares non elicitur. Hinc ista quaestio:

Numerum 2 dividere in duas partes x et 2-x, quarum productum 2x - xx sit numerus formae z^3-z ; tum enim erit $1-2x+xx = 1+z-z^3$, ideoque $1-x = V(1+z-z^3)$. Sumto ergo $z = \frac{11}{9}$, erit $1-x = \frac{17}{27}$, hinc $x = \frac{10}{27}$, et altera pars $2-x = \frac{44}{27}$, quarum productum est

 $2x - xx = \frac{440}{27^2}$, at vero $z^3 - z = \frac{1331}{729} - \frac{11}{9} = \frac{440}{27^2}$.

A. m. T. I. p. 295.

52.

THEOREMA I. Si p denotet numerum primum guemcunque, talis acquatio $z^3 = py^3 = ppx^3$ semper est impossibilis.

DEMONSTRATIO. Quia enim esse deberet z^3 divisibile per p, ideoque z = pA, unde fieret

$$ppA^3 = y^3 = px^3$$
, sive $y^3 = ppA^3 = px^3$;

foret igitur etiam y divisibilis per p. Sit ergo y = pB, unde fieret $ppB^3 = pA^3 = x^3$, hinc ergo etiam x divisibile esse debet per p; hincque ponatur x = pC; unde fiet $ppC^3 = A^3 - pB^3$; foret igitur eodem modo A = pD, foretque $ppD^3 = pC^3 + B^3$, tum vero etiam B per p divisibilis esse deberet, porro etiam C, D, etc. in infinitum. Hoc ergo modo singulae litterae z, y, x non solum per p, sed etiam per pp, per p^3 atque adeo per p^{∞} deherent esse divisibiles; quod cum sit absurdum, veritas theorematis est evicta.

THEOREMA II. Si numeri a, b, c fuerint primi ad p, ita ut nullus corum per p sit divisibilis, tum etiam laec acquatio $az^3 \pm bpy^3 \pm cppx^3 \equiv 0$ semper est impossibilis.

DEMONSTRATIO. Quia enim a per p non est divisibile, z deberet esse divisibile, tum vero etiam pari node y et x, sicque ad eandem aequationem perveniretur, unde patet impossibilitas, uti casu praecedente: COROLLARIUM. Eadem demonstratio quoque habet locum, si p fuerit productum ex duobus vel pluribus umeris primis diversis, veluti si sit p = 2.3, vel 3.5, vel 3.5.7, etc.

LEuleri Op. posthuma. T. I.

L. EULERI, ORERA POSTHUMA.

THEOREMA III. Si p sit vel numerus primus, nvel productum ex aliquot numeris primis diversis, hu vero numeri a, b, c, d, etc. sint numeri ad p primi, tum etiam haec acquatio semper est impossibilis.

$$az^4 \pm bpy^4 \pm cppx^4 \pm dp^3v^4 \equiv 0.$$

Quia ob rationes superiores singuli numeri z, y, x, ν , etc. non solum per p, sed per omnes potestates ipsin p deberent esse divisibiles. Taliaque theoremata ad potestates altiores extendi possunt.

NB. Hae autem demonstrationes vim perderent suum, si esset p = 1, quia omnes plane numeri divisibile sunt per omnes potestates ipsius 1.

A. m. T. II. p. 10. 11

1 11%

$$\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \sum_{i$$

PROBLEMA. Reddere hanc formulam quadratum: $(A \rightarrow Bz) (a \rightarrow bz \rightarrow czz \rightarrow dz^3)$. Solutio. Statuatur hoc quadratum $= (A \rightarrow Bz)^2 (p \rightarrow qz)^2$ fietque

$$\begin{array}{ccc} App & + 2Apq \\ -a & + Bpp \\ & -b \end{array} \right\} z & \begin{array}{c} + Aqq \\ + 2Bpq \\ -c \end{array} \right\} z^{3} = 0,$$

ubi duae solutiones sunt considerandae, primo si $pp = \frac{a}{A}$, sumatur $q = \frac{b - Bpp}{2Ap}$, tum erit $z = \frac{c - Aqq - 2Bp}{Bqq - d}$ Altera solutio locum habet si $qq = \frac{d}{B}$; tum sumatur

$$p = rac{c - Aqq}{2Bq}$$
 eritque $z = rac{a - App^*}{2Apq + Bpp - b}$

PROBLEMA. Si proposita fuerit haec formula $(A \rightarrow Bz + Czz) (a \rightarrow bz \rightarrow czz)$, eam reddere quadratum Solutio. Ponatur hoc quadratum = $pp (a + bz + czz)^2$ fietque

$$A \rightarrow Bz \rightarrow Czz = ppa \rightarrow ppbz \rightarrow ppczz$$
.

Hic ergo si fuerit $pp = \frac{A}{a}$, statim fit $z = \frac{ppb - B}{C - cpp}$. Secundo si fuerit $pp = \frac{C}{c}$, erit $z = \frac{app - A}{B - bpp}$.

In genere autem si satisfaciat valor z = f, quo casu fit $pp = \frac{A + Bf + Cff}{a + bf + cff}$, tum semper alius valor potent inveniri; quoniam enim habetur haec aequatio quadratica

$$zz - \frac{B - bpp}{C - cpp} z + \frac{A - app}{C - cpp} = 0,$$

eaque per hypothesin radicem habeat z = f; erit quoque z = g existente

tam
$$f + g = \frac{bpp - B}{C - cpp}$$
 quam $fg = \frac{A - app}{C - cpp}$,

unde duplici modo alter valor g reperitur. Hoc adhuc clarius ita ostendi potest. Cum esse del

$$A \rightarrow Bz \rightarrow Czz = pp (a \rightarrow bz \rightarrow czz),$$

tum vero
$$A \rightarrow Bf \rightarrow Cff = kk (a \rightarrow bf + cff),$$

semper alius valor pro z assignari potest, existente pariter p = k. Dividatur prior aequatio per posterior

fietque
$$\frac{A - Bz - Czz}{A - Bf - Cff} = \frac{a - bz - czz}{a - bf - cff}$$

subtrahendo utrinque unitatem et dividendo per z-f prodit

$$\frac{B + C(z+f)}{A + Bf + Cff} = \frac{b + c(z+f)}{a + bf + cff},$$

unde f facile definitur.

1.1.1.1

. :412

Hac methodo insuper duo alii valores reperiri possunt. Cum enim sit

$$\frac{A + Bz + Czz}{A + Bf + Cff} = \frac{a + bz + czz}{a + bf + cff},$$

multiplicetur utrinque per $\frac{f}{z}$, ut habeatur

$$\frac{Af + Bfz + Cfzz}{Az + Bfz + Cffz} = \frac{af + bfz + cfzz}{az + bfz + cffz}$$
$$\frac{A(f-z) + Cfz(z-f)}{Az + Bfz + Cffz} = \frac{a(f-z) + cfz(z-f)}{az + bfz + cffz},$$
sive
$$\frac{A - Cfz}{A + Bf + Cff} = \frac{a - cfz}{a + bf + cff},$$

et sublata unitate erit

1 through the

in firth

Sec. 1

Bollintari admi

unde tertius desumitur valor. Porro multiplicetur utrinque per $\frac{ff}{zz}$, ut sit

$$\frac{Aff + Bffz + Cffzz}{Azz + Bfzz + Cffzz} = \frac{aff + bffz + cffzz}{azz + bfzz + cffzz}$$
 et unitate utrinque sublata $\frac{A(f+z) + Bfz}{A+Bf+Cff} = \frac{a(f+z) + bfz}{a+bf+cff}$.

Horum valorum quilibet pro f assumtus praebebit duos novos valores, ita ut hoc modo infiniti valores reperiri queant. Sit A=2, B=3, C=-1, a=3, b=-1, c=2, ut debeat esse $\frac{2+3z-zz}{3-z+2zz} = \Box$. Cui primo satisfacit z=1. Sit ergo f=1, erit secundo $\frac{3-z-1}{4} = \frac{2(z+1)-1}{4}$, unde z=1; tertio $2+z=3-2z^3$ unde $z=\frac{1}{3}$; quarto 2+2z+3z=3+3z-z, unde $z=\frac{1}{3}$.

Interim tamen haec methodus nihil plane juvat, sed tantum duos valores ostendit. Cum enim f sit numerus definitus, aequatio $\frac{A + Bz + Czz}{A + Bf + Cff} = \frac{a + bz + czz}{a + bf + cff}$ manifesto est acquatio quadratica determinata, quae tantum duos admittit valores. Interim tamen haec methodus cum successu adhibitur in resolutione hujus formulae simplicionis a + bz + czz = pp, casusque constet, quo a + bf + cff = kk, erit igitur $\frac{a + bz + czz}{a + bf + cff} = \frac{pp}{kk}$. Jam sumatur primo pp = kk, fietque b + c(z + f) = 0, unde $z = \frac{-b - cf}{c}$. Deinde sumatur $\frac{pp}{kk} = \frac{zz}{ff}$ eritque

ppff = kkzz, ideoque aff + bffz + cffzz = azz + bfzz + cffzz,

unde fit
$$a(f+z) + bfz = 0$$
 atque $z = \frac{-u_f}{a+bf}$,

gui posterior valor loco f assumtus denuo novum valorem praebet; et ita porro. Verum hoc casu solutio generalis ita reperiri potest. Sumatur $p = k + \nu (z - f)$, ut sit $a + bz + czz = kk + 2k\nu (z - f) + \nu\nu (z - f)^2$

$$\frac{1}{1+bf+cff} = \frac{1}{kk}$$

Subtrahatur utrinque unitas eritque

$$\frac{b+c(z+f)}{kk} = \frac{2kv + vv(z-f)}{kk}, \text{ unde reperitur } z = \frac{2kv - fvv - b - cf}{c - vv},$$

ande prior oritur posito $\nu = 0$, posterior vero posito $\nu = -\frac{1}{r}$.

A. m. T. II. p. 155. 156.

 $\mathbf{54}$

THEOREMA. Si fuerit p numerus primus formae 4n - 1, semper dabitur numerus x, minor quam n, ut $\frac{1}{100} px - 1 = \Box$.

DEMONSTRATIO. Cum sit p = 4n + 1, erit p = aa + bb. Jam quaeratur fractio $\frac{c}{d}$ proxime acqualis reactioni $\frac{a}{b}$ ita, ut sit $ad - bc = \pm 1$, eritque x = cc + dd. Semper enim numeri c et d infra semisses numeforum a et b assignari possunt; tum autem erit $px - 1 = (ac + bd)^2$. Erit enim $px = (aa - bb) (cc - dd) = (ac - bd)^2 + (ad - bc)^2 + (ad - bc)^2$

at $ad - bc = \pm 1$ per hypothesin, unde $px - 1 = (ac + bd)^2$.

EXEMPLUM. Sit p = 193, crit a = 12 et b = 7, porro c = 5 et d = 3, unde fit

2233 1 105 (155

110 1 111

$$x = 34 \quad \text{eritque} \quad px \leftarrow 1 = 8f^2 y^{\text{erit}(x)} \quad y = 1$$

A. m. T. H. p. 16

u sulan

Chat

innens exempt Ministry ering zigit faring

Arithm

THEOREMA NUMERICUM PROFUNDISSIMAE INDAGINIS.

0 - 551 ---

Si m, n et z denotent numeros integros positivos, tum ista formula

4 mnz - m - n

nunquam evadere potest quadratum,

Hoc theorems inde est derivatum, quod inter divisores formae mxx + yy occurrat formula 4mz + 1, under sequitur, formulam 4mz - 1 nunquam esse posse divisorem illius formae mxx + yy, vel saltem hujus m + yunde haec aequatio (4mz - 1) n = m + yysemper erit impossibilis. Sit \pm signum impossibilitatis eritque $(4mz-1)n - m \pm yy$ sive $(4mz-1)n - m \pm yy$ Verum hoc fundamentum nondum est rigide demonstratum, ideoque demonstratio hujus theorematis plurimin desideratur. Interim tamen evidens est ejus veritas casibus, quibus est m + n = 4i + 2, quia tum 14mnz - 4i - 2 numerus impariter par, a quadrato abhorrens. Dein etiam casu m + n = 4i + 1, quia tum prodit forma 4mnz - 4i - 1, sive forma 4A - 1, quae nunquam esse potest quadratum. Demonstrandi igiti tantum restant duo casus, alter, quo m + n = 4i, alter vero, quo m + n = 4i + 3, vel 4i - 1. Pro casu prim m+1 n=4i sumi poterit m=2i-k et n=2i+k, unde erit (2i-k)(2i+k)z-i=0, sive (4ii-kk)z-i=0m = 2i - k et n = 2i + k - 1, eritque 4(2i - k)(2i + k - 1)z - 4i + 1 = 0, C ORIER

 $((4i-1)^2-(2k-1)^2)z-4i+1 \equiv 0$.

sive hoc modo

Hinc innumerae formae speciales derivari possunt, veluti ex priore forma $(4ii - hk) z - i \equiv \Box$, unde casu i =anteriare de com $4z-1 \equiv \Box$. prodit $3z-1 \pm \Box$, qui per se sunt manifesti casu i=2: $16z-2 \equiv \Box$, $15z-2\pm0$, 12z - 2 = 0, as au $7z-2 \pm \Box$ casu i = 3: $36z - 3 \equiv \Box$, $35z - 3 \equiv \Box$, $32z - 3 \pm \Box$, 11z - 3 $27z-3 \pm 0$ $20z-3\pm \Box$, casu $i = 4: 64z - 4 \equiv \Box$, 63z - 4 = 0, $60z - 4 \equiv \Box$ 55z - 4 = 0, 48z - 4 = 0, 39z-4 = $28z - 4 \pm 0$, $15z-4 \equiv \Box$.

Hic autem veritas singularum ostendi potest, at vero ex principiis diversissimis. Eodem modo formula speciales ex altero casu oriundae

$$((4i-1)^2 - (2k-1)^2) z - 4i + 1 \pm 0$$

sunt	casu $i = 1$	casu i=2	casu $i=3$
	8z — 3 === 🗆	48z-7 III D	120z — 11 🞞 🗆
		$40z - 7 = \Box$	112z — 11 🎞 🗆
n - Ar Cherry Contractor	• • • •	$24z - 7 \pm \Box$	96z — 11 == □
	• k		72z — 11 🞞 🗆
and the state of the training to the second se	$\frac{1}{2} \frac{1}{2} \frac{1}$	н 1 — _А ни	. 40z — 11 💷 🗆

A. m. T. II. p. 211. 2

「広う間

anta a anta

man

玩 化 謝精

and 56. and a strategic and attended to the second as Proposita hac formula ad quadratum reducenda: $(qq - pp)^2 + (ppqq - 1)^2 = \Box$, statuatur q = p + z, et permietur ad acquationem, unde per regulas cognitas reperitur $z = \frac{-4p(p^4-4)}{3p^4-4}$, unde fit $q = \frac{-p(p^4-3)}{3p^4-4}$, fertip . p pro lubitu accipi potest, si modo excludantur casus p=0 et $p=\pm 1$. Ita sumto p=2 fit $q=rac{26}{47}$. p=3 fit $q=\frac{117}{124}$. Si $p=\frac{3}{2}$ erit $q=\frac{99}{454}$. Ita sumto p=2 et $q=\frac{26}{47}$ erit $pp-gq=\frac{120.68}{47^2}$, et ob $\frac{52}{47}$ erit $ppqq - 1 = \frac{5.99}{47^2}$. Quadratum ergo fieri debet 120^2 . $68^2 + 5^2$. $99^2 = 15^2(8^2 \cdot 68^2 + 33^2)$, quod conmetar in forma $4aabb - 1 - (aa - bb)^2$. Fit enim 8.68 = 2ab ergo ab = 4.68 = 16.17 et 33 = aa - bb = (a - 1 - b)(a - b). Proposita tali formula $qq(pp-1)^2 + pp (qq-1)^2 = \Box$, duplex solutio institui potest: prior: ponatur q = np + n - 1, tum enim erit q + 1 = (p + 1)n, $altera: \text{ ponatur } q = \frac{np - 1}{p + n}, \text{ tum enim erit } q + 1 = \frac{(n - 1)(p - 1)}{p - n} \text{ et } q - 1 = \frac{(n - 1)(p - 1)}{p - n}.$ Brand L Practerea notetur, hanc formam ad pracedentem $(qq - pp)^2 + (ppqq - 1)^2$ reduci ponendo p = fg et $q = \frac{f}{q}$, mae etiam-solutio praecedentis formulae hic adhiberi potest. Fluunt autem istae formulae ex solutione hujus pro-**Bonalis** $aa \rightarrow bb = \Box$, $aa \rightarrow cc = \Box$, $bb \rightarrow cc = \Box$. Primo enim sumatur $b = \frac{pp-1}{2p} \cdot a$, erit $aa \rightarrow bb = \left(\frac{pp-1}{2p}\right)^2 aa$ $a = \frac{qq-1}{2q}$. a. Tertia formula evadet $qq(pp-1)^2 - pp(qq-1)^2$. Altera solutio ita se habet: Sumatur a = 2fgb = ff - gg, satisfiet primae conditioni. Pro secunda statuatur

=
$$ffgg - 1$$
; erit enim $aa + cc = 2ffgg + f^4g^4 + 1$

lertia ergo postulat, ut sit

Maria 1

$$(ff - gg)^2 + (ff gg - 1)^2 = \Box$$

A. m. T. III. p. 9.

57.

PROBLEMA. Formulam $2x^4 - y^4 = zz$ ad hanc $8p^4 + q^4 = rr$ reducere. Solutio. Ponatur $2x^4 + y^4 = v'$, erit $vv - z^4 = 8x^4y^4$, unde fit $8x^4y^4 + z^4 = vv$, sicque erit p = xy, q = z $t = v = 2x^4 + y^4$.

Generalius ergo hoc fieri potest, nempe si $\alpha x^4 - \beta y^4 = zz$ posito $\alpha x^4 + \beta y^4 = \nu$, erit $\nu \nu - z^4 = 8\alpha\beta x^4 y^4$, ideoque $\nu \nu = z^4 - 8\alpha\beta x^4 y^4$.

PROBLEMA. Formulam $8p^4 - t - q^4 = rr$ ad formam $2x^4 - y^4 = zz$ reducere.

Solutio. Cum ergo sit $8p^4 = rr - q^4 = (r - qq)$, manifestum est esse q et r numeros impares. Hine sequitur, numerorum r - qq et r - qq alterum fore impariter parem, alterum pariter parem, unde nascuntur Hud casus:

I. Sit $r \rightarrow qq$ impariter par $= 2\alpha$, alter vero r - qq pariter par $= 4\beta$; erit ergo $8p^4 = 8\alpha\beta$, ideoque $q = p^4$, unde quia α et β sunt primi inter se, uterque debet esse biquadratum. Sit ergo $\alpha = s^4$ et $\beta = t^4$, et p = st et $r \rightarrow qq = 2s^4$ et $r - qq = 4t^4$, unde oritur $2qq = 2s^4 - 4t^4$, sive $q^2 = s^4 - 2t^4$.

I. Sit r-qq impariter par = 2α et r-qq pariter par = 4β , eritque $8p^4 = 8\alpha\beta$, ideoque $p^4 = \alpha\beta$. Sit $\alpha = s^4$ et $\beta = t^4$, eritque p = st; ac nunc $r-qq = 4t^4$ et $r-qg = 2s^4$, ideoque $qq = 2t^4 - s^4$. Posteriore tantum casu reductio praescripta fieri potest. Interim tamen formula $f^4 + 8g^4 = hh$ semper ad formam $r^4 - y^4$ reduci potest. Quod si enim sumatur $x = f^3 - t-2fgg - gh$ et $y = f^3 - hfgg + gh$, semper erit $2x^4 - y^4 = zz$, usilente $z = f^6 + f^4gg + 24ffg^4 - 8g^6 - 6f^3gh$.

L EULERI OPERA POSTHUMA.

ANALYSIS, qua haec reductio est inventa. Posito $2x^4 - y^4 = zz$, debet esse

xx = pp + qq, yy = pp + 2pq - qq, tum enim fiet z = qq + 2pq - pp. Hic ergo p et q ita definiri debent, ut xx et yy fiant quadrata, quod sequenti modo praeslari potest. Cum yy - xx = 2q(p-q) = (y + x)(y - x), jam statuatur $y + x = \frac{2a}{b} \cdot q$ et $y - x = \frac{b}{a}(p-q)$. Sic enim yy - xx = 2q (p - q). Addantur jam quadrata, fiet l organ

 $2yy + 2xx = \frac{4aa}{bb} qq + \frac{bb}{aa} pp - \frac{2bb}{aa} pq + \frac{b}{aa} qq$

At vero ex primis formulis fiet 2yy + 2xx = 4pp + 4pq, qui valor illi acquatus et multiplicatione facta per 'aabb da $(b^4 - 4aabb) pp - 2pq (b^4 - 2aabb) + (b^4 - 4a^4) qq = 0.$ and man at man Hinc radicem extrahendo fit $\frac{p}{q}$ - at 1

THEOREMA. Si fuerit $ma^4 - nb^4 = cc$, inde assignari potest talis forma $x^4 - mny^4 = zz$.

DEMONSTRATIO. Posito enim $ma^4 + nb^4 = \Delta$, erit $\Delta \Delta = c^4 + 4mna^4b^4$. At in altera formula si ponatir xx = pp + mnqq et yy = 2pq, fiet z = pp - mnqq. Jam statuatur p = rr et q = 2ss, ut fiat y = 2rs, hine fi $xx = r^4 + 4mns^4$. Facta ergo comparatione erit x = 4, r = c, s = ab, unde fit y = 2abc, $z = c^4 - 4mna^4$ $x^4 - mny^4 = zz$. Hinc ergo necesse est ut fiat

A. m. T. III. p. 129. 136

Hand A

Arithmet

$\mathbf{58}$

fiat quadratum, sumatur

OBSERVATIO. Ut formula $\frac{pq(pp-qq)}{rs(rr-ss)}$

hinc

p = aa + bbr = aa + bbs = 2bb - aaq = 2aa - bb $p \rightarrow q == 3aa$ r - s = 2aa - bbp - q = 2bb - aa

substituendo fit formula

Aliter, sumi etiam potest

p = bb - 2aar = 2bb - 4aaq = 6aas = bb + 4aar + s = 3bbp + q = bb + 4aahine p - q = bb - 8aar - s = bb - 8aa $\frac{pq (pp - qq)}{rs (rr - ss)} = \frac{aa}{bb}.$

ac substituendo:

Ita sumi potest p = 7, q = 6, r = 14 et s = 13, eritque $p\dot{q}(pp - qq) = 546$, rs(pr - ss) = 4914 $=\frac{546}{4914}=\frac{1}{9}=\left(\frac{1}{3}\right)^2$. hinc formula

59.

EVOLUTIO GENERALIOR formulae:

$$\frac{pq (pp - qq)}{rs (rr - ss)} = \Box = n.$$

Hic ponatur $q = \alpha t$ et $s = \beta t$, tum vero $p = \nu r$, unde reperitur

Fragmenta ex Adversariis aeproniu.

$$\frac{tt}{rr} = \frac{av^3 - n\beta}{a^3v - n\beta^3} = \left(\frac{v}{a} - z\right)^2,$$

inde oritur haec aequatio

$$0 = n\beta - n\beta^{8}zz + \frac{2n\beta^{3}vz}{\alpha} + \alpha^{3}vzz - 2\alpha\alpha\nu\nu z - \frac{n\beta^{3}v\nu}{\alpha\alpha},$$

and pater si $\nu = 0$, for $z = \pm \frac{1}{\beta}$; at si z = 0, tum erit $\nu = \pm \frac{\alpha}{\beta}$, unde sequentes valores inveniuntur ope $z + z' = \frac{2\nu}{a}, \quad \nu + \nu' = \frac{az(2n\beta^3 + a^3z)}{n\beta^3 + 2a^3z}.$ the Arrest liarum formularum

 $z = \frac{-n\beta^3}{2\alpha^4}, \quad \rho = \frac{4\alpha^8 - nn\beta^8}{3n\alpha^3\beta^5}.$ At vero si sumamus $\nu = \infty$, erit

Quia hic litteras α et β pro lubitu assumere licet, fortasse hinc novi valores eliciuntur, quos praecedens mehodus non dat.

Si ex. gr. $\alpha = 1$ et $\beta = 2$, ut sit q = t et s = 2t, tum vero

$$\frac{p}{r} = \nu \quad \text{et} \quad \frac{t}{r} = \nu - z, \quad \text{arit} \quad z + z' = 2\nu \quad \text{et} \quad \nu + \nu' = \frac{z(z + 16)}{2z + 3}$$

Hinc sum to $\nu = 0$, erit $z = \pm \frac{1}{2}$; at si z = 0 erit $\nu = \pm \frac{1}{2}$. Praeterea si $\nu = \infty$, erit z = -4 et sequens <u>21</u>, ex quibus casibus sequentes valores oriuntur

$$\nu = \infty, \quad z = -4, \quad \dot{\nu} = -\frac{21}{8}, \quad z = -\frac{5}{4}, \quad \nu = -\frac{8}{11}, \quad z = -\frac{9}{44}, \quad \nu = \frac{403}{8.167},$$

tum

porro

tum vero

Tum

ero
$$z = 0, \quad \nu = \frac{1}{2}, \quad z = 1, \quad \nu = \frac{6}{5}, \quad z = \frac{7}{5}, \quad \nu = \frac{19}{18},$$

 $z = 0, \quad \nu = -\frac{1}{2}, \quad z = -1, \quad -\nu = 2, \quad z = -3, \quad \nu = -\frac{35}{2}, \quad z = -32, \quad \nu = \frac{417}{14}, \text{ etc.}$
 $\nu = 0, \quad z = \frac{1}{2}, \quad \nu = \frac{41}{12}, \quad z = \frac{4}{3}, \quad \nu = \frac{5}{4}, \quad z = \frac{7}{6}, \quad \nu = \frac{64}{93}, \text{ etc.}$

$$\nu = 0, \quad z = -\frac{1}{2}, \quad \nu = -\frac{31}{23}, \quad z = -\frac{12}{7}, \quad \nu = -\frac{14}{4}.$$

104

Casu n = 1, valores v et z ita se habebunt:

$$v = 0, \quad 1, \quad 0, \quad 1, \quad \frac{5}{7}, \quad 1, \quad \frac{104}{405}, \quad 1$$

$$z = 1, \quad 1, \quad -1, \quad 3, \quad -\frac{5}{7}, \quad \frac{49}{7}, \quad -\frac{41}{15},$$

$$z = 0, \quad 2, \quad -\frac{4}{5}, \quad \frac{14}{5}, \quad -\frac{8}{41}, \quad 0, \quad -2, \quad 4, \quad -\frac{2}{3}, \quad \frac{8}{3}$$

$$u = 1, \quad \frac{3}{5}, \quad 1, \quad \frac{57}{55}, \quad -1, \quad -1, \quad 1, \quad \frac{5}{3}, \quad 1, \quad \frac{55}{57},$$

$$v = \infty, \quad 1, \quad \frac{7}{8}, \quad 1, \quad \frac{105}{104}, \quad 1, \quad \frac{1455}{1456}, \quad 1, \quad \frac{11.19.97}{16.7.181} = \frac{20271}{20272}$$

$$z = -\frac{1}{2}, \quad \frac{5}{2}, \quad -\frac{3}{4}, \quad \frac{11}{4}, \quad -\frac{19}{26}, \quad \frac{71}{28}, \quad -\frac{41}{56}, \quad \frac{153}{56}.$$

Ita ex casu $\nu = \frac{1455}{1456} = \frac{3.5.97}{16.7.13}$ valores pro p, q, r, s erunt: p = 3.5.97, q = 2521, r = 16.7.13, s = 2521, s = 16.7.13, s = 16.A. m. T. III. p. 143.

L. EULERI OPERA POSTHUMA.

Arithmeti

net anima M

1.11

140

b

PROBLEMA. Invenire duo triangula rectangula in numeris, quorum areae

$$A = pq (pp - qq)$$
 et $B = rs (rr - ss)$

datam inter se teneant rationem scil. a:b, ita ut sit $\frac{a}{B} = \frac{a}{b}$.

Hoc problema methodo directa frustra tractatur, unde ad solutiones particulares confugere necesse cujusmodi sunt sequentes : · arana

I. Sumatur r = p et s = p - q, erit r + s = 2p - q et r - s = q, unde fit $B = p \left(p - q \right) \left(2p - q \right) q$

hincque $\frac{A}{B} = \frac{p - q}{2p - q} = \frac{a}{b}$, ergo bp + bq = 2ap - aq, ideoque $\frac{p}{q} = \frac{a - b}{2a - b}$, unde haec solutio nascitur Caude p = a + br = a + bq = 2a - b

II. Sit r = 2p et s = p - q, erit r - s = 3p - q et r - s = p - q, hinc B = 2p(p - q)(3p - q)(p - q), ergo $\frac{A}{B} = \frac{q}{6p - 2q} = \frac{a}{b}, \text{ sique erit } bq = 6ap - 2aq, \text{ indeque } \frac{p}{q} = \frac{b - 2a}{6a},$ THE PERMIT

quocirca capiatur

circa capiatur p = b - 2a r = 2b - 4a q = 6a s = b - 4a. III. Sit r = 2p et s = p - q, erit r - s = 3p - q, et r - s = p - q, hinc r = 2b - 4a s = b - 4a.

$$\frac{A}{B} = \frac{q}{6p - 2q} = \frac{a}{b}, \text{ sicque } bq = 6ap - 2aq, \text{ ergo } \frac{p}{q} = \frac{b + 2a}{6a}$$

sta solutione $p = b + 2a$ $r = 2b + 4a$

quocirca capiatur pro ista solutione p = b - 4 - 2a

IV. Sit
$$r = p + q$$
 et $s = p$, erit $r + s = 2p + q$ et $r - s = q$, hincure

 $= \frac{p-q}{2p+q} = \frac{a}{b}, \text{ unde colligitur ob } bp-bq = 2ap+aq, \quad \frac{p}{q} = \frac{a+b}{b-2a}$ $p = a+b \qquad r = 2b-a$

ergo capiantur

$$q = b - 2a \qquad s = a + b$$

V. Sit r = p + q et s = q, erit r + s = p + 2q et r - s = p, unde fit

$$\frac{1}{b} = \frac{p-q}{p+2q} = \frac{a}{b}, \text{ inde } bp-bq = ap+2aq, \text{ hinc } \frac{p}{q} = \frac{2a+b}{b-a}$$

s = a - b

quocirca capere debemus p = 2a + b r = a + 2bq = b - a s = b - a.

VI. Sit r = p + q et s = 2q, erit r + s = p + 3q et r - s = p - q, unde fit

$$\frac{A}{B} = \frac{p}{2p + 6q} = \frac{a}{b}, \text{ unde ob } bp = 2ap + 6aq, \text{ erit } \frac{p}{q} = \frac{6a}{b - 2a}$$
ideoque hic capere oportet $p = 6a$ $r = ba + b$

$$q = b - 2a \qquad s = 2b - 4a.$$

VII. Sit
$$r = p - q$$
 et $s = q$, erit $r + s = p$ et $r - s = p - 2q$ et erit

$$\frac{A}{B} = \frac{p + q}{p - 2q} = \frac{a}{b}, \text{ ideoque } bp + bq = ap - 2aq, \text{ hinc } \frac{p}{q} = \frac{b + q}{a - q}$$
itaque ut capiatur necesse est $p = b + 2a$ $r = 2b + a$

q = a - b

225

VIII. Sit r = p - q et s = 2q, erit r + s = p - q et r - s = p - 3q, hincque $\frac{A}{B} = \frac{p}{2p - 6q} = \frac{a}{b}, \text{ unde ob } bp = 2ap - 6aq \text{ invenitur } \frac{p}{q} = \frac{6a}{2a - b},$ ideoque capere oportet p = 6ar = b - 4aq = 2a - bs = 4a - 2bIX. Sit r = q et s = p - q, erit r + s = p et r - s = 2q - p, unde fit $\frac{A}{B} = \frac{p+q}{2q-p} = \frac{a}{b}, \text{ ideoque } bp + bq = 2aq - ap, \text{ ergo } \frac{p}{q} = \frac{2a-b}{b+a},$ $p = 2a - b \qquad r = b - a$ $q = b - a \qquad s = a - 2b$ quocirca sumatur X. Sit denique r=2q et s=p-q, erit r+s=p+q et r-s=3q-p, unde reperitur $\frac{A}{B} = \frac{p}{6q-2p} = \frac{a}{b}; \text{ hinc ob } bp = 6aq - 2ap, \text{ erit } \frac{p}{q} = \frac{6a}{b+2a},$ quo notato manifestum est, ut esse debeat r = 2b + 4ap = 6a

 $q = b + 2a \qquad s = 4a - b.$

Has jam omnes solutiones in sequenti tabella uni conspectui exponamus.

	p	q	r	s
I	a-1-b	2a-b	a-1-b	2b-a
П	b-2a	6a .	2b - 4a	b-1-4a
ш	b-+-2a	6a	2 <i>b-</i> - -4a	b — 4 a
IV	a⊶b	b-2a	2b - a	аb
V	2a-1-b	$b \stackrel{\cdot}{-} a$	a + 2b	b — a
VI	6a	b-2a	4a-+-b	2b - 4a
VII	b-+-2a	a — b	2b-+-a	a b
VIII	6a	2a-b	b - 4a	4a - 2b
IX	2a-b	b-1-a	b+a	a — 2b
X	6 a	b-1-2a	2b-1-4a	4a-b

Hic numeri p et q dicuntur genitores trianguli A, et r et s génitores trianguli B, de quibus notandum, si qui corum prodeant negativi, eos in positivos converti posse, dummodo majores litteris p et r, minores vero litteris q et s tribuantur. Quo observato aliquot exempla evolvamus:

EXEMPLUM 1. Sit a = 1 et b = 1, exclusis triangulis inter se similibus, oritur hace una solutio:

p = 6	r = 5
q = 1	s = 2.

EXEMPLUM 2. Sit a=2 et b=1 et solutiones orientur in hac tabella contentae

 p
 q
 r
 s

 12
 3
 9
 6

 12
 5
 10
 7

 5
 1
 4
 1.

Deletis autem iis casibus, qui bis occurrunt, sequens tabella exhibet solutiones diversas:

L. Euleri Op. posthuma. T. J.

L. EULERI OPERA POSTHUMA.

						Arithmi
	, (∎arrisa dia jo)	1 - (- 1 g - 1)	0	s s	i. •	
· · · · · · · · · · · · · · · · · · ·	, I a-1-l		a-b	2b-a	α	
	$\mathbf{v} = \mathbf{v} + \mathbf{v}$	fill putter util	a-1-2b	b-a	β	
		2a Ga		b + 4a	г. У се	
		la 6a	2b-+-4a	b-4a	ገ ፡፡ - እ	ander albeiten.
- '		,, UC	2.0-1-10	0 - 40		
	α 3a	d - 2b - a	36	2a - b	1 +	
	βec - α+-ξ	2b 3a	A state and state and	b-1-2a	5	
	y b-1-4	 a a summer (\$63, 5, 1, 1, 69) 	3 <i>b</i>	8a - b	2	
, ·		3a b - 4a	36	8a-+-b	3	
Inter has octo solu	•	1		•	-	hus n-i n-i
nascitur, quas igitu					Benntor	bus $p + q$ et q
		_		hunt.	~	aparte (telija) Ang
IJAEMPLUM 1.	Sit $a = 2$ et $b =$	والمتعارية والمتعارية	· · · ·	band:	1	
*	in the second	p D	q r		:	
¢.	ζ, ,	3	3 3	, V		
	α	6	0 3	3		
	β	5	1 4	. 1		
	β	6	4 5	3		
	. <i>Y</i>	12	3 9	6	-	
	Y	15	9 15	3		Rite and
· ·	δ	12 ,	5 10	7		
÷	8	17	7 17	3		
EXEMPLUM 2.	Sit $a = 3$ et $b = 3$	2, et oriuntur s	olutiones in ha	ic tabula expr	essae :	
		p	$[q^{n+1}]$ r^{n+1}	S		
	3	5 5	4 5	1 ¹	•	
,	α,	9	1 6	4		
	β.	8	.1. 7	1		
	β	9	7 8	6		
	•** • • •	(18	4 14	8)		
	7	9	2 7	<u> </u>		
	A7	11	7 11	3		
	т., т., Т .,		8 16	10)		insaid
	δ	18 9	4 8	5		
· .	δ	13	4 0 5 13	3		ette annual a
Гуумаан на о	,	•	•	•	. ·	r 1 16 3 4 10
EXEMPLUM 3.	Si $a = 1$ et $b = 1$	1	1	1		
			q n	s		
	α	2	1 2	1		
	α	3	1 3	1		
	β	3	0 3	0		
	β	3	3 3	3		
	γ	6	1 5	2		
	Ŷ	7	5 7	3		
	8	6	3 6	3		
	δ	9	3. 9	3		

化制品制

a = 4 et $b = 1$ eru	intque solu	tiones	· ·	en e e corre	er (s. 1917) - E
	p	g	r	s	, , ,
α	7	5	5	2	
α	12	2	7	3	the second second second
•	. (9	.3	6	3 }	and Alexandreas and
· β	3	1	2	. 1	en e
β	4	2	, 3	1	$\left\{ \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right\}$
Ŷ	24	7	17	14	, v ₁
Ŷ	31	17	31	3	
	(24	9 ·	18	15)	
δ	8	3	6	5	
δ	11	5	11	1 -	
	• .		•		Am T. L. n. 996

a ambarum arcarum productum AB debeat esse quadratum, tantum sumi oportet pro numeris a et bmannata; sit igitur a = 4 et b = 1 eruntque solutiones

A. m. T. I. p. 296-298.

NOTA EDITORUM. Huic praecedenti fragmento in Adversariorum Tomo I Patris manu inscriptum est: "Omnia haec jam redacta" (Dieses ist schon ausgeführt); cum tamen in nullo cognitorum Euleri operum has investigationes detegere nobis contigerit, quae hanc ob rem et in recentissima editione Commentationum arithmeticar. desunt, esse utique potest eas in quapiam rarissima seu oblita collectione typis expressas reperiri. Hic saltem sufficiet remittere lectorem ad commentationem, cujus fragmentum supra in pag. 101 hujusce tomi Opp. posthum. reperitur, et in qua idem fere, aut simile argumentum tractatum fuisse videtur.

61.

Тиеонема. Haec formula aax^4 -1- bxxyy-1- ccy^4 , quadrato aequanda, semper reduci potest ad productum quatuor factoribus simplicibus constans, pariter quadrato aequandum. ЭТ Демонятватно. Formula proposita aequetur huic quadrato $\left(axx$ -1- cyy. $\frac{p}{q}\right)^2$, fietque

$$bqqxx + ccqqyy = 2acpqxx + ccppyy$$
, unde fit $\frac{xx}{yy} = \frac{cc(q+p)(q-p)}{q(2acp-bq)} = 1$

Quadratum ergo esse debet (q - p) (q - p) q (2acp - bq). Simili modo, si radicem illius formulae posuissemus

$$xyy \rightarrow axx \cdot \frac{r}{s}$$
, prodiisset $\frac{xx}{yy} = \frac{s(2acr - bs)}{aa(s \rightarrow -r)(s - r)}$;

quadratum ergo debet esse (s-r) (s-r) s (2acr - bs). Deinde, quia per utramque positionem est

$$axx + cyy \cdot \frac{p}{q} = cyy + axx \cdot \frac{r}{s}, \quad \text{erit} \quad \frac{dx}{yy} = \frac{dx(q-p)}{aq(s-r)},$$

adecque debet esse $cs(q-p).aq(s-r) = \Box$.

and the second

Bastile L

國府 经行为 法

Station of the sequences the sequences the sequences $\frac{cx}{yy}$ matter that sum is sequences the sequences the sequences $\frac{cx(q-p)(q-p)}{x}$, $\frac{s(2acr-bs)}{x}$, $\frac{cs(q-p)}{x}$,

$$\overline{q(2acp-bq)} = aa(s-r)(s-r) (s-r) - aq(s-r)$$

guorum comparatione relatio inter rationes n:s et p.q deduci potest. Erit enim

$$r:s = \left(1 + \frac{b}{ac}\right)q - p:q + p; \quad \text{vel 'erit etiam} \quad p:q = \left(1 + \frac{b}{ac}\right)s - r:s + r.$$

L. EULERI OPERA POSTHUMA.

L. DOLIMA TOSTIOMA.	Arithma
n an	
PROBLEMA. Invenire quatuor quadrata aa, bb, cc, dd, ut baec fractio fiat quadratum	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Solutio duplex dari potest: Pro priore ponatur $c = ab$, $d = aa - 2bb$, critque	uuuu 0000
$ac + bd = 2b (aa - bb), ac - bd = 2b^3, ad + bc = a (aa - bb), ad - bc = a (aa)$	(1-3bb)
ergo fieri debet $\frac{4b^4}{aa(aa-3bb)} = \Box$, sive tantum $aa - 3bb = \Box$. Pro altera solutione fiat $a =$	- cc -1 9dd
tum enim fiet $ac + bd = c (cc + 3dd), ac - bd = c (cc + dd), ad - bc = 2d (c$	$2u^3$ one c
$\frac{cc(cc \rightarrow -3dd)}{4d^4} \equiv \Box, \text{ sive tantum } cc \rightarrow 3dd \equiv \Box.$	-a, ergo heri
$4d^4$	
	A. m. T. III. p. 15
63.	
PROBLEMA. Ad quadratum reducere hanc formulam $\frac{aabb-ccdd}{aacc-bbdd}$.	
SOLUTIO. Ponatur $b = ad$, crit formula $\frac{dd(a^4 - cc)}{aa(cc - d^4)} = \frac{a^4 - cc}{cc - d^4}$. Ponatur porro $c = aa - 2$	
$\frac{4aadd - 4d^4}{a^4 - 4aadd - 3d^4}, \text{quae demto quadrato in numeratore fit} \frac{aa - dd}{a^4 - 4aadd - 3d^4} = \frac{1}{aa}$	1
	— 3dd
Sumatur $a = pp + 3qq$ et $d = 2pq$, erit forma $\frac{1}{(pp - 3qq)^2}$, hincque porro prodit	
$c = p^4 - 2ppqq + 9q^4$ et $b = 2pq (pp + 3qq)$.	
Hic quaelibet positio solutionem suppeditat praecedentis problematis (*).	
Sit $p = 1$ et $q = 1$, erit $a = 4$, $b = 8$, $c = 8$, $d = 2$.	
Sit $p = 2$ et $q = 1$, erit $a = 7$, $b = 28$, $c = 17$, $d = 4$,	
unde oritur solutio supra data problematis praecedentis.	
Sit $p = 1$ et $q = 2$, erit $a = 13$, $b = 52$, $c = 137$, $d = 4$.	
Sit $p = 3$ et $q = 1$, "erit $a = 12$, $b = 72$, $c = 72$, $d = 6$.	
Sit $p = 2$ et $q = 3$, erit $a = 31, \dots b = 372, \dots c = 673, d = 12.$	and the function
Sequenti autem modo praecedens problema ad praesens reducitur. Cum esse debeat	$A^{+}-B^{4}=C^{4}$
ponatur $A + B = \alpha x$ et $A - B = \beta y$, tum vero $C + D = \gamma x$, $C - D = \delta y$,	
fiet $\alpha\beta(\alpha\alpha xx + \beta\beta yy) = \gamma\delta(\gamma\gamma xx + \delta\delta yy).$	
Hinc oritur $\frac{xx}{yy} = \frac{\gamma \delta^3 - a\beta^3}{a^3 \beta - \gamma^3 \delta}$, unde haud difficulter superior derivatur.	
$yy \alpha^{s}\beta = \gamma^{s}\beta^{s}$ and a module superior derivator.	
A. m. '	. III. p. 161.162
(*) Resolutio hujus acquationis $A^4 - B^4 = C^4 - D^4$. Comment. arithm T. I p. 473.	
64.	
THEOREMA. Si fuerit $X = (a - bx)^2 (p - qx)^2 + (c - dx)^2 (r - sx)^2 - nn (a - bx)^2 (c - dx)^2$, s	tatim sex valor
habontar, quinus a ne quadratum.	
Primo enim fiet $X = (a - bx)^2 (p - qx)^2$, si fuerit $c - dx = 0$, ideoque $x = \frac{c}{d}$, et si fuerit	
$(r - sx)^2 - nn (a - bx)^2 = 0$, hoc est $r - sx = \pm n (a - bx)$.	
Simili modo fiet $X = (c - dx)^2 (r - sx)^2$ faciendo $a - bx = 0$, seu $x = \frac{a}{b}$; tum vero si $p - qx = c$	$=\pm n(c-dac)$
	m. T. III. p. 1664

228

に出いていたの

65.

THEOREMA. Ut in quadrilatero, circulo inscripto, quatuor latera a, b, c, d cum ambabus diagonalibus x et y numeris rationalibus exprimantur, necesse est, ut hoc productum (ab + -cd)(ac + -bd)(ad + -bc) reddatur quadratum. Quod fiet sumtis quinque numeris pro lubitu f, g, h, p, q, si capiatur

 $a = fgh(qq - pp), \ b = g(fp - gq)^2 - hhqq, \ c = 2fghpq - h(ff - gg - hh)qq, \ d = f(gp - fq)^2 - hhqq,$

x = f(fg(pp + qq) + (ff + gg - hh)pq)

 $y == g(fg(pp \rightarrow qq) \rightarrow (ff \rightarrow gg \rightarrow hh)pq).$

Sin autem insuper requiratur, ut etiam area quadrilateri fiat rationalis, tum hanc formulam quadratum esse (a+b+c-d)(a+b+d-c)(a-b-d-b)(b+c-b-d-a),

quod autem per illas formulas nullo modo effici potest. At vero sequens PROBLEMA generaliter resolvi potest: Dato circulo polygonum quotcunque laterum inscribere, cujus omnia latera una cum omnibus dia-

gonalibus, atque adeo area numeris rationalibus exprimantur.

SOLUTIO. (Fig. 1.) Posito radio circuli = 1 sint arcus AB = 2A, BC = 2B, CD = 2C, etc., eritque latus $AB = 2 \sin A$, $BC = 2 \sin B$, $CD = 2 \sin C$, etc.

Tantum ergo opus est, ut horum angulorum sinus sint rationales, simulque etiam cosinus, ut etiam diago-

$$AC = 2\sin (A + B) = 2\sin A \cos B + 2\cos A \sin B.$$

At vero si fuerit sin $A = \frac{2ab}{aa + bb}$, erit cos $A = \frac{aa - bb}{aa + bb}$; tales igitur formulae pro sinibus et cosinibus accipiantur, hecque modo non solum omnia latera, sed etiam diagonales fient rationales atque adeo area, cum posito centro O sit area $\Delta AOB = \sin A \cos A$, quod de omnibus reliquis valet. Possunt enim singuli hi anguli 2A, 2B, etc. usque ad ultimum pro lubitu assumi, ultimi vero sinus erit sinus summae reliquorum, et cosinus = - cosinui summae reliquorum.

A. m. T. III. p. 159. 160.

66.

(Lexell.)

THEOREMA. Si a fuerit numerus quicunque non quadratus, et b et c numeri quicunque ad illum primi, tun ista formula $a (bbx^4 - - aaccy^4)$

nunquam esse potest quadratum.

jum enim erit

and the state of

DEMONSTRATIO. Hic assumi potest numerum a etiam per nullum quadratum esse divisibilem, si enim esset $a = \alpha f f$, quadratum esse deberet $\alpha (bbx^4 + \alpha accf^4 y^4)$, ubi si loco f y scribatur y, habetur formula prior, duin etiam numeri x et y sunt primi inter se. Quoniam igitur a est factor nostrae formae, necesse est, ut alier factor $bbx^4 + aaccy^4$ etiam habeat factorem a, sed pars posterior jam habet factorem a, ergo pars prior evit divisibilis per a, ex quo x factorem habebit a, ideoque y non erit divisibile per a. Ponatur ergo x = az, algue nunc haec forma quadratum esse debebit

$a (bba^4 z^4 + aaccy^4)$, see $a (bbaaz^4 + ccy^4)$.

Quod ob eandem rationem fieri nequit, nisi y esset divisibile per a, qui casus cum jam sit exclusus, formula ^{nostra} nullo modo quadratum esse poterit.

A. m. T. I. p. 51.

67.

VARIA CONAMINA AEQUATIONIS $a^{\lambda} + b^{\lambda} = c^{\lambda}$ impossibilitatem casu $\lambda > 2$ demonstrandi. 1. (Lexell.)

THEOREMA. Non dantur tres numeri x, y, z, ut fiat xxy + xzz + yyz = 0.

L. EULERI, OPERA, POSTHUMA.

Arithmetica

ar hann dar

f 11

a Composition

Sumi potest numeros x, y, z communem divisorem non habere; si enim haberent, per divisionem expansion aequatione tolleretur; interim tamen bini communem divisorem habere debent. Hinc ponatur a maximus com munis divisor numerorum x et y, b ipsorum x et z, et c ipsorum y et z, atque tum bini horum a; b, require inter se primi. Ponatur igitur x = ap, y = aq, eruntque p et q primi inter se. Deinde sit x = br et x = brdenique y = ct et z = cu, ita ut sit x = ap = br; y = aq = ct, z = bs = cu, quibus valoribus substitutis mula nostra est: $abcprt \rightarrow abcpsu \rightarrow abcqts = 0$, sive $prt \rightarrow psu \rightarrow qst = 0$.

Cum autem sit ap = br, sive $\frac{p}{r} = \frac{b}{a}$, erit p = lb, r = la; deinde $\frac{q}{t} = \frac{c}{a}$, unde q = mc et t = ma, $\frac{s}{u} = \frac{c}{b}$, s = nc, u = nb, its ut sit x = lab, y = mac, z = nbc; ubi notandum numeros mc, lb esse inter primos, nec non lb et nc, et ma et nc. Aequatio autem nostra hanc habebit formam:

and and and the set of the set of Umaab --- nnlbbc-+- mmncca == 0.

deres an entre

Hinc ergo lb divisor esse deberet membri mmncca, quod ob conditiones memoratas esse nequit.

2. (J. A. Euler.)

NB. Haec demonstratio non succedit. Caeterum hoc theorema huc redit, ut demonstretur esse non po $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} = 0.$ Hoc autem sequenti modo demonstrari posse videtur:

Posito $z = \frac{xy}{v}$, et nostra acquatio fiet $\frac{x}{y} + \frac{v}{x} + \frac{y}{v} = 0$, quae forma similis est propositae. Cum numer x, y, z sint inaequales, sit z maximus, y medius et x minimus, sive negative, sive positive. Jam cum si $z = \frac{xy}{v}$, manifestum est fore v < x. Unde patet, si terni numeri z, y et x satisfecerint, tum etiam hosiet ν satisfacturos, quorum y jam erit maximus, x medius et ν minimus. Ponatur jam $y = \frac{x\nu}{u}$, eritque u < vquare etiam hi tres numeri x, v et u satisfacerent. Si porro ponatur $x = \frac{uv}{t}$, erit t < u, atque etiam hi tres v, u et t satisfacerent. Hocque modo continuo ad numeros minores perveniretur; quare cum in minimis hum modi numeri non dentur, etiam in maximis tales non dantur. Manifestum vero est hos numeros semper for integros.

COROLLARIUM. Hoc modo demonstrari posset fieri non posse $\frac{x}{y} + \frac{y}{x} = 0$. Si enim y > x ef ponation $y = \frac{xx}{v}$, erit v < x, et tum prodit $\frac{v}{x} + \frac{x}{v} = 0$, quae posito denuo $x = \frac{vv}{u}$ daret u < v et $\frac{v}{u} + \frac{u}{v} = 0$, quae posito denuo $x = \frac{vv}{u}$ daret u < v et $\frac{v}{u} + \frac{u}{v} = 0$, quae posito denuo $x = \frac{vv}{u}$ daret u < v et $\frac{v}{u} + \frac{u}{v} = 0$, quae posito denuo $x = \frac{vv}{u}$ daret u < v et $\frac{v}{u} + \frac{u}{v} = 0$, quae posito denuo $x = \frac{vv}{u}$ daret u < v et $\frac{v}{v} + \frac{u}{v} = 0$, quae posito denuo $x = \frac{vv}{u}$ daret u < v et $\frac{v}{v} + \frac{u}{v} = 0$, quae posito denuo $x = \frac{vv}{u}$ daret u < v et $\frac{v}{v} + \frac{u}{v} = 0$, quae posito denuo $x = \frac{vv}{v}$ daret u < v et $\frac{v}{v} + \frac{u}{v} = 0$, quae posito denuo $x = \frac{vv}{v}$ daret u < v et $\frac{v}{v} + \frac{u}{v} = 0$, quae posito denuo $x = \frac{vv}{v}$ daret u < v et $\frac{v}{v} + \frac{u}{v} = 0$, quae posito denuo $x = \frac{vv}{v}$ daret u < v et $\frac{v}{v} + \frac{u}{v} = 0$, quae posito denuo $x = \frac{vv}{v}$ daret u < v et $\frac{v}{v} + \frac{v}{v} = 0$, quae posito denuo $x = \frac{vv}{v}$ daret u < v et $\frac{v}{v} + \frac{v}{v} = 0$, quae posito denuo $x = \frac{vv}{v}$ daret u < v et $\frac{v}{v} + \frac{v}{v} = 0$, quae posito denuo $x = \frac{vv}{v}$ daret u < v et $\frac{v}{v} + \frac{v}{v} = 0$, quae posito denuo $v = \frac{vv}{v} + \frac{v}{v} = 0$, quae posito denuo $v = \frac{v}{v} + \frac{v}{v} + \frac{v}{v} = 0$, quae posito denuo $v = \frac{v}{v} + \frac{v}{v} + \frac{v}{v} + \frac{v}{v} = 0$, quae posito denuo $v = \frac{v}{v} + \frac{v}{v$ pacto iterum ad numeros continuo minores perveniretur.

Eodem modo etiam demonstrari potest esse non posse $\frac{v}{x} + \frac{x}{y} + \frac{y}{z} + \frac{z}{v} = 0$. Posito enim $z = \frac{vy}{u}$ in si z fuerit numerus maximus et ν minimus, $u < \text{erit } \nu$ similis aequatio prodit scilicet $\frac{u}{\nu} + \frac{v}{x} + \frac{x}{y}$ ex numeris minoribus formata; hocque modo continuo minores invenire liceret.

COROLLARIUM 2. Cum igitur acquatio xxy + xzz + yyz = 0 sit impossibilis, inde vero prodeat $z = \frac{-yy \pm \sqrt{(y^4 - 4x^3 y)}}{2x},$

sequitur formulam $y^4 - 4x^3y$ quadratum nunquam esse posse.

hine

et

COROLLARIUM 3. Ex acquatione supra allata pro quatuor numeris sequitur $\nu\nu yz + xxz\nu + yyx\nu + zzxy = 0$

> $\nu \nu = \frac{-(xxz - yyx)\nu - zzxy}{yz}$ $\frac{-x(xz + yy) \pm \sqrt{(xx(xz + -yy)^2 - 4z^3yyx)}}{2yz}$

unde haec formula $xx (xz + yy)^2 - 4z^3 yyx$ nunquam quadratum fieri potest.

Fraqmenta ex Adversariis depromta.

Sit verbi gratia z = x et haec formula fiet

$$xx(xx \rightarrow yy)^2 - 4x^4yy$$
, vel $(xx \rightarrow yy)^2 - 4xxyy$

Verum nostrum theorema in casu quatuor numerorum non amplius locum habet, quia utique in NB. minimis numeris casus dantur possibiles: veluti si fuerit z = x et y = -v. Quod ergo de quatuor numeris hic dictum est, neutiquam valet.

THEOREMA. Neque summa neque differentia duorum cuborum potest esse cubus.

DEMONSTRATIO I. Si p, q et r denotent numeros integros, sive positivos sive negativos, demonstrandum est hanc acquationem nullo modo subsistere posse:

$$p^{3} + q^{3} + r^{3} = 0.$$

Tum enim dividendo per par foret

and same

and the martin

waana aan

c < b,

. Higher

Here's a

$$\frac{p}{r} + \frac{qq}{pr} + \frac{rr}{pq} = 0$$
, ideoque etiam $\frac{ppq}{qqr} + \frac{qqr}{prr} + \frac{prr}{ppq} = 0$

atque hinc etiam si ponamus ppq = x, qqr = y et rrp = z, foret

$$\frac{x}{y} + \frac{y}{z} + \frac{z}{x} = 0.$$

Hog autem nunquam fieri posse ante est demonstratum.

DEMONSTRATIO II. Demonstrabo hic hanc formulam ab ($a \pm b$) cubum esse non posse. Primo enim numeri a et b non solum integri sed etiam primi inter se assumi possunt. Quare cum hi tres factores a, b et $a \pm b$ sint inter se primi, unusquisque foret cubus, unde posito $a = x^3$, $b = y^3$, foret $x^3 \pm y^3 =$ cubo. Quod autem formula ab $(a \pm b)$ cubus esse nequit, ita ostendo: Si esset cubus, ejus radix statui posset $\frac{m(a \pm b)}{n}$. $ab \ (a \pm b) = \frac{m^3 \ (a \pm b)^3}{n^3}, \quad \text{vel} \quad n^3 \ ab = m^3 \ (a \pm b)^2 = m^3 \ (aa \pm 2ab + bb).$ Tum ergo foret

Hoe enim si esset, numeri a et b forent inaequales. Sit igitur a major et b minor, et ponatur $a = \frac{bb}{c}$, eritque

tum autem foret
$$\frac{n^3 b^3}{c} = m^3 \left(\frac{b^4}{cc} \pm \frac{2b^3}{c} + bb \right)$$
, sive $n^3 bc = m^3 (bb \pm 2bc + cc)$, ubi $b > bc$

erro si porro ponatur $b = \frac{cc}{d}$, erit c > d, hincque iterum foret $n^3 cd = m^3 (cc \pm 2cd + dd)$; hocque modo continuo ad numeros minores perveniretur. Unde quia res in minimis numeris non succedit, etiam in maximis succedere non posset. م أينا ي في محمد المناكرة ا

The NB. Hic vero vitium ingens inest, quoniam ob numeros a et b inter se primos, c non est integer, neque etiam sequentes d, e, etc. Quocirca ex parvitate horum numerorum nihil concludi potest. Interim tamen etiam ne prior demonstratio valet, etsi enim omnes tres numeri non habent communem divisorem, tamen bini quivis necessario communem habent factorem. Quamobrem ex aequalitate $\frac{xx-zy}{xy}$ concludi nequit, esse z partem ipsius xy, quia fortasse fractio $\frac{y}{z}$ ad minores terminos reduci potest, cujus demum denominator divisor esse debet ipsius xy.

A. m. T. I. p. 51 - 54.

3. (Lexell.)

THEOREMA Fermatii, quo neque summa cuborum potest esse cubus, neque summa duarum potestatum Juintarum potestas quinta esse potest, nec in genere summa duarum potestatum altiorum similis potestas altior, asile ita transformari potest, ut certae formulae quadrata esse nequeant. Si enim $a^5 + b^5 = c^5$, ponatur

 $x + y = a^5$ et $x - y = b^5$, foretque $2x = a^5 + b^5 = c^5$ et $xx - yy = a^5 b^5$ et $4xx = c^{10}$;

Nine igitur foret $\frac{xx - yy}{4xx} = \frac{x^5 b^5}{c^{10}}$, ideoque potestas quinta, pro qua scribatur

L. EULERI OPERA POSTHUMA."

 $\frac{z^5}{x^5}, \quad \text{seu} \quad \frac{xz^5}{x^6}, \quad \text{ita ut foret} \quad \frac{xx - yy}{4xx} = \frac{xz^5}{x^6};$

11 (C. 76)

ब आ मा स

TUR

hap Light

1.000

multiplicetur per $4x^6$, fietque

$$x^{6} - x^{4} yy = 4xz^{5}$$
, sive $x^{6} - 4xz^{5} = x^{4}yy = \Box$.

Quare si demonstrari posset formulam $x^6 - 4xy^5$ quadratum esse non posse, simul demonstratum est form $a^5 + b^5$ potestatem quintam esse non posse. Si enim esset $x^6 - 4xy^5$ quadratum, ob factores $x(x^5 - 5y^5)$ se primos, uterque quadratum esse deberet. Sit igitur x = pp, et alter factor $p^{10} - 4y^5$ deberet esse quadratum puta qq; foret ergo.

$$p^{10} - qq = 4y^5 = 4r^5 s^5 = (p^5 - q), \text{ ideoque } p^5 + q = 2r^5 \text{ et } p^5 - q = 2s^5, r^{14}$$

unde addendo foret $2p^5 = 2r^5 + 2s^5, \text{ sive } p^5 = r^5 + s^5.$

Simili modo formula $a^3 + b^3 = c^3$ transformabitur in hanc acquivalentem $x^4 - 4xy^3 = \Box$. Hoc postremum the rema etiam hoc modo repraesentari potest, ut nunquam fieri queat

$$x^{3} + (x + a)^{3} = (x + b)^{3}$$
, ubi manifesto $b > a$.
 $x^{3} = (x + b)^{3} - (x + a)^{3} = 3 (b - a) xx + 3 (bb - aa) x + b^{3} - a^{3}$,

Foret ergo $x^3 = (x + b)^3 - (x + a)^3 = 3 (b - a) xx + 3 (bb - aa) x + b^3 - a^3$, demonstrandum ergo est hanc aequationem nunquam habere radicem rationalem. Ad hoc observetur, emplote rius membrum factorem habeat b - a, etiam x^3 talem factorem habere debet, et perspicuum est $b^4 - a^2$ veren cubum, vel noncuplum cubi.

Sit primo
$$b-a = f^3$$
, et erit $x^3 = 3f^3xx + 3f^3(b+a)x + f^3(bb+ab+ab)$.
Ponatur ergo $x = fy$, eritque $y^3 = 3ffyy + 3(b+a)fy + bb + ab + aa$, ideoque y debet esse factor
 $bb + ab + aa$

Sit secundo $b-a=9f^3$, et ultimum membrum fieret (ob $b=9f^3+a$)

$$9^{3}f^{9} + 3.9^{2}af^{6} + 3.9aaf^{3} = 27f^{3}(27f^{6} + 9af^{3} + aa)$$
,

unde fit
$$x^3 = 27f^3xx + 27f^3(b + a)x + 27f^3(27f^6 + 9af^3 - aa).$$

Ponatur $x = 3fy, \bullet$ erit $y^3 = 9ffyy + 3fy(b + a) + 27f^6 + 9af^3 + aa.$

Pro utroque casu limites assignari possunt; pro priore enim manifesto est y > 3ff, et pro altero $y \ge 2^{4}$ di limites sunt nimis parvi; nimis magni autem hoc modo reperientur: Consideretur aequatio in genere

$$y^3 = \alpha y \dot{y} + \beta y + \gamma,$$

ubi α , β , γ sint positivi, ac primo erit $y > \alpha$; deinde cum sit $y = \alpha + \frac{\beta}{y} + \frac{\gamma}{yy}$, si in membro potent loco y scribatur α , hoc membrum fit nimis magnum, erit ergo $y < \alpha + \frac{\beta}{\alpha} + \frac{\gamma}{\alpha\alpha}$; ponatur hic limes sit $y < \lambda$, eritque vicissim $y = \alpha + \frac{\beta}{\lambda} + \frac{\gamma}{\lambda\lambda}$.

EXEMPLUM. Sit pro casu priori f = 1 et a = 1, erit b = 2 et x = y, hinc $y^3 = 3yy + 9y + 7z$ is statim y > 3, hinc y < 7, hinc $y > 4\frac{3}{7}$, $y < 5\frac{12}{34}$, radix ergo rationalis deberet esse 5, quae chim page 9d divisor ultimi termini

4. (W. L. Krafft.)

PROBLEMA. Invenire numeros x et y inter se primos, ut formula $x^3 \rightarrow ny^3$ fiat numerus quadratus Solutio. Si hi numeri non essent primi inter se, quaestio foret levissima; posito enim $x = p^{p^2} e^{Q}$ formula nostra prodit $r^3(p^3 \rightarrow nq^3)$, quae aequetur quadrato r^4 ss, ita ut hinc statim fiat

$$r = \frac{p^3 + nq^3}{ss}$$
, unde fit $x = \frac{p^4 + npq^3}{ss}$ et $y = \frac{p^3 q - nq^4}{ss}$

Fragmenta ex Adversariis depromta.

mod uti est facillimum, ita casus, quo x et y sint inter se primi, maxime est difficilis. Formulae istius factor simplex est $x \rightarrow y \sqrt[3]{n}$, et si α denotet unam radicem cubicam unitatis, ita ut sit $\alpha^3 = 1$, quam constat $\frac{-1 + \gamma - 3}{2}$ the formulae nostrae $x^3 + ny^3$ alius factor simplex erit $x + ay^5 n$, ac tertius $-aay / n_{7}$ its ut formula nostra futura sit productum horum trium factorum $(x + y \tilde{\vec{V}}n) (x + \alpha y \tilde{\vec{V}}n) (x + \alpha a y \tilde{\vec{V}}n),$ ing hip to the high his 二百万人 极大病 ant singuli factores reddantur quadrata, hoc modo, quo statim patet, si unus fuerit quadratus, etiam religuos fore quadratos. 1.1.1.1.1 avite and a Posito enim $x + y \overset{3}{\vee} n = (p + q \overset{3}{\vee} n + r \overset{3}{\vee} nn)^2$, per naturam rei fiet $and between a + \alpha y \bar{\tilde{y}}_n = (p + \alpha q \bar{\tilde{y}}_n + \alpha \alpha r \bar{\tilde{y}}_n n)^2 \quad \text{et} \quad x + \alpha \alpha y \bar{\tilde{y}}_n = (p + \alpha \alpha q \bar{\tilde{y}}_n + \alpha r \bar{\tilde{y}}_n n)^2 \quad \text{et} \quad x + \alpha \alpha y \bar{\tilde{y}}_n = (p + \alpha \alpha q \bar{\tilde{y}}_n + \alpha r \bar{\tilde{y}}_n n)^2 \quad \text{et} \quad x + \alpha \alpha y \bar{\tilde{y}}_n = (p + \alpha \alpha q \bar{\tilde{y}}_n + \alpha r \bar{\tilde{y}}_n n)^2 \quad \text{et} \quad x + \alpha \alpha y \bar{\tilde{y}}_n = (p + \alpha \alpha q \bar{\tilde{y}}_n + \alpha r \bar{\tilde{y}}_n n)^2 \quad \text{et} \quad x + \alpha \alpha y \bar{\tilde{y}}_n = (p + \alpha \alpha q \bar{\tilde{y}}_n + \alpha r \bar{\tilde{y}}_n n)^2 \quad \text{et} \quad x + \alpha \alpha y \bar{\tilde{y}}_n = (p + \alpha \alpha q \bar{\tilde{y}}_n + \alpha r \bar{\tilde{y}}_n n)^2 \quad \text{et} \quad x + \alpha \alpha y \bar{\tilde{y}}_n = (p + \alpha \alpha q \bar{\tilde{y}}_n + \alpha r \bar{\tilde{y}}_n n)^2 \quad \text{et} \quad x + \alpha \alpha y \bar{\tilde{y}}_n = (p + \alpha \alpha q \bar{\tilde{y}}_n + \alpha r \bar{\tilde{y}}_n n)^2 \quad \text{et} \quad x + \alpha \alpha y \bar{\tilde{y}}_n = (p + \alpha \alpha q \bar{\tilde{y}}_n + \alpha r \bar{\tilde{y}}_n n)^2 \quad \text{et} \quad x + \alpha \alpha y \bar{\tilde{y}}_n = (p + \alpha \alpha q \bar{\tilde{y}}_n + \alpha r \bar{\tilde{y}}_n n)^2 \quad \text{et} \quad x + \alpha \alpha y \bar{\tilde{y}}_n = (p + \alpha \alpha q \bar{\tilde{y}}_n + \alpha r \bar{\tilde{y}}_n n)^2 \quad \text{et} \quad x + \alpha \alpha y \bar{\tilde{y}}_n = (p + \alpha \alpha q \bar{\tilde{y}}_n + \alpha r \bar{\tilde{y}}_n n)^2$ Productúm ergo; quod est x^3 -i-ny³, etiam erit quadratum, et quidem rationale, quippe cujus radix erit and the person of the second . . p³ + nq³ + nnr³ - 3np qr. antum igitur opus est, primam illam positionem supra datam evolvi, ex qua consequimur CAN _D Factor the manual of the opposition $x + y \sqrt[3]{n} = pp + 2pg \sqrt[3]{n} + 2pr \sqrt[3]{n} n$ $-2ngn-1-mrr{\ddot{V}}n$ $+ qq\,\ddot{V}nn$ $\begin{array}{c} \hline x = pp + 2nqr, \quad y = 2pq + nrr. \\ \hline p_{1} \neq y = 2pq + nrr. \\ \hline p_{2} \neq y = 2pq + nrr. \\ \hline p_{$ consequenter valores satisfacientes sunt liker melaine menoriscome of message input to a difference of a sure $x = 4a (a^3 - nb^3) \quad \text{et} \quad y = \frac{1}{2} (a^3 - nb^3) (ab^3 - nb^3) (abb + b^3) (ab +$ Alder. Si ponatur p = aa et r = -2bb, erit q = 2ab et $x = a(a^3 - 8nb^3)$ et $y = 4b(a^3 - nb^3)$, ubi a et t pro lubitu assumere licet. 化化学 化学生 EXEMPLUM. Quaerantur duo cubi inter se primi x^3 et y^3 , quorum summa fiat quadratum, cujusmodi quidem statim sunt obvii 1 et 8. Hic ob n = 1, erit $x = a (a^3 - 8b^3)$ et $y = 4b (a^3 - b^3)$. Sit a = 3, b = 1, erit x = 57, y = 112, quorum caborum summa fit quadratum, cujus radix = 1261. Sit a = 2, b = -1, erit x = 32, y = -28, sive x = 8, y = -7. In hac tamen solutione, etsi generalis videtur, casus quo x = 1, et y = 2 non continetur, cujus ratio sine dubio in eo est quaerenda, quod hoc casu numerus n ipse sit cubus, ideoque irrationalitas evanescat. Quod darius patebit ex solutione magis directa, nam ut $x^3 + y^3$ flat quadratum, ponatur x + y = p et x - y = q, ut sit $x = \frac{p+q}{2}$ et $y = \frac{p-q}{2}$, unde fit $x^{3} + y^{3} - \frac{p^{3} + 3pqq}{4} - \frac{(pp + 3qq)p}{4},$ quae formula ut reddatur quadrata, debet esse p (pp + 3qq) quadratum, unde si hi duo factores sint inter se Timi, "ulerque factor quadratum esse debet." Posterius vero tantum locum habet, si p divisibile sit per 3. line duos casus evolvi convenit. Il suttant an an antab a de succes alla) a sanut sintante i a consta **an - 10** I. Sint hi factores inter se primi, atque ut pp -- 3qq fiat quadratum, vidimus sumi debere p = ff - 3gg et 2fg; at vero ut et p fiat quadratum, capiatur f = hh + 3kh et g = 2hh. Ergo solutio hinc nata erit the start the second of the second of $a = \frac{h^4 - 4h^3 k - 6hhkk + 12hk^3 + 9k^4}{2hk^3 + 9k^4}, \quad by = \frac{h^4 - 4h^3 k - 6hhkk - 12hk^3 + 9k^4}{2hk^3 + 9k^4}$ A Siber L. Euleri Op. posthuma. T. f. 30

LECEULERINOPERA POSTHUMA.

Arithmetica

comit ormanica mininf ora

A ITO AL AM

 $= f_{1} + 3gg_{3} \text{ or } \mathbf{f}_{1} + 3gg_{3} \text{ or } \mathbf{f}_{2} + 3gg_{3} \text$ the distribution of the second s Jam' ut 'et r' flat' quadratum, "sumatur" 7 2hk et g=hk, 'ut' flat r=4hhkk, ideoque p=12hhkk et q=4hau gu At vero etiam alia solutio pro hoc casu locum habet, pohendo $q = \frac{3gg_{rm}}{2}$ et $r = fg_{rm}$ tum vero etiam $r = rg_{rm}$ et g = kk. Si h = 1 = k, erit f = 1 et [g = 1], hine [q = 1 et r = 1, vergo p = 3, x = 2 et y = 1, qui est casual cognitus. Automorphic matrix is static with a constant of the constant ----

 $x = \frac{3k_{++}^4 + 6k_{+}k_{+}}{4} + \frac{3k_{+}^4}{4} + \frac{$

Supra observavimus, ut foret $a^3 + b^3 = c^3$, fore quoque $x^4 - 4xz^3 = \Box$ et vieissim. Cum ergo quadratum esse debeat .w. (w³-...4z³), ...unde uterque factor debet esse quadratum. Reddatur primo posterior w³-...4z³ iquar dratum, pro quo casu est n = -4, unde colligitur $x = a (a^3 + 32b^3)$ et $y = 4b (a^3 - 4b^3)$. Ut ergo et x fight quadratum, debet esse $a(a^3 - 32b^3) = \Box$, ergo uterque factor deberet esse \Box , ideoque $a^3 - 32b^3 = \Box$. Loco 22 scribamus -c et formula erit $a(a^3 - 4c^3)$; quocirca si in maximis numeris formula $x(x^3 - 4z^3)$ esset \Box , hog modo ad aliam similem formulam deveniretur 'a $(a^{\frac{1}{2}}, ..., 4c^{\frac{3}{2}})$ etiam quadratum, ubi numeri a et c manifesto multo forent minores, quam illi x et y. Deinde ex his x^{a} et x simily modo deduceremur ad alios multo minores, puta d et e, ita ut similis forma $d(d^3 - 4e^3)$, esset \square et ita porro; unde certe proditura esset in minimis, numeri talis forma quadratum; quare cum in minimis numeris talis forma non detur, ne in maximis quidem talis existin Casus autem obvius, quo e = 0, hic nullam facit exceptionem; ad eum enim perveniri non potest, nisi jam prima forma fuerit z = 0, qui casus ne in quaestionem quidem cadit. luna, saluri misilas senalar reficingente

 $-_{R}qd \xrightarrow{} -_{R}p \cdot p \downarrow \xrightarrow{} -p \cdot p$ PROBLEMA. Reddere formulam x³-1-ni)³ cubum. 19 "Solurio: Statim menifestum est, ad hoe statui oportere and - - - + to man min. min. mit.

$$x + y \overset{3}{\mathcal{V}} n = (p + q \overset{3}{\mathcal{V}} n + r \overset{3}{\mathcal{V}} nn)^{3};$$

tum enim ipsius formulae $x^3 \rightarrow ny^3$ radix cubica erit $p^3 \rightarrow nq^3 \rightarrow nq^3 \rightarrow nr^3$. Facta autem evolutione reperetu fin , b == a do "ill . . 8 19 1 'i ala ima milita nie

$$w + y \sqrt{n} = \frac{+ 3ppq}{p^{+}r_{W}} + \frac{+ 3ppq}{q^{+}r_{W}} + \frac{+ 3ppq}{p^{+}r_{W}} + \frac{+ 3ppq}{p^{+}r_{W}} + \frac{+ 3ppq}{p^{+}r_{W}} + \frac{+ 3ppq}{p^{+}r_{W}} + \frac{+ 3pqq}{p^{+}r_{W}} + \frac{+ 3pqq}{p^{+}$$

hine of the super contract are not the y by $x = p^3 + 6npqr - r - nq^3 + nnr^3$ because a to be contracted on the mount field of hon() – hersens a stallern farat entroff – griff 3ppg 443mprr 443mgressen sont hongs – theoremus second utog y-szyer v to y = , to a unin an cuanty 0 == 3ppr ++ 3pqq ++ Bnqrr; cutowit of can are at a relation of the second distance of the second $p = \frac{-qq \pm \sqrt{(q^4 - 4nqr^3)}}{q^4 + 4nqr^3},$ *p* + *q* == *n* · 1 199 april 1

ex qua aequatione fit

112

unde quadratum esse deberet formula ' $q'(q^3 - 4nr^3)$, 'ideoque uterque factor seorsim. Sit ergo q = ss debergue esse $s^6 - 4nr^3 = \Box \stackrel{\frown}{\longrightarrow} tt_{1,0}$ sive $s^6 \stackrel{\frown}{\longrightarrow} tt = 4nr^3 \stackrel{\frown}{\longrightarrow} 4nf^3g^3$. Fiat ergo $s^3 + t = 2f^3$, et $s^3 - t = 2ng^3$, under 0^{11} $s_1^3 = f_1^3 + ng_{121}^3$ quae formula similis est ipsi propositae, ubi litterae f et g sine dubio multo sunt minores and x et y. Quare si in minimis numeris talis casus non datur, ne in maximis quidem dabitur.

1 30 in antieres inter se print aligner in a loss in the second attents in the second debein grant if and the second in the second seco 5. (Lexeu.) Ad THEOREMA Fermatii supra memoratum, quo acqualitas $a^2 + b^2 = c^2$ locum habere nequit practication of the second seco casus $\lambda = 1$ et $\lambda = 2$, reductio ibi tradita hoc modo facillime obtinetur: Si esset $c^{\lambda} = a^{\lambda} + b^{\lambda}$, foret

Fragmenta ex Adversariis depromta.

 $c^{2\lambda} - 4a^{\lambda}b^{\lambda} = (a^{\lambda} - b^{\lambda})^{2} = \Box_{1}$ provide the shall on the second range

ideoque pro *ab* posito *d*, talis formula $c^{2\lambda} - 4d^{\lambda}$ deberet esse quadratum, cujus igitur impossibilitatem ostendi oportet, praeter casus $\lambda = 1$ et $\lambda = 2$.

 $b^{2\lambda} + 4c^{\lambda}a^{\lambda} = (c^{\lambda} + a^{\lambda})^{2} = \Box, \quad \text{formula } b^{\alpha} = (c^{\lambda} + a^{\lambda})^{2} = \Box,$

quin ctiam $a^{2\lambda} + 4c^{\lambda}b^{\lambda} = \Box$, quae ergo formulae etiam sunt impossibiles. Demonstratio pro casu saltem $\lambda = 3$ ita tentetur: Cum sit $a^{3} + b^{3} = c^{3}$, erit $(a+b)(aa-ab+bb) = c^{3}$, quos factores at primos inter se spectemus, cum casus, quo divisorem communem habent 3, nullam novam difficultatem implicet. Sit igitur uterque cubus $a + b = p^{3}$ et $aa-ab+bb = P^{3}$, fietque c = Pp; tum vero erit $p^{6} - P^{5} = 3ab$, deinde ob $b^{3} = c^{3} - a^{3} = (c-a)(cc+ac+aa)$, fiat iterum $c-a = q^{3}$ et $cc+ac+aa = Q^{3}$; fietque b = Qq et $Q^{3} - q^{6} = 3ac$,

denique ob $a^3 = c^3 - b^3 = (c - b)(cc - bc + bb)$ sit $c - b = r^3$ et $cc - b + bc = R^3$, unde a = Rr et $R^3 - r^5 = 3bc$. Introductis igitur litteris p, q, r et P, Q, R, ob c = Pp, b = Qq et a = Rr, sequentes conditiones sunt adimplendae :

I. $p^3 = Rr + Qq$, **II.** $q^3 = Pp - Rr$, **III.** $r^3 = Pp - Qq$, **IV.** $P^3 = Rrr - RrQq + QQqq$, **V.** $Q^3 = PPpp + PpRr + RRrr$, Rrr, $R^3 = PPpp + PpQq + QQqq$, **quibus praeterea adjungere licet**

VIII. $p^6 = P^3 = 3QqRr$,VIII. $Q^3 = \frac{1}{P_0}q^6 = 3P_pRr$,IX. $R^3 - r^6 = 3P_pQq$.Denique etiam notasse juvabit $Q^3 - P^3 = (c-b)$ $(a + c - b) = (P_p + Q_q) (Rr + P_p - Q_q)$. Totum ergo negotiumhuc redit, ut in his conditionibus contradictio detegaturant main and starting of the product of the product

6.

 $A \to B \to C \to D$, etc., per productum ABCD; etc., multiplicata producat unitatem, Sive si hoc signum = denotet impossibilitatem aequalitatis, theorema hoc complectitur sequentes formas:

 $\begin{array}{l} \text{full} \quad \mathbf{I} \cong AB \left(A \rightarrow B \right) \equiv \left(\mathbf{I}, \mathbf{I} \right) \cong \left(ABC \left(A \rightarrow B \rightarrow C \right) \equiv \left(\mathbf{I}, \mathbf{I} \right) \cong \left(\mathbf{I}, \mathbf{I} \right) = \left(\mathbf$

I. $A + B = \frac{1}{AB_{1}}$, II. $A + B + C = \frac{1}{AB_{2}}$, III. $A + B + C = \frac{1}{AB_{2}}$, etc.

Hine si postremae formulae fractae referantur littera O, sequentes formae sunt notatu dignae:

 $\overset{\text{Hubble}}{=} = 0 \quad \text{existence} \quad ABO = 1, \quad \text{II.} \quad A \to B \to C \pm O \quad \text{existence} \quad ABCO = 1,$

III. $A \rightarrow B \rightarrow C \rightarrow D \equiv 0$ existence $ABCDO \equiv 1$, etc.

Ponro quia litterae A, B, C, O sunt fractiones, si ponamus

relf and the

$$A = \frac{a}{b}, \quad B = \frac{b}{c}, \quad C = \frac{c}{d}, \quad \text{etc.}$$

sequentes habebuntur relationes impossibiles: antivatione and provide out antipation of a contraction of a

I. $\frac{a}{b} + \frac{b}{c} \pm \frac{c}{a}$, II. $\frac{a}{b} \pm \frac{b}{c} \pm \frac{c}{d} \pm \frac{c}{a}$, III_4 , $\frac{a}{b} \pm \frac{b}{c} \pm \frac{c}{d} \pm \frac{d}{e} \pm \frac{e}{a}$.

At si hujus theorematis demonstratio haberetur, inde facile sequentia theoremata demonstrari possent: $\frac{1}{2}$

235

jaan (Parti

,)

L. EULERI OPERA POSTHUMA.

DEMONSTRATIO. Facta divisione per pqr, ut habeatur ne - -

ubi si faciamus $\frac{pp}{qr} = A$, $\frac{qq}{pr} = B$, $\operatorname{erit}_{11}AB = \frac{pq}{rr} = \frac{1}{O}$, sive $A + B \pm \frac{1}{AB}$, quod cum impossibile si hujus theorematis veritas est evicta.

 $\frac{1}{qr} \frac{qr}{pr} \frac{qr}$

THEOREMA II. Summa trium biquadratorum biquadratum esse nequit, sive $p^4 + q^4 + r^4 \pm s^4$. DEMONSTRATIO. Facta divisione per pqrs habebitur $\frac{p^3}{qrs} + \frac{q^3}{prs} + \frac{r^3}{pqs} \pm \frac{s^3}{pqr}$

ubi manifesto est ABCO=1. Quod cum sit impossibile, etiam hoc theorema est demonstratum.

THEOREMA III. Non dantur quatuor potestates quintae, quarum summa sit potestas quinta, sive $p^5 + q^5 + r^5 + s^5 \pm t^5$.

 $A + B + C \equiv 0$

DEMONSTRATIO. Facta divisione per productum pqrst et comparatione cum superioribus litteris A, BC, D, O instituta, hoc modo -

$$\frac{p^4}{qrst} + \frac{q^4}{prst} + \frac{r^4}{pqst} + \frac{s^4}{pqrt} \pm \frac{t^4}{pqrs}$$
$$A + B + C + D \equiv 0$$

hic statim apparet esse ABCDO = 1. Sicque etiam hoc theorema est demonstratum.

THEOREMA GENERALE. Existente n exponente potestatis, non dantur n-1 tales potestates, quarum summa esset similis potestas.

COROLLARIUM 4. Hinc multo minus n = 2, vel n = 3, vel n = 4, etc. tales potestates dantur, quatum summa esset similis potestas. Hoc ergo modo theorema illud Fermatii'in multo majori extensione adeo esset demonstratum.

COROLLARIUM 2. Quia potestates impares acque negativae ac positivae esse possunt, litterae illas p, q, r, s, sive A, B, C, D utcunque ratione signorum variare poterunt, id quod hoc modo referri potest.

I. $\pm p^3 \pm q^3 \pm r^3 \pm 0$, II. $\pm p^5 \pm q^5 \pm r^5 \pm s^5 \pm t^5 \pm 0$ etc.

COROLLARIUM 3. Hoc autem nullo modo valet pro potestatibus paribus, quoniam $-p^4$ non est potestat quarta, unde hoc theorema non ad hanc formam debet extendi: $p^4 + q^4 - r^4 = s^4$, quandoquidem statim¹ oculos incurrit casu q = r hanc aequationem subsistere non posse, quemadmodum modo supra vidimus talem formam revera resolvi posse.

Huic fragmento manu J. A. Euleri inscriptum: Hujus autem falsitas infra fusius ostendetur.

pag. 115. 116

ം പ

Arithmetica

Ecce quatuor numeri, quorum tam summa quam productum unitati aequatur:

$$+\frac{4}{3}, +\frac{3}{2}, -\frac{1}{3}, -\frac{3}{2},$$

unde superior illa conjectura omni fundamento destituitur.

PROBLEMA. Invenire quotcunque numeros, quorum summa multiplicata per productum producat unitaten

237Fragmenta ex Adversariis depromta. 1. Si desiderentur duo tales numeri, ut sit ab(a+b) = 1, ponatur $a = \alpha b$ eritque $\alpha b^3(\alpha + 1) = 1$, sive $\frac{1}{\alpha(\alpha+1)}$, sicque $\alpha(\alpha+1)$ debet esse cubus, quod fieri nequit. $2a_{11} = 2a_{11} = 5i$ tres desiderentur numeri abc (a + b + c) = 1, ponatur a = a (b + c), ideoque $a' + b + c = (1 + a) (b_{1} + c), \quad ergo = a (a_{1} + 1) b c (b_{1} + c)^{2} (1 + a_{1}) b c (b_{1} + c)^{2} (1 + a_{1}) b c (b_{1} + c) (1$ Nunc ponatur $b = \beta c$ eritque $(b+c)^2 = cc (1+\beta)^2$, ideoque $\alpha\beta (\alpha+1) (\beta+1)^2 c^4 = 1$, sive $\frac{1}{c^4} = \alpha\beta (\alpha+1) (\beta+1)^2$. Sumatur $\alpha = \beta\beta + 2\beta$, et debet esse $\frac{1}{c^4} = \beta\beta (\beta \rightarrow 2) (\beta \rightarrow 1)^4, \quad \text{sive} \quad \frac{1}{c^4(\beta \rightarrow 1)^4} = \beta\beta (\beta \rightarrow 2).$ Sit $\beta = pp - 2$, unde $\frac{1}{c^4(\beta+1)^4} = pp (pp - 2)^2$, ergo $\frac{1-c}{cc(\beta+1)^2} = p (pp - 2)$, quod fit quadratum I. si sumatur p = 2; tum enim erit $\frac{1}{c(\beta+1)} = 2$; deinde $\beta = 2$, $\alpha = 8$, $c = \frac{1}{6}$, $b = \frac{1}{3}$? a = 4. Consequenter tres numeri quaesiti 4, $\frac{1}{3}$, $\frac{1}{6}$, quorum summa est $\frac{9}{2}$ et productum $\frac{2}{9}$. Deinde p(pp - 2) fit quadratum sumendo $p = \frac{9}{4}$. Erit enim $p (pp - 2) = \frac{9}{4} \cdot \frac{49}{16}$, hinc $\frac{1}{c(\beta+1)} = \frac{21}{8}$, porro $\beta = \frac{49}{16}$, p(p-2) fit quadratum sumendo $p = \frac{9}{4}$. Erit enim $p (pp - 2) = \frac{9}{4} \cdot \frac{49}{16}$, hinc $\frac{1}{c(\beta+1)} = \frac{21}{8}$, porro $\beta = \frac{49}{16}$, $p(p-2) = \frac{8 \cdot 16}{16^2}$, $c = \frac{8 \cdot 16}{21 \cdot 65}$, $b = \frac{7 \cdot 8}{3 \cdot 65}$, denique $a = \frac{49 \cdot 81 \cdot 8}{16^2 \cdot 21} = \frac{7 \cdot 27}{16 \cdot 2}$, ergo tres numeri quaesiti $a = \frac{7 \cdot 27}{32}$, $b = \frac{7 \cdot 8}{3 \cdot 65}$, $c = \frac{6 \cdot 16}{21 \cdot 65}$, quorum summa $\frac{65^2}{21 \cdot 32}$, productum vero $\frac{21 \cdot 32}{65^2}$. **MULTION:** Sumatur, $\beta = pp + 1$, sut flat $\frac{1}{c^4 p^4} = \alpha (\alpha + 1) (pp - 1)$, jam sumatur $\alpha = p - 2$, unde $\frac{1}{d;p^2} = (p-2)(p+1)(p-1)^2, \text{ statuatur } (p-2)(p+1) = (p+1)^2 qq, \text{ unde } p-2 = (p+1)qq \text{ et } p = \frac{2+qq}{1-qq},$ $\frac{1}{d;p^2} = (p-2)(p+1)(p-1)^2, \text{ statuatur } (p-2)(p+1) = (p+1)^2 qq, \text{ unde } p-2 = (p+1)qq \text{ et } p = \frac{2+qq}{1-qq},$ $\frac{1}{d;p^2} = \frac{3}{4-qq}, p-1 = \frac{4+2qq}{1-qq}, \text{ ideoque } \frac{1}{copp} = \frac{3q(1+2qq)}{(4-qq)^2}. \text{ Superest ergo reddi quadratum } 3q(1+2qq), \text{ quod transfer of the sum of } q = \frac{4}{2}; \text{ hinc } \frac{1}{cp} = 2, p = 3, \alpha = 1, \beta = 8, c = \frac{4}{6}, \text{ ergo tres numeri sunt } a = \frac{3}{2},$ $\frac{4}{24}$, $c = \frac{1}{6}$, quorum summa est = 3 et productum = $\frac{1}{3}$. Deinde solutionem praebet positio $q = \frac{1}{24}$. Aliter, sum to statim $\alpha = 1$, fit $\frac{1}{c^4 p^4} \stackrel{\text{in }}{=} 2\beta' (\beta' \stackrel{\text{in }}{\to} 1)^2$; similatur $\beta = 2pp$, fiet the matrix is the state of the $\frac{1}{copp} = 2p (2pp + 1), \quad cui satisfacit, \quad p = 2.$ 3. Si desiderentur quatuor numeri, ut sit abcd (a + b + c + d) = 1, ponatur

an de manager

umatur

 $a = \alpha \ (b + c + d), \quad b = \beta \ (c + d), \quad et \quad c = \gamma d, \quad .$ unde $b = \beta (\gamma + 1) d$, $a = \alpha (\beta + 1) (\gamma + 1) d$ et summa omnium $(\alpha + 1) (\beta + 1) (\gamma + 1) d$, productum vero $d^{\beta}\gamma (\beta - + 1) (\gamma - + 1)^2 d^4$. Debet ergo esse

$$\alpha\beta\gamma(\alpha+1)(\beta+1)^{2}(\gamma+1)^{3}d_{0}^{5}=1.$$

$$\gamma = \beta \quad \text{eritque} \quad \alpha\beta\beta(\alpha + 1)(\beta + 1)^5 d^5 = 1, \quad \text{ideoque} \quad (\beta + 1)^5 d^5 = \frac{1}{\alpha\beta\beta(\alpha + 1)}$$

 $(\beta-1)d = \frac{kk}{\alpha(\alpha-1)} \quad \text{fietque} \quad k^{10} = \frac{a^4(\alpha-1)^4}{\beta\beta}, \quad \beta = \frac{a\alpha(\alpha-1)^2}{k^5},$ be a circle to be a constructed by the sum of the second second

LEELOPERA POSTHUMA.

$d \stackrel{\text{def}}{=} \frac{\gamma^{(1)} + k_{\text{optical}}}{\alpha(\alpha + 1)(\beta + 1)}, \gamma \stackrel{\text{def}}{=} \frac{\alpha \alpha (\alpha + 1)^2}{k^5}, \alpha \stackrel{\text{def}}{=} \frac{\alpha \gamma (\alpha + 1)^2}{k^5}, \alpha \stackrel{\text{def}}{=} \frac{\alpha \alpha (\alpha + 1)^2}{k^5}, \alpha \stackrel{\text{def}}{=} \alpha \alpha $
a(a+1)(p+1)
EXEMPLUM. $\alpha = 1, \alpha k = 1, \text{ erit} \beta = 4 = \gamma_{ab} d = \frac{1}{10}, \alpha = \frac{2}{5}, b = 2, \alpha = \frac{5}{2}$ which consequenter quantum in
meri sunt: $\frac{5}{2}$, 2, $\frac{2}{5}$, $\frac{1}{10}$ quorum sühma est $= 5$, et productum $= \frac{1}{5}$.
4. Si desiderentur quinque numeri, ut sit abcde $(a + b + c + d + e) = 1$, nonatur
4. Si desiderentur quinque numeri, ut sit $abcde(a+b+c+d+e) = 1$, ponatur $d = \delta e, c = \gamma (\delta + 1) e, b = \beta (\gamma + 1) (\delta + 1) e, a = \alpha (\beta + 1) (\gamma + 1) (\delta + 1) e.$
Hine summa omnium = $(\alpha + 1)(\beta + 1)(\gamma + 1)(\delta + 1)e$ et productum $\alpha\beta\gamma\delta(\beta + 1)(\gamma + 1)^2(\delta + 1)^2e^5$,
$\operatorname{ergo}^{-1} (\alpha - 1) (\beta - 1)^2 (\gamma - 1)^3 (\delta - 1)^6 e^6 = 1.$
Sumatur $\delta = \beta$ et $\gamma = pp - 1$, erit $\alpha\beta\beta(pp - 1)(\alpha - 1)p^6(\beta - 1)^6e^6 = 1$.
Sit $p(\beta + 1)e = \frac{1}{k}$ eritque $\alpha\beta\beta(pp-1)(\alpha + 1) = k^6$. Fiat $\alpha(\alpha + 1)(pp-1) = \alpha\alpha qq$, inde $\alpha = \frac{pp-1}{k}$, $\alpha\beta q = k^6$.
ergo $\beta = \frac{k^3}{ag}$. Sit $p = 2$ et $q = 2$, hinc $\alpha = 3$, $\beta = \frac{k^3}{6}$. Ponatur $k = 2$, erit $\beta = \frac{4}{2} = \delta$, $e = \frac{1}{20}$, $d = \frac{1}{20}$
$c = \frac{1}{2} \frac{3}{4}, \ b = \frac{4}{3}, \ a = 7;$ consequenter quinque numeri 7, $\frac{4}{3}, \ \frac{3}{4}, \ \frac{3}{7}, \ \frac{3}{98}, \ \text{quorum summa est}$
ductum omnium 3
Conjectura igitur supra proposita maxime fallit, ita ex casu ultimo, quo volebamus demonstrare iton ou
quinque potestates sextas, quarum summa sit potestas sexta, tum démum demonstratio haberetur, si geten
posset, quinque illos numeros a, b, c, d, e nunquam ita definiri posse, ut eorum quilibet, per quencunqu
reliquorum divisus, praebeat potestatem sextam. Si igitur demonstrari posset omnes has fractiones
$p_{i} \leftarrow i$ and $p_{i} \leftarrow i = 1$ where $p_{i} = 1$ and $a = 1$ and $p_{i} = 1$ and $p_{i} = 1$
non esse posse potestates sextas, tum simul demonstratum esset mon davi minural potestates cortes potest
sextae "aequales" our our our densities aexias, potestates aexias, pot
a priliant for any and index chaird . The analytication of a communication of the
s million intervalue and intervalue $\frac{1}{8}$ - antrophysical is some number s and $\frac{1}{8}$ (J. A. Euler.)
Ad casum superiorem secundum pro tribus numeris, quo formula
Ad casum superiorem secundum pro tribus numeris, quo formula $\alpha\beta$ (α +- 1) (β +- 1) ²
Ad casum superiorem secundum pro tribus numeris, quo formula $\alpha\beta (\alpha - 1) (\beta - 1)^2$ debet esse biquadratum, sumatur $\beta = 4\alpha (\alpha - 1)$, eritque formula
Ad casum superiorem secundum pro tribus numeris, quo formula $\alpha\beta (\alpha + 1)(\beta + 1)^2$ debet esse biquadratum, sumatur $\beta = 4\alpha (\alpha + 1)$, eritque formula $4\alpha\alpha (\alpha + 1)^2 (2\alpha + 1)^4 = \frac{1}{c^4}$, ergo $2\alpha (\alpha + 1)(2\alpha + 1)^2 = \frac{1}{cc}$, sive $2\alpha (\alpha + 1) = \frac{1}{cc(2\alpha + 1)^2}$
Ad casum superiorem secundum pro tribus numeris, quo formula $\alpha\beta (\alpha - 1) (\beta - 1)^2$ debet esse biquadratum, sumatur $\beta = 4\alpha (\alpha - 1)$, eritque formula
Ad casum superiorem secundum pro tribus numeris, quo formula $\alpha\beta (\alpha + 1)(\beta + 1)^{2}$ debet esse biquadratum, sumatur $\beta = 4\alpha (\alpha + 1)$, eritque formula $4\alpha\alpha (\alpha + 1)^{2} (2\alpha + 1)^{4} = \frac{1}{c^{4}}, \text{ergo} 2\alpha(\alpha + 1)(2\alpha + 1)^{2} = \frac{1}{cc}, \text{sive} 2\alpha(\alpha + 1) = \frac{1}{cc(2\alpha + 1)^{2}}.$ Debet ergo $2\alpha (\alpha + 1)$ esse quadratum. Ponatur ergo $2\alpha (\alpha + 1) = \alpha\alpha pp$, erit $\alpha = \frac{2}{pp-2}$, hincque fit $\alpha\alpha pp = \frac{4pp}{(pp-2)^{2}} = \frac{1}{cc(2\alpha + 1)^{2}}, \text{ergo} \frac{2p}{pp-2} = \frac{1}{c(2\alpha + 1)} = \frac{pp-2}{c(pp+2)}, \text{hinc} c = \frac{(pp-2)^{2}}{2p(pp+2)}.$
Ad casum superiorem secundum pro tribus numeris, quo formula $\alpha\beta (\alpha + 1)(\beta + 1)^2$ debet esse biquadratum, sumatur $\beta = 4\alpha (\alpha + 1)$, eritque formula $4\alpha\alpha (\alpha + 1)^2 (2\alpha + 1)^4 = \frac{1}{c^4}$, ergo $2\alpha (\alpha + 1)(2\alpha + 1)^2 = \frac{1}{cc}$, sive $2\alpha (\alpha + 1) = \frac{1}{cc(2\alpha + 1)^2}$. Debet ergo $2\alpha (\alpha + 1)$ esse quadratum. Ponatur ergo $2\alpha (\alpha + 1) = \alpha\alpha pp$, erit $\alpha = \frac{2}{pp-2}$, hincque fit
Ad casum superiorem secundum pro tribus numeris, quo formula $\alpha\beta (\alpha + 1)(\beta + 1)^{2}$ debet esse biquadratum, sumatur $\beta = 4\alpha (\alpha + 1)$, eritque formula $4\alpha\alpha (\alpha + 1)^{2} (2\alpha + 1)^{4} = \frac{1}{c^{4}}, \text{ergo} 2\alpha(\alpha + 1)(2\alpha + 1)^{2} = \frac{1}{cc}, \text{sive} 2\alpha(\alpha + 1) = \frac{1}{cc(2\alpha + 1)^{2}}.$ Debet ergo $2\alpha (\alpha + 1)$ esse quadratum. Ponatur ergo $2\alpha (\alpha + 1) = \alpha\alpha pp$, erit $\alpha = \frac{2}{pp-2}$, hincque fit $\alpha\alpha pp = \frac{4pp}{(pp-2)^{2}} = \frac{1}{cc(2\alpha + 1)^{2}}, \text{ergo} \frac{2p}{pp-2} = \frac{1}{c(2\alpha + 1)} = \frac{pp-2}{c(pp+2)}, \text{hinc} c = \frac{(pp-2)^{2}}{2p(pp+2)}.$

EXEMPLUM. Si p=2 fit $a=\frac{3}{2}$, $b=\frac{4}{3}$, $c=\frac{4}{6}$. Summa = 3, productum = $\frac{1}{3}$. Eodem redeunt sequentes solutiones arright that in mark the

Frightenite is Adviews arise deproma. 239
1.
$$a = \frac{5kt}{(2k-1)^2}$$
 et $\beta = 2kt$, sive $\beta = \frac{1}{2kt}$, sive $\beta = \frac{1}{2kt}$
2. $a = \frac{4}{2kt-1}$ et $\gamma = \frac{(2k-1)^2}{(2k-1)^2}$, sive $\beta = \frac{6kt}{(2k-1)^2}$.
3. Si kx (weight $+is) = 1^2$ casu $x = a$, time itil and casu $\beta = \frac{1}{b}$.
3. Si kx (weight $+is) = 1^2$ casu $x = a$, time itil and casu $\beta = \frac{1}{b}$.
3. Si kx (weight $+is) = 1^2$ casu $x = a$, time itil and casu $\beta = \frac{1}{b}$.
3. Si kx (weight $+is) = 1^2$ casu $x = a$, time itil and casu $\beta = \frac{1}{b}$.
3. Si kx (weight $+is) = 1^2$ casu $x = a$, time itil and casu $\beta = \frac{1}{b}$.
3. Si kx (weight $+is) = 1^2$ casu $x = a$, time itil and casu $\beta = \frac{1}{b}$.
3. Si kx (weight $+is) = 1^2$ casu $x = a$, time itil and casu $\beta = \frac{1}{b}$.
3. Si kx (weight $+is) = 1^2$ casu $x = a$, time itil and casu $\beta = \frac{1}{b}$.
3. Frightenita is $p = 14$, $q = 13$, $r = 11$; III si $p = 29$, $q = 25$, $r = 23$.
3. Frightenita is casu quotis cognito facilic erui alios, solitet
 $\frac{1}{2}(-\frac{1}{2})(-\frac{$

the rules Inventis ternis numeris $a, b, \overline{c}, ^{\dagger}$ ut supra, sumatur q = a + b et r = a - b et p = a + b $\lim_{t \to 0} pp \rightarrow qq \Longrightarrow \psi_{cc} \longrightarrow 4c (a \rightarrow b) \rightleftharpoons 4c (a \rightarrow b \rightarrow b \rightarrow b), \lim_{t \to 0} at \lim_{t \to 0} qq \longrightarrow rr \rightleftharpoons 4ab^{n+1}_{2}$ fiet

$$\operatorname{ergo}_{appl} (pp - qq) (qq - rr) = 46abc (a + b + c) = 16. 4443^{1/2} (appl)$$

Hinc porro colligimus p' = 2a + 4b + 2c, vel

医疗运行器

Nam si ar ar

= 17

vel etiam p' = 2a + b + c, q = b + c, r = v - c. ALIA ANALYSIS. Loco a, b, c scribantur $\frac{x}{s}, \frac{y}{s}$ et $\frac{z}{s}$, ut débeat esse њ. Ц

$$xyz (x + y + z) = s^4 \cdot z + z$$

Find that prime $s^4 = (x + y + \frac{q^2}{2}z)^2 pp$, eritque $xyz = (x + y^2 + z)pp$, think ergo ss = $\frac{xyp(x-y)}{xy-pp}$. $z = \frac{(x - +y)pp}{xy - pp} \quad \text{et} \quad x - -y - -z = \frac{xy(x - +y)p}{xy - pp},$

JLate EULERIS OPERA POSTHUMA.

Arithmetica

Donatur porto
$$x = aqq$$
 et $y = arr$, fiedme $a_{1/2} = a_{1/2} =$

9. (N. Fuss 1.)

TENTAMEN DEMONSTRATIONIS THEOREMATIS FERMATIANI, quod esse nequeat $x^n + y^n = z^n$, statim ac n superat binarium.

Pro casu n = 3 res eo redit, ut demonstretur hanc formulam ab (a - b) cubum esse non posse, ubi a et bsint primi inter se. Ponatur ergo $ab (a - b) = x^3$ eritque $4a^3b - 4aabb = 4ax^3$, sive $(aa - 2ab)^2 = 4ax^3 - a^4$, inde $aa - 2ab = V(4ax^3 - a^4)$. Quoniam hic x et a non sunt numeri primi inter se, sit d maximus eorum communis divisor, ac ponatur a = dp et x = dz, sicque p et z erunt primi inter se, et quia a et b etiam sunt primi inter se, erit quoque b primus ad d et p, tum igitur erit

$$2dbp \rightarrow -ddpp = dd \mathcal{V}(4pz^3 \rightarrow p^4), \quad \text{ideoque} \quad \mathcal{V}(4pz^3 \rightarrow p^4) = \frac{2bp}{d} \rightarrow pp.$$

Erit ergo $\frac{2bp}{d}$ numerus integer. Quia ergo *b* primus ad *d*, necesse est, ut $\frac{p}{d}$ sit integer; ponatur ergo p = dq, erit $V(4dqz^3 + d^4q^4) = 2bq + ddqq$. Unde quia radix factorem habet *q*, at *z* ad *q* primus, necesse ut *d* habeat factorem. Sit ergo d = qr eritque $V(4qqrz^3 + q^8r^4) = 2bq + q^4rr$, seu $V(4rz^3 + q^6r^4) = 2b + q^3rr$. Sicque erit *r* factor quantitatis post signum, dum alter factor est $4z^3 + q^6r^3$, unde necesse est $r = \Box$. Sit ergo r = ss, erit $V(4z^3 + q^6s^6) = \frac{2b}{s} + q^3s^3$. At vero $\frac{2b}{s}$ numerus integer esse non potest, unde patet aequationem nullo modo subsistere posse. Sicque impossibile erit, ut sit $ab(a+b) = x^3$, neque ergo unquam esse poterit $\frac{x^3}{r} + b^3 = c^3$. Facile autem patet, hoc modo rem de altioribus potestatibus demonstrari posse. Verum haec conclusio maxime est incerta, cum fieri posset tam s = 1, quam s = 2. Ceterum theorema Fermatianum huc redit, ut demonstretur nunquam fieri posse, ut haec formula $1 - 4x^n$, vel etiam $1 - 4x^n$ unquam evadat quadratum, simul ac exponens *n* binarium superaverit; hic autem *x* omnes numeros rationales tam fractos, quam integros significare potest. Reducatur enim res ad numeros integros, ponendo $x = \frac{pq}{rr}$ et formula evadet

$$^{2n} \pm 4p^n q^n \equiv \Box,$$

cujus radix statuatur r^n -1-2 ν , ita ut ν primus ad r, crit

asol (C

in the

潮流いたこと

and see (

 $r^{2n} + 4p^n q^n = r^{2n} + 4\nu r^n + 4\nu\nu, \quad \text{unde erit} \quad r^n = \frac{4p^n q^n - 4\nu\nu}{4\nu}, \quad \text{sive} \quad p^n q^n = \nu \langle r^n + \nu \rangle,$

qui duo factores sunt primi inter se, unde uterque debet esse potestas exponentis *n*. Capi ergo poterit $v = p^n$, tum autem erit $r^n + v = q^n$, ideoque $r^n + p^n = q^n$.

Quare si haec formula $1 \pm 4x^n$ fuerit impossibilis, etiam impossibile erit

$$\mathbf{t} \quad r^n \to p^n = q^n.$$

A. m. T. II. p. 161.

Ut fiat $x^3 \rightarrow y^3 \equiv \Box$, sumatur $x \rightarrow y \equiv 3aabb$, $x - y \equiv \frac{3a^4 - b^4}{2}$. Summae vel differentiae duorum cuborum,

quae sint quadrata:

I. $2^3 + 1^3 = 3^2$, II. $8^3 - 7^3 = 13^2$, III. $65^3 + 56^3 = 671^2$, IV. $74^3 - 47^3 = 549^2$.

11. (Lexell.)

V.
$$37^3 + 11^3 = 228^2$$
, VI. $71^3 - 23^3 = 588^2$.

Pròposito problemate, quo quaeruntur duo cubi inter se primi, quorum summa x^3-1-y^3 sit quadratum, duo casus sunt perpendendi, alter, quo ambo numeri x et y sunt impares, alter vero, quo unus par, alter impar. L. Euleri Op. posthuma. T. I. 31

LAEULERI OPERA POSTHUMA.

Pro casu priori erit x=a+b et y=a-b, numerorum a et b altero existente pari, altero impari, hinc autem fi $x^3+y^3=2a^3+6abb=2a(aa+3bb)$,

ubi iterum duo casus occurrunt: primo vel 2a et aa + 3bb sunt primi inter se, quia aa + 3bb est impar, er uterque factor seorsim esse debet quadratum, unde patet a esse debere parem, b vero imparem; ponatur er 2a = 4cc, et quadratum insuper esse debet $aa + 3bb = 4c^4 + 3bb = \Box$, quod facile fit; vel secundo 2a et $aa^2 + 3b$ communem factorem habere possunt 3, quod fit si a sit divisibile per 3, existente a pari; sit ergo a = 6c, th $12c(36cc + 3bb) = \Box$, hinc $4c(12cc + bb) = \Box$. Sit ergo c = dd, fierique debet $12d^4 + bb = \Box$, quod facile fit Pro posteriori casu poni debet $x = \frac{a+b}{2}$ et $y = \frac{a-b}{2}$, ubi uterque a et b impar; tum igitur quadratum es debet $\frac{2a(aa + 3bb)}{8} = \Box$, sive $a(aa + 3bb) = \Box$. Hic iterum vel a non est divisibile per 3, vel divisibile per illo casu sit a = cc, ideoque $c^4 + 3bb = \Box$, hoc vero casu sit a = 3cc, unde

 $3cc (9c^4 + 3bb) = \Box$, sive $3c^4 + bb = \Box$.

12. (N. Fuss I.)

Si esse $ta^3 = b^3 + c^3$, foret $a^6 - 4b^3c^3 = (b^3 - c^3)^2$. Hinc ergo si demonstrari posset nunquam esse $a^6 - 4d^3 = 1$ theorema foret demonstratum. Quoniam igitur haec forma $a^6 - 4d^3$ continetur in hac $A^2 - dB^2$, etiam ejus radi quadrata similem formam habeat necesse est, quae ergo sit pp - dqq. Ergo fit $a^3 = pp + pq^3 = p(p + q^3)$. Hinc prior factor p debet esse cubus $= r^3$, et alter factor $r^3 + q^3$ pariter cubus. Unde si foret $b^3 + c^5 = cubo$ alius casus hinc deduceretur $r^3 + q^3 = cubo$.

A. m. T. H. p. 21

and anti-

A. m. T. I. p. 129

and trading on the more relevantion of the price of the same and a second state

OBSERVATIO circa theorema Fermatii, quo affirmat, hanc aequalitatem $a^n + b^n = c^n$ semper esse impos sibilem, simul ac exponens *n* excedat binarium, cujus autem demonstrationem nemo adhuc invenire potuit.

Reduci potest ista forma ad formulas, quae quadrata fieri debent. Multiplicetur enim formula proposita per $4a^n$ et utrinque addatur b^{2n} , prodibit

$$(2a^n + b^n)^2 = 4a^n c^n + b^{2n} = \Box = BB.$$

Simili modo erit $4b^n c^n + a^{2n} = AA$, item $c^{2n} - 4a^n b^n = CC$. Totum negotium ergo eo redit, num impossibilitation harum formularum ostendi possit. Ceterum apparet sufficere, casus examinare, quibus n est numerus primus; nam si $a^n + b^n \pm c^n$, erit etiam $a^{\lambda n} + b^{\lambda n} \pm c^{\lambda n}$, sicque n spectari poterit ut numerus impartum autem formula $a^n + b^n$ factorem habet a + b. Debet ergo etiam esse $a + b = p^n$, similique modo $c - a = q^n$ et $c - b = r^n$. Quod si ergo hae conditiones cum praecedentibus conjungantur, impossibilitas forfasses facilius ostendi poterit. Non solum igitur ostendi oportet hanc formulam $4a^n c^n + b^{2n}$ non esse posse quadratum ita, ut simul $a + b = p^n$.

Pro casu a = 1 et b = 1 fit illa formula $4c^n + 1 = \Box$, quod in integris nunquam evenire posse ita ostendo quod quidem manifestum est si n est par. Pro imparibus autem statim patet c non esse posse numerum mparem. Sit igitur par = 2d, erit formula $2^{n+2}d^n + 1$, cujus ergo radix esse debet $1 + 2^{n+1}s$,

 $2^{n+2}d^n + 1 = 1 + 2^{n+2}s + 2^{2n+2}ss$, unde $d^n = s + 2^n ss = s(2^n s + 1)$,

qui factores cum sint primi inter se, debebit esse $s = t^n$, alter vero factor erit $2^n t^n + 1 = (2t)^n + 1$, quod est impossibile.

A. m. T. III, p. 165-166

243

14.

THEOREMA. Formula 1-1- $2x^3$ nullo casu fit quadratum, neque in integris, neque in fractis, praeter casum x = 0.

DEMONSTRATIO innititur huic fundamento, quod omnes cubi per 7 non divisibiles sint formae $7n \pm 1$. Hinc. ergo omnes potestates sextae erunt formae $7n \rightarrow 1$. Deinde omnia quadrata sunt vel 7n, vel $7n \rightarrow 1$, vel 2n+2, vel 7n+4, ita ut nulli numeri formae 7n+3, 7n+5, 7n+6 sint quadrati. Jam forma $1+2x^3$ in integris quadratum esse non potest. Si enim x per 7 non sit divisibile, forma numeri 1-4-2 x^3 erit 7n-4-3 et x = 7a, erit $1 + 2.7^3 \cdot a^3 = zz$. Foret ergo $z \to 1$ et $z \to 1$ alter debet esse cubus, alter duplex cubus. Sumamus $z-1 = 7^3 \cdot b^3$, ideoque $z = 1 + 7^3 \cdot b^3$, unde $2a^3 = 2b^3 + 7^3 \cdot b^6$, unde patet esse debere a = bc, erit ergo $-2 - 7^3 \cdot b^3$

At si x est numerus fractus, ejus denominator debet esse quadratum. Ponatur ergo $x = \frac{a}{bb}$, fieri debet $b = 7n + 2a^3 = \Box$, ubi nisi b = 7n, semper erit $b^6 = 7n + 1$ et $a^3 = 7n \pm 1$ (si a non est 7n), ergo

$$^{6} + 2a^{3} = 7n + 1 = 2,$$

The est vel 7n+3, vel 7n-1, neutro casu quadratum. Sit a=7c erit $b^6+2.7^3$, $c^3=zz$. Sit $z=b^3+2.7^3 d^3$, $c^3 = 2b^3 d^3 + 2.7^3 d^6$ et sumto c = dc erit $c^3 = 2b^3 + 2.7^3 d^3$, ergo $c^3 - 2b^3$ divisibile esset per 7, quod **fi**eri nequit.

Werum rigida demonstratio postulat profundiores indagationes.

CARAN. I

THEOREMA I. Si fuerit $2x^3 + 1 = \Box$, dari poterunt duo cubi, quorum summa vel differentia sit cubus quadruplus.

DEMONSTRATIO. Loco x scribamus $\frac{x}{yy}$ fietque $2x^3 + y^6 = zz$. Jam ponatur x = ab fierique debet $zz - y^6 = 2a^3b^3$. Fiat ergo $z + y^3 = 2a^3$ et $z - y^3 = b^3$, unde fit $2y^3 = 2a^3 - b^3$, ergo $b^3 = 2(a^3 - y^3)$. Fiat b = 2c, $4c^3 = a^3 - y^3$.

THEOREMA II. Si dentur duo cubi, quorum summa vel differentia acquetur cubo quadruplo, dari poterit x, ut sit $2x^3 + 1 = \Box$.

DEMONSTRATIO. Sit $a^3 + b^3 = 4c^3$, erit $4a^5 + 4a^3b^3 + b^6 = 16a^3c^3 + b^6 = \Box$. Jam sumatur $x = \frac{2ac}{bb}$ $m = 2x^3 + 1.$

THEOREMA III. Non dantur duo cubi, quorum summa vel differentia sit cubus quadruplus.

DEMONSTRATIO. Si enim fuerit $x^3 + y^3 = 4z^3$, evidens est ambos numeros x et y esse debere impares, unde statui poterit x = a + b et y = a - b, ita ut numerorum a et b alter sit par alter impar, unde fiet $2a^3 + 6abb = 4z^3$, sive $a(aa + 3bb) = 2z^3$, ubi aa + 3bb erit numerus impar, unde patet a esse debere parem et imparem. Hinc porro si ambo factores a et aa + 3bb fuerint primi inter se, debet esse $a=2p^3$ et $aa + 3bb = q^3$. At vero si a sit 3c, ambo factores communem habebunt divisorem 3, eritque

$$9c(3cc + bb) = 2p^3 q^3$$
,

unde 9c debet esse duplus cubus veluti $2.27d^3$, ita ut $c=2.3d^3$, ideoque $a=2.9d^3$. Tum vero bb + 3ccdebet esse cubus, unde casus duo sunt considerandi: prior; quo $a=2p^3$ et $aa=3bb=q^3$; alter, quo $a=2.9p^3$ et $aa - 3bb = 3q^3$, sive posito a = 3c debet esse $bb - 3cc = r^3$. Quod autem uterque casus sit impossibilis, emonstrari potest ope sequentis lemmatis.

L. EULERI OPERA POSTHUMA.

Arithmetica

0.00

LEMMA. Si fuerit xx + 3yy = cubo, certum est ejus radicem ejusdem fore formae, puta pp + 3qq, ita $xx + 3yy = (pp + 3qq)^3$. Erit ergo $x + y\sqrt{-3} = (p + q\sqrt{-3})^3$, $x - y\sqrt{-3} = (p - q\sqrt{-3})^3$, hoc est

$$x + yV - 3 = p^3 - 9pqq + (3ppq - 3q^3)V - 3$$
,

unde fit
$$x = p^3 - 9pqq$$
 et $y = 3ppq - 3q^3$.

DEMONSTRATIO CASUS PRIORIS: Cum igitur aa + 3bb = cubo, per lemma erit $a = p^3 - 9pqq$ et b = 3ppq - 3qQuam ob rem debet esse $a = p^3 - 9pqq = 2$ cubis, unde hoc productum p(p-3q)(p+3q) cubo duplo aequa debet, et cum numerorum p et q alter sit par, alter impar, erit p par, ideoque p = 2 cubis. At vero p-12et p-3q = cubo. Ponatur ergo $p+3q = r^3$ et $p-3q = s^3$, erit $2p = r^3 + s^3 = 4t^3$, quod fieri non potest, qui si darentur tales numeri $a^3 + b^3 = 4c^3$, nunc darentur multo minores $r^3 + s^3 = 4t^3$.

DEMONSTRATIO ALTERIUS CASUS. Cum fieri debeat $bb \rightarrow 3cc = cubo$, erit $b = p^3 - 9pqq$ et c = 3ppq - Cum igitur a = 3c, erit $a = 9(ppq - q^3) = 2.9s^3$, sive $q(pp - qq) = 2s^3$, ubi q erit par, ideoque ponatur $p + q = t^3$ et $p - q = u^3$, erit $2q = t^3 - u^3 = 4v^3$.

Unde si magni darentur numeri, etiam in minoribus dari deberent, ut fiat $2x^3 + 1 = \Box$, quod autem cum minimis non fiat, etiam in maximis non succedet.

A. m. T. III. p. 167-169

15.

PROBLEMA. Invenire duos cubos, quorum summa aequetur dato multiplo cujuspiam cubi, sive ut su

$$x^3 - y^3 = nz^3.$$

SOLUTIO. Ponatur $n = \alpha\beta\gamma$ et fiat x = a + b et y = a - b; tum vero $z = 2\nu$, erit $a(aa + 3bb) = 4\alpha\beta\gamma$ Fiat $aa + 3bb = (pp + 3qq)^3$ et vidimus fore a = p(pp - 9qq) et b = 3q(pp - qq), esseque oportebit $a = \frac{4\alpha\beta\gamma r^3}{(pp + 3qq)^3}$ Sumatur $\nu = fgh(pp + 3qq)$, ut prodeat $a = 4\alpha\beta\gamma f^3g^3h^3$. Cum igitur sit a = p(p + 3q)(p - 3q), fiat $p = af^3$ $p + 3q = 2\beta g^3$ et $p - 3q = 2\gamma h^3$. Hinc erit $p = \beta g^3 + \gamma h^3$ et $3q = \beta g^3 - \gamma h^3$. Hinc ergo debet esse

quod si ergo hoc fieri potest, etiam aequatio proposita erit confecta. Ita sumtis $f, g, h = \pm 1$, solutio locum habebit si fuerit $\alpha = \beta \pm \gamma$. Sumto f = 2, $g = h = \pm 1$ solutio locum habet quoties fuerit $8\alpha = \beta \pm \gamma$. Tal autem casu, quo $\alpha f^3 = \beta g^3 + \gamma h^3$, invento, erit $p = \alpha f^3$ et $q = \frac{\beta g^3 - \gamma h^3}{3}$, unde porro deducitur $\alpha = p(pp - 9\alpha)$ et b = 3q (pp - qq), ex quibus denique x = a + b et y = a - b. Tandem autem erit $z = 2\nu = 2fgh (pp + 3q)$

EXEMPLUM 1. Sit $\alpha = 3$, $\beta = 2$, $\gamma = 1$, ideoque n = 6, fiet $3f^3 = 2g^3 + h^3$, quod fit si f = 1, g = 1 h = 1, tum autem erit p = 3 et $q = \frac{1}{3}$, unde deducitur a = 24 et $b = \frac{80}{9}$. Erit ergo a:b = 27:10. Sit erg a = 27 et b = 10 eritque x = 37, y = 17, $z = \frac{56}{3}$. Cum jam sit $x^3 + y^3 = (x + y)(xx - xy + yy)$, erit x + y = 5et ob x - y = 20, ergo xx - 2xy + yy = 400 et xx - xy + yy = 1029, ergo $x^3 + y^3 = 54.1029 = 6.3^3 7^3$.

EXEMPLUM 2. Sit a = 5, $\beta = 3$, $\gamma = 1$, ideoque n = 15, fiet $p = 5f^3 = 3g^3 + h^3$, quod fit si h = 27g = -1 et f = 1; tum erit p = 5, $q = -\frac{14}{3}$, unde a = 5.96 et $b = \frac{104.11}{9}$. Sumatur a = 540, b = 143x = 683, y = 397 fietque $x^3 + y^3 = 15z^3$.

OBSERVATIO MAXIMI MOMENTI. Arbitratus sum, si fuerit $xx - nyy = (pp - nqq)^3$, etiam fore: $x - y \sqrt{n} = (p - q \sqrt{n})^3$ et $x - y \sqrt{n} = (p - q \sqrt{n})^3$, unda facta evolutions for n = 3.

unde facta evolutione fiat $x = p^3 + 3npqq$ et $y = 3ppq + nq^3$. At nunc se mihi casus obtulit maxime discrepa

Fraqmenta ex Adversariis depromta.

 $16^2 - 3.23^2 = (1 - 3.2^2)^3$, unde deberet esse $16 - 23\sqrt{3} = (1 - 2\sqrt{3})^3$, quod autem neutiquam contingit. Similique modo deberet esse $16 - 23 V_3 = (1 - 2V_3)^3$. Interim tamen productum priorum and and some

$$16^2 - 3.23^2 = (1 - 3.2^2)^3 = 37^2 - 3.30^2$$
.

Revera igitur hoc remedium afferri debet: Si fuerit $xx - nyy = (pp - nqq)^3$, tum sumtis factoribus dabuntur numeri f et g, ut sit $x \rightarrow y \mathcal{V}n = (f \rightarrow g \mathcal{V}n) (p \rightarrow q \mathcal{V}n)^3$ atque $x \rightarrow y \mathcal{V}n = (f - g \mathcal{V}n) (p \rightarrow q \mathcal{V}n)^3$, ubi necesse est, sit ff-ngg=1. Haec ergo applicemus ad casum observatum, ubi est x=16, n=3, y=23, deinde f=1, q=2, et facto calculo litterae f et g ita determinantur, ut sit $f=-\frac{1478}{1331}$ et $g=-\frac{371}{1331}$, unde revera fit ff-3gg = 1. Unde patet hujusmodi coëfficientes nullo modo divinari posse

Sequens autem consideratio me ad hunc casum deduxit: Quaesivi numeros x et y, ut (x + y)(xx + yy)Bat cubus, et vidi esse debere $x + y = 4A^3$ et $xx + yy = 2B^3$. Posui ergo $xx + yy = 2(aa + bb)^3$ et inveni a(aa-3bb) et y=b(3aa-bb). Hinc porro inveni hanc solutionem y=-9 et x=13, deinde ex hoc ceasu elicui x = 7.37.61 et y = 9.13.229. — At vero valores litterarum f et g multo simplicius exhiberi possunt, uti ex sequente problemate patebit:

PROBLEMA. Invenire numeros inter se primos x et y, ut sit xx - 3yy cubus.

 x_{Hz} Sorvrio. Primo haec conditio est adjicienda, ut numeri x et y sint primi inter se: si enim compositi admittantur, solutio esset facillima sumendo

x = a(aa - 3bb) et y = b(aa - 3bb); tum enim foret $xx - 3yy = (aa - 3bb)^3$.

Ponatur igitur $xx - 3yy = (pp - 3qq)^3$ et sumtis factoribus fiat

 $x \rightarrow y \mathcal{V}3 = (f \rightarrow g \mathcal{V}3)(p \rightarrow q \mathcal{V}3)^3$

Mar 21 - y a similique modo $x - q \sqrt{3} = (f - q \sqrt{3})(p - q \sqrt{3})^3$

in the fiel $xx - 3yy = (ff - 3gg) (pp - 3qg)^3$. Necesse igitur est, ut sit ff - 3gg = 1, quod infinitis modis there potest. Primo f=1 et g=0; secundo f=2 et g=1; tertio f=7 et g=4; quarto f=26 et g=15. [[編] A はまれば A ノ $f + g \tilde{V}_3 = \frac{1}{2} (2 - V_3)^n + \frac{1}{2} (2 - V_3)^n$ et in genere

$$f - g \mathcal{V}_3 = \frac{1}{2} (2 + \mathcal{V}_3)^n - \frac{1}{2} (2 - \mathcal{V}_3)^n.$$

Its notatis cum sit $(p + qV3)^3 = p(pp + 9qq) + 3q(pp + qq)V3$. Ponatur brevitatis gr.

 $p(pp+9qq) = P \quad \text{et} \quad q(pp+qq) = Q, \quad \text{ut fiat} \quad (p+qV3)^3 = P+3QV3 \quad \text{et} \quad (p-qV3)^3 = P-3QV3.$ Hinc ergo erit

$$x + yV_3 = fP + (gP + 3fQ)V_3 + 9gQ$$
, unde fit $x = fP + 9gQ$ et $y = gP + 3fQ$;

ubi notetur litteras f et g tam negative quam positive accipi posse. anna publi

"Sit nunc p=1 et q=2, crit P=37 et Q=10, ergo x=37f+90g et y=37g+30f; quare sum to 1 et g=0, erit x=37 et y=30. At sum f=2 et g=1 erit x=164, y=97. Sum to vero f=2g = -1 erit x = 16, y = 23, qui est ipse casus supra tam difficilis visus. Hoc ergo modo omnes casus possibiles pro x et y erui poterunt, ut xx - 3yy fiat cubus, dummodo litteris f et g omnes valores tam po-1 quam negativi successive tribuantur. Eodem modo problema generalius solvi potest, ut fiat xx - nyycubus, qui sit $(pp - nqq)^{s}$ et sumto

$$ff - ngg = 1$$
 erit $x + y \sqrt{n} = (f + g \sqrt{n})(p + q \sqrt{n})^s$,

bi erit
$$(p + q \vee n)^3 = p (pp + 3nqq) [= P] + q (3pp + nqq) \vee n [= Q \vee n].$$

ne ergo erit har a se per 200 const conde inde and the content at

and and d

L. EULERI OPERA POSTHUMA.

 $x + yV_n = fP + gPV_n + fQV_n + ngQ$, ideoque, x = fP + ngQ et y = gP + fQ, ideoque

quod ergo infinitis modis fieri potest, si modo fuerit ff - ngg = 1, id quod semper praestari potest quotes fuerit numerus positivus. At si *n* fuerit numerus negativus, evidens est formulam ff + ngg, saltem pro *f* et integris, aliter unitati aequalem esse non posse, nisi sit f = 1 et g = 0.

68.

(Lexell.)

PROBLEMA. Datis numeris m et n, item a et b, invenire x et y, ut fiat

$$maa - nbb = nxx - myy$$
, sive $m(aa + yy) = n(bb + xx)$.

SOLUTIO. Ponatur x = mpa + qb et y = qa + npb, unde fiet

$$maa - nbb = m(mnppaa - qqaa) + n(qqbb - mnppbb) = maa(mnpp - qq) - nbb(mnpp - qq).$$

Oportet ergo sit mnpp - qq = 1. Manifestum ergo est hoc problema solutionem non admittere, nisi numeri et *n* sint summae duorum quadratorum. Quoties autem fuerint tales, ope problematis Pelliani semper inveni licet numeros *p* et *q*, ut fiat mnpp = qq + 1, sive $mnpp - 1 = \Box$.

(J. A. Euler.)

Excipiuntur tamen casus, quibus vel mn est ipse numerus quadratus, vel in duo quadrata inter se prima resolvi nequit; cujusmodi sunt: 8, 18, 20, 32, 40, 45, etc. Sic si mn = 13, erit p = 5 et q = 18; nam $13.5^2 = 18^2 + 1$, et si mn = 125, erit p = 61 et q = 682, nam $125.61^2 = 682^2 + 1$ etsi 125 = 100 + 25, quae non sint prima inter se, sed notandum est esse $125 = 11^2 + 2^2$, quae utique sunt prima.

A. m. T. I. p. 129

Arithmetica

p. 169

69.

(N. Euss I.)

PROBLEMA. Resolver aequalitatem $ab (a + b)^2 = cd (c + d)^2$.

SOLUTIO. Ponatur m'(a + b) = n (c + d) fierique debet nnab = mmcd. Porro sit

a = mmps, c = nnqs, b = qrs, d = prs,

unde prior acquatio erit $m^3p + mqr = n^3q + npr$, unde fit $r = \frac{n^3q - m^3p}{mq - np}$. Ut ergo fractiones evitentur, sumain s = mq - np eritque in numeris integris

$$a = mmp (mq - np), \quad b = q (n^3 q - m^3 p), \quad c = nnq (mq - np), \quad d = p (n^3 q - m^3 p).$$

Hinc enim fit

$$a + b = n (nnqq - mmpp), \quad c + d = m (nnqq - mmpp),$$

quae solutio est generalis. Notetur autem, si litterae a, b, c, d sint quadrata, veluti $a = A^2$, $b = B^2$, $c = A^2$ $d = D^2$, tum aequalitatem propositam accipere hanc formam

$$AB (AA \rightarrow BB) = CD (CC \rightarrow DD),$$

ad quam igitur solvendam illae quatuor formulae quadrata fieri debent. Primo ergo quadratum erit

್ಷ ಭಾಷಣ – ೧

A 64 40

· Fragmenta ex Adversariis depromta.

$$\frac{a}{c} = \frac{mmp}{nnq}$$
, ideoque $\frac{p}{q} = \Box$, sive $pq = \Box$.

Ameterca vero quadratum esse debet

and mile .

$$\frac{a}{b} = \frac{mmp (mq - np)}{q (n^3 q - m^3 p)}, \quad \text{sive} \quad \frac{mq - np}{n^3 q - m^3 p} \equiv \Box,$$

hecque modo omnes erunt quadrata, unde cadem solutio prodit, quae supra est data.

RESOLUTIO succincta acqualitatis (aa + bb) ab = (cc + dd)cd.

Sumtis pro m et n numeris quibuscunque capiatur $\frac{f}{g} = \frac{mm - nn}{mm - nn}$; tum vero sumatur

$$p = 4f^3 + fgg - 3g^3, \quad q = 4f^3 + fgg + 3g^3 \quad \text{et} \quad s = 4f^3 - 5fgg,$$

tim habebitur a = mp, b = ns, c = ms, d = nq. Veluti si sumatur m = 3 et n = 1, erit $\frac{f}{g} = \frac{5}{4}$, ideoque f = 5, g = 4, hinc 4ff + gg = 116, ergo p = 388, q = 772, s = 100, seu p = 97, q = 193, s = 25, unde fit a = 291, b = 25, c = 75, d = 193, hic scilicet numeros p, q, s per 4 deprimere licuit, quod semper evenit quando g numerus par.

Duo numeri a et b assignari possunt, ut fiat 10ab (aa + bb) = 53, quod utique in numeris integris fieri nequit. Hoc autem evenit sumendo $a = \frac{27}{10}$ et $b = \frac{4}{15}$, tum fit $ab = \frac{54}{75}$ et $10ab = \frac{540}{75} = \frac{36}{5}$; tum ob $a = \frac{81}{30}$ ref $b = \frac{8}{30}$ erit $aa + bb = \frac{265}{30}$, ideoque 10ab (aa + bb) = 53.

RESOLUTIO hujus formulae ab (maa + nbb) = cd (mcc + ndd).

Posito b = pc et d = qa, reperitur $\frac{aa}{cc} = \frac{mq - np^3}{mp - nq^3}$. Posito p = q(1 + z) et $\frac{a}{c} = 1 - 5z$, porro $q = \frac{k}{h}$, ambo numeri h et k arbitrio relinquantur. Tum sumatur $\frac{f}{g} = \frac{mkh + nkk}{mkh - nkk}$, eritque

$$a = h (4f^3 - 5fgg), \quad b = k (4f^3 + fgg - 3g^3), \quad c = h (4f^3 - fgg - 3g^3), \quad d = k (4f^3 - 5fgg).$$

Cum enim sit $\frac{mh}{nkk} = \frac{f+g}{f-g}$, erit $maa + nbb = mn (2ff - gg) (4ff - 3gg) (4f^3 + fgg - 3g^3)$ $mcc + ndd = mn (2ff - gg) (4ff - 3gg) (4f^3 + fgg - 3g^3)$ $mcc + ndd = mn (2ff - gg) (4ff - 3gg) (4f^3 + fgg - 3g^3)$ $mcc + ndd = mn (2ff - gg) (4ff - 3gg) (4f^3 + fgg - 3g^3)$ $mcc + ndd = mn (2ff - gg) (4ff - 3gg) (4f^3 + fgg - 3g^3)$ $mcc + ndd = mn (2ff - gg) (4ff - 3gg) (4f^3 + fgg - 3g^3)$ $mcc + ndd = mn (2ff - gg) (4ff - 3gg) (4f^3 + fgg - 3g^3)$ $mcc + ndd = mn (2ff - gg) (4ff - 3gg) (4f^3 + fgg - 3g^3)$

Ceterum hic patet, permutatis numeris h. et k sumtoque g negativo, litteras a et b abire in d et c.

ALIA RESOLUTIO formulae
$$\frac{aa}{cc} = \frac{p^3 - q}{q^3 - p}$$
,

Nunc vero ponamus q = nn(p-1) + p, tum enim prodit

$$\frac{aa}{cc} = \frac{p^3 - p - nn(p-1)}{n^6 (p-1)^3 + 3n^4 p (p-1)^2 + 3nnpp (p-1) + p^3 - p},$$

ubi commode per p-1 dividitur prodibitque

$$\frac{aa}{cc} \stackrel{pp \rightarrow p - nn}{=} \frac{pp \rightarrow p - nn}{n^6 (p-1)^2 + 3n^4 p (p-1) + 3nnpp + pp + p}$$

Hoc modo habentur duae formulae ad quadratum reducendae scilicet

$$n^6 pp \rightarrow n^6 p \rightarrow n^6$$
 et $n^6 pp \rightarrow 3n^4 pp \rightarrow 3nn \rightarrow pp \rightarrow (2n^6 \rightarrow 3n^4 \rightarrow 1)p \rightarrow n^6$.

Necesse ergo est, ut sit $(nn + 1)^3 = \Box$, ideoque etiam nn + 1. Sit igitur nn + 1 = mm eritque

L. EULERI OPERA POSTHUMA

Arithmet

1.00

$$\frac{aa}{cc} = \frac{pp + p - mm + 1}{m^6 pp - 2mm (mm - 1)^2 p + (mm - 1)^3}$$

hujusmodi autem binae formulae supra sunt resolutae. Ita si sumatur m = 2, ut sit q = 4p - 3, hinc repetition $p = \frac{8299}{64 \cdot 3 \cdot 5 \cdot 7}$ Hae autem solutiones diversae erunt ab iis, quas prior solutio suppeditaverat. Ceterum in statim ab initio scribi debuisset mm - 1 loco nn.

SOLUTIO GENERALIOR. Loco p et q scribatur $\frac{p}{r}$ et $\frac{q}{r}$ et formula resolvenda erit $\frac{p^3 - qrr}{q^3 - prr}$. Jam ponatur $p = 1 + \alpha z$, $q = 1 + \beta z$ et $r = 1 + \gamma z$ et babebinus

$$\frac{3\alpha - \beta - 2\gamma + (3\alpha\alpha - 2\beta\gamma - \gamma\gamma)z + (\alpha^3 - \beta\gamma\gamma)zz}{3\beta - \alpha - 2\gamma + (3\beta\beta - 2\alpha\gamma - \gamma\gamma)z + (\beta^3 - \alpha\gamma\gamma)zz} = \Box$$

Hic igitur tantum opus est, ut fiat

$$\frac{3\alpha - \beta - 2\gamma}{3\beta - \alpha - 2\gamma} = \frac{ff}{gg}, \quad \text{unde} \quad 2\gamma = \frac{(3\alpha - \beta)gg - (3\beta - \alpha)ff}{gg - ff}.$$

Hoc mode prodit $\frac{p}{r} = 1433$ et $\frac{q}{r} = 473$. Veluti si $\alpha = 2$ et $\beta = 1$, fit $\gamma = \frac{5gg - ff}{gg - ff} = \frac{4gg}{gg - ff} + 1$. Er g = 1 et f = 2 erit $2\gamma = -\frac{1}{3}$, ideoque $\gamma = -\frac{1}{6}$, unde fit

$$\frac{3.64 + 433z + 287zz}{3.16 + 132z + 34zz} = \Box.$$

Ceterum hic nil impedit, quominus sumatur vel $\alpha = 0$, vel $\beta = 0$, vel $\gamma = 0$; tantum sumi non debet $\beta = 0$ Quovis autem casu simplicissima solutio ita reperitur: Cum fiat $\frac{A + Bz + Czz}{a + bz + czz} = \Box$, in qua aequatione $\frac{A}{q}$ per hypothesin $= \Box$, ponatur hoc $\Box = \frac{A}{a}$, indeque prodit z. Sequens solutio imprimis est memorabilis, sumendo p = (1 + nn)z, q = 1 + z, ac per artificium modo memoratum reperitur

$$z = \frac{(nn + 1)(n^4 - 3nn + 1)}{3n^4}, \text{ unde fit } p = \frac{n^6 - 2n^4 + nn + 1}{3nn} \text{ et } q = \frac{n^6 + n^4 - 2nn + 1}{3n^4}$$

unde pro solutione formulae ab(aa + bb) = cd(cc + dd) statim habetur $a = 3n^5$, $b = n^6 - 2n^4 + nn + 1$, $c = 3n^6$ $d = n(n^6 + n^4 - 2nn + 1)$, quandoquidem posueramus b = cp, d = aq, hinc autem colligitur $\frac{aa}{cc} = n^6$, hincque $\frac{a}{c} = n^3$. Quodsi jam pro casu simplicissimo sumatur n = 2, fit a = 96, b = 37, c = 12, d = 146 hincque en $ab = 2^5 \cdot 3 \cdot 37$, $cd = 2^3 \cdot 3 \cdot 73$, $aa + bb = 5 \cdot 29 \cdot 73$, $cc + dd = 4 \cdot 5 \cdot 29 \cdot 37$.

THEOREMA. Ex qualibet resolutione aequationis ab(aa + bb) = cd(cc + dd) semper alia solutio deduci pole

DEMONSTRATIO. Quia ab (aa + bb) = cd (cc + dd), erit $(a + b)^4 - (a - b)^4 = (c + d)^4 - (c - d)^4$ For $(a + b)^4 - (c + d)^4 = (a - b)^4 - (c - d)^4$, seu

$$(a + b + c + d) (a + b - c - d) (\Box + \Box) = (a - b + c - d) (a - b - c + d) (\Box + \Box).$$

Quamobrem si ponamus a' = a + b + c + d et b' = a + b - c - d; dein etiam

$$c' = a + b - c - d$$
 et $d' = a - b - c + d$

erit a'b'(a'a'+b'b') = c'd'(c'c'+d'd') Quia igitur erat a = 291, b = 25, c = 75, d = 193, erit a' = 50b' = 48, c' = 384, d' = 148, qui per 4 depressi dant

$$a' = 146, b' = 12, c' = 96, d' = 37,$$

quae est solutio posterior minima.

Fragmenta ex Adversariis depromta.

Formulae-sat concinnaé 🔛 🤅 🔅

pro resolutione formulae ab (aa + bb) = cd (cc + dd)Sumtis pro lubitu binis quadratis ff et gg, capiatur $\frac{a}{a}$ $a = f (\alpha + \beta) (\alpha \alpha - 3\alpha \beta + \beta \beta)$ $b == q \left(\beta^3 - 5\alpha\beta\beta - 4\alpha\alpha\beta - 2\alpha^3\right)$ 50 and 1 50 $c = g (\alpha + \beta) (\alpha \alpha - 3\alpha \beta + \beta \beta)$ $d := f \left(\alpha^3 - 5\alpha\alpha\beta + 4\alpha\beta\beta - 2\beta^3 \right) + \cdots + \cdots + 1$ we] si ponatur $(\alpha \rightarrow \beta)(\alpha \alpha - 3\alpha \beta \rightarrow \beta) = \Delta$, erit $a = f\Delta, \quad b = g\left(\Delta - 3\alpha \left(\alpha - \beta\right)^2\right), \quad c = g\Delta, \quad d = f\left(\Delta - 3\beta \left(\alpha - \beta\right)^2\right).$ Pro numeris α et β constructur haec tabula: and other date **新生** 10 新二 3 3 $\frac{5}{5} = \frac{5}{5} = \frac{1}{2} + \frac{19}{79} = \frac{7}{37} = \frac{1}{375} = \frac{1}{5} = \frac{19}{29} = \frac{7}{79} = \frac{1}{37} = \frac{1}{37} = \frac{1}{5} = \frac{1}$ ്. പ്ലം മന്തരം വലം അവില്, പൂവോം പ്ലൂവം പ്രൂമും സ്വാനമായും സ്വാനമായും പ്രമാഷ്ക്രം പ്രമാഷ്ക്രമാണം പ്രതിന് 91 73 Hinc si'f 3 et g = 1, erit $\alpha = 7$ et $\beta = 3$, hincque $\Delta = -50$, unde $\alpha = 150$, b = 386, c = 50, d = 582, sive per 2 deprimendo a = 75, b = 193, c = 25, d = 291. Sit f = 5 et g = 1, erit a = 19 et $\beta = 7$, unde a = 286, a = 1430, b = 7922, c = 286, d = 13690, sive a = 715, b = 3961, c = 443, d = 6845. Hinc per theorema alii reperiuntur hoc modo: 1 subtra di 1981 ili stran de la 1986 il e dina della di 1987 il secondo della di 1987 il secondo della di 1987 a' = 2966, b' = 578, c' = 2487, d' = 864.PROBLEMA DIOPHANTEUM. Cognito uno casu, quo haec formula $\frac{A + Bz + Czz + Dz^3}{E + Dz}$ fit quadratum, ex eo alium casum derivare. SOLUTIO. Ponamus esse casu $z = e_{z}$ $\frac{M + Be + Cee - De^{R(hard elevel})}{E + Fe} = kk$, tum sumatur $s = \frac{B + 2Ce + 3Dee - Fkk}{2k(E + Fe)}$, quo facto alius casus erit $z = \frac{C + 2De - Ess - 2Fks}{11}$; $\frac{A + Bz + Czz + Dz^3}{E + Bz} = (k - es + sz)^2$ Hoe ergo modo ex unico casu innumerabiles alii successive deduci possunt. ANALYSIS. Ponatur $\frac{A + Dz + Czz + Dz^3}{E + Fz} = (k + s(z - e))^2$ et facta evolutione erit $A \rightarrow Bz \rightarrow Czz \rightarrow Dz^{3} = Ekk \rightarrow 2kEs (z - e) \rightarrow Ess (z - e)^{2} \rightarrow Fkkz \rightarrow 2Fksz (z - e) \rightarrow Fssz (z - e)^{2},$

hinc subtrahatur aequatio $A \rightarrow Be \rightarrow Cee \rightarrow De^3 = Ekk \rightarrow Fekk$ et dividendo per z - e prodit

 $B \rightarrow C (z \rightarrow e) \rightarrow D (zz \rightarrow ez \rightarrow ez) = 2Eks \rightarrow Fkk \rightarrow Ess (z - e) \rightarrow 2Fksz \rightarrow Fssz (z - e).$

am ponatur $z = e + \nu$, unde terminis ad eandem partem translatis erit

L. Euleri Op. posthuma. T. J.

in it mill

L. EULERI ORERA POSTHUMA.

 $B \rightarrow 2Ce \rightarrow i$ 3Dee $\rightarrow 2Eks \rightarrow Ekk \rightarrow 2Feks$

his - Crist- 3Dev - Essy - Essev - 2Fhsting = 0.014

+ DVV - FSSVV

1/10 - 10 - 112 -Nunc littera s ita determinetur, ut prima lineavevanescat, hoc est ponendo

> 10 -1- B + 2Ce + 3Dee - Flk - " s = 2k (E - Fe)

tum dividendo per y reperietur When the first in the second second

$$p = \frac{C + 3De - Ess - Fsse - 2Fks}{Fss - D}$$
, hincque $z = \frac{C + 2De - Ess - 2Fk}{Fss - D}$

tum igitur erif

ur erit
$$\frac{A + Bz + Czz + Dz^3}{E + Ez} = (k - gs + sz)^2 \cdot g = (k - gz + zz)^2 \cdot g = ($$

ALIUD PROBLEMA. Ex cognito casu, quo $\frac{A \rightarrow -Bz \rightarrow -Czz}{D \rightarrow -Ez \rightarrow -Fzz}$ fit quadratum, invenire alium casum, quo i 23 obtineatur.

SOLUTIO. Sit
$$z = e$$
 casus ille cognitus, quo fiat $\frac{A + Be + Cee}{D + Ee + Fee} = kk$ et ponatur $\frac{A + Bz + Czz}{D + Ez + Fzz} = kk$,

A + Bz + Czz = Dkk + Ekkz + Fkkzz hinc subtrahatur aequatio

ĩ.

 \mathcal{X}

Arithmet

na and the

et facta divisione per z - e prodibit

 $\{ \cdot, i \}$

$$B \rightarrow C (z \rightarrow e) = Ekk \rightarrow Fkk (z \rightarrow e), \text{ unde statim elicitur } z = \frac{Ekk \rightarrow Fkke - B - Ce}{C - Fkk}.$$

Verum hoc modo unicus alius valor reperitur, namque ex invento iterum pristinus valor prodiret. A. m. T. II. p. 157-161

EQ

Тивонема. Hae duae (formulae, ab, (aa, -bb) et 2cd (cc-dd) ita inter se conveniunt, respectu factorin non quadratorum, ut_altera, in alteram, transformari possit. 1, 55 = 1, 57 = 1, 57 and danadi uph E raq ng Prior enimi in posteriorem transmutatur ponendo a 2cd et b cc dd viewissim autem posterio priorem transmutatur ponendo c = aa + bb et d = 2ab; tum enim fit _______ intermediation and attention of attention o

$$2cd$$
 $(cc - dd) = 4ab$ $(aa + bb)$

estics 1000 mm - Directiventics, Counto uno casa, quo haar formula de contra de directive de win work minus 1000

Tres numeri formae xy (xx - yy) infinitis modis dari possunt, qui inter se prorsus sint aequales, scilice THE REPORT OF A CONTRACTOR

I.
$$x = ff + 3gg$$
 et $y = 4fg$;
 $y = 10^{10} x = ff + 3gg$ et $y = 3gg ff + 2fg$;
 $y = 3gg ff + 2fg$;

His numeris resolvitur problema, quo quaeruntur tria triangula rectangula, quorum areae sint inter seinequilit

Nam in triangulo ABC sumtis cathetis AC = 2xy et BC = xx + yy, erit hypotenusa AB = xx + yyarea = xy (xx - yy). Ex prima igitur forma fit area シムコン うす 増けす the condition and to " ame a 1-2

$$4fg (ff \rightarrow 3gg) (f \rightarrow g) (f \rightarrow 3g) (f \rightarrow g) (f \rightarrow 3g) (f \rightarrow 3$$

States of the state of the second states of the sec 2.14 中国时,一一下国际工业公司中国时,11 Ex secunda et tertia idem. Ratio investigationis haec est:

there is the second of the second of the second second of the second of the second of the second second second Ponatur $pr(p \rightarrow r) = qs(q \rightarrow s)(q \rightarrow s)$ et sumatur q = p, erit $r(pp \rightarrow rr) = s(pp \rightarrow ss)$, unde fit

$$p = rr + rs + ss, \quad sive \quad pp - \frac{\gamma}{2} ss = (r + \frac{\gamma}{2} s)^2, \quad duan \quad i \leq -2$$
 yielemon

Fraqmenta ex Adversariis depromta.

and for the second

The tel of the lan of

There is provide the provided and the p $2r + s = 2r + 4fg = \pm 2(ff + 3gg) - 4ff$, hincque vel r = 3gg - ff - 2fg, vel r = 3(gg - ff) - 2fg. $p_{s} = 2r + 4fg = \pm 2(ff + 3gg) - 4ff$, hincque vel r = 3gg - ff - 2fg, vel r = 3(gg - ff) - 2fg. in hac tabella exhibuntur:

1	gen mar of	16 6.1	S. 1940 -	·
¥1 . 7	F	x	у	•
	2.3	2 25	1 24	
A white warman	<u> alforite anto-tit</u>	1 815	1 m 2 10	i entrustre m (5)
		6 ***** 8	1 7	
	1.2	54076 B	5	
t Na	2,3,5,11	8 27	3 22	and with a constant of the source of the second states and a second states of the source of the sour
	2.7.11	9 (1) 11 11 11 11 11 11 11 11 11 11 11 11 1	2 7=	•
	3.5.7.11	07 11 (7 16)	5	х. П

CONJECTURA. Posito $xy (xx - yy) = A^2F$, inter numeros *E* videntur omnes numeri primi, vel ipsi, vel eerum dupla, vel ambo interdum occurrere, excepto scilicet binario, uti ex hac tabula colligere licet:

			$\frac{2.23}{29}$	121 29.13 ²	ut tie 23, 70 ²		şt 19-	•	
		$\frac{1}{2m}$	2.19 23	1250 5 MD 1562	289 133 ² 1	∑ 1 3843	÷		÷
i i	noti -	erlissen berrisse	<u>13</u> 2.17	9	ata <u>36 c</u> . 1916) 8	305 34 .4	1.书 静静病	भागन मु रेश म	- 11 A 1973 -
		- h= t	2.11	50	49 .	• ,	.		
•		1.7	2.7	16 1 = 9	7	204 au	•		
		5 1	5	 5	≦ 4 -23 5. 	£			
	· .	41. 	2.3	: 2	1			•	
		. 61. 81	; F	€. i ∡ 28 γi	ý %		·		

PROBLEMA. Invenire numeros p, q, x, y, ut sit $pq(pp-qq) = nxy(xx-yy) \Box$, pro quolibet numero dato n. Solutio tantum particularis tradi potest, et calculis satis molestis expeditis inveni sequentes valores $p = s^{4} - 20nsstt - 8nnt^{4} \qquad p + q = 2 (ss + 4ntt) (ss - 4ntt) \qquad (st - 4ntt) \qquad ($

Hic enim rejectis factoribus quadratis formula xy(xx - yy) commes continet factores alterius pq(pp - qq), ac praeterea factorem n haec posterior continebit. Notandum hic est numerum n tam positive quam negative accipi posse. Deinde etiam valores singularum harum litterarum semper positivi capi possunt, etiamsi prodeant negativi.

LinEULERHORERA POSTHUMA.

Ita sumto s = 1 et t = t pro casu n = 2 erit p = 71; q = 85, q = 71; i y = 20. Hic loco p et q correction semisumma et semidifferentia sumi possunt fietque p = 2.3.13 et q = 7. Hinc enim fiet $pq(pp-qq) = 2.3.5.7.13.17.71 \quad \text{et} \quad xy(xx-yy) = 3.5.7.13.17.71.$ Sin autem sumatur n = -2 manente s = t = 1, prodit p = 9, q = 5.9, sive p = 1 et q = 5, sive etam p = 3 et q = 2, tum vero erit x = 9, y = 4.9, sive x = 1 et y = 4, tum enim erit manufalor silodot and the imatur erer pq (pp-qq) = 2.3.5 et xy (xx - yy) = 3.5.A. m. T. III. p. 121-123 b) Quaestiones ad resolutionem plurium aequationum ducentes. 7.7.8.8 ∂ ₂**70**• (W. L. Krafft.) **PROBLEMA.** Efficere, ut fiat x + y + z = 0 eff xyz = 1, ideoque $z = \frac{1}{xy}$. Sequentes SOLUTIONES particulares prodierunt I. $x = \frac{4}{2}$, $y = \frac{9}{2}$, $z = \frac{4}{9}$ II. $x = \frac{\frac{1}{2}}{9}, \qquad y = \frac{50}{9}, \quad t = \frac{51}{2} = \frac{81}{100}$ Les lief la linite inneue mandet 13k commune 1077 i $F^{+} = 392^{2}$ where it of the transformer of the second to $\frac{y}{y} = \frac{y}{392}, \frac{y}{$ IV. $x = \frac{2}{5}$, $y = \frac{18}{5}$, $x = \frac{25}{36}$ V. $x = \frac{2}{5}$, $y = -\frac{2}{9}$, $z = \frac{9}{4}$ **VI.** $x = \frac{\frac{1}{4}}{\frac{6}{6}}, \quad \frac{y}{y} = \frac{1}{12}, \quad \frac{1}{2} = 72.$ Si ratio x ad y sumatur a:b, et ponatur $x \stackrel{(b)}{=} ma$ et $y \stackrel{(b)}{=} mb$, erit $z = \frac{1}{mmab}$, unde fieri debet $m(a + b) + \frac{1!b}{mmab} = \Box, \qquad m^3 (a + b) + \frac{1}{ab} = \Box,$ $m^{\frac{1}{2}}aabb (a \xrightarrow{|c|}b) + ab \xrightarrow{pc}c$ seu A. m. T. l. p. 12 REALERY because sumeror p. c. x. g. at all pape - qq, = ang ... - at T. and qualified analysis allow Soutorio tantan particulari- tradi p test. of chantic satis molecula exactly invention equations, valores Ut formulae $aa \rightarrow Mbb'$ et $aa \rightarrow Nbb'$ quadrata reddi queant, posito $M = m\mu$ capiatur $N = (app \rightarrow m)(aqq \rightarrow m)$ sicque pro dato numero M infiniti valores idonei pro N reperiuntur, veluti si M = 1, ideoque $m = \mu = \pm 1$ erit $N = (\alpha pp \pm 1) (\alpha qq^{1/2} + 1)$. Si $p^{1} = 1$, erit $N = (\alpha \pm 1) (\alpha qq \pm 1)$, cujusmodi formulae sunt 1997 - A (188 - 16 - 188 - A - 1897 - 18 - 19

pro $\alpha = 1$, N = 2(qq - 1)

as a $p = q_0 p_1$ miraily solved 23.1. $N \cong 3(2qq = 1)$; we 2qq = q alterboup sudicated siterary find all $p_1 = q_0 p_1$ with a second $p_1 = 2$, $n N \cong 3(2qq = 1)$; we 2(qq = 1) alterboup sudicated siterary find all $p_1 = q_1 p_2$ and a measure level $p_1 = q_1 p_2$ and a measure $q_1 = q_1 p_2$ and a measure $q_1 = q_1 p_2$ and $q_2 = q_1 p_2$ and $q_2 = q_1 p_2$ and $q_2 = q_2 p_2$ and $q_1 = q_1 p_2$ and $q_2 = q_1 p_2$ and $q_2 = q_1 p_2$ and $q_2 = q_2 p_2$ and $q_2 = q_1 p_2$ and $q_2 = q_2 p_2$ and $q_2 = q_2 p_2$ and $q_2 = q_1 p_2$ and $q_2 = q_2 p_2$ and $q_2 = q_2 p_2$ and $q_2 = q_1 p_2$ and $q_2 = q_2 p_2$ and $q_2 = q_2 p_2$ and $q_2 = q_2 p_2$ and $q_3 = q_2 p_2$ and $q_4 = q_1 p_2$ and $q_4 = q_2 p_2$ and $q_4 = q_2 p_2$ and $q_4 = q_1 p_2$ and $q_4 = q_2 p_2$ and $q_4 = q_1 p_2$ and $q_4 = q_2 p_2$ and $q_4 = q_1 p_2$ and $q_4 = q_2 p_2$ and $q_4 = q_2 p_2$ and $q_4 = q_1 p_2$ and $q_4 = q_2 p_2$ and $q_4 =$

Fragmenta ex Adversariis depromta.

heilkane Ker

formulae aa -1- mmbb et aa -1- nnbb reddi possint quadrata; numeros m et in ex talibus formis sumi oportet. hibi quidem ratio inter m et n est definienda) : - ok - a bib pq(rr-1), pr(qq-1), qr(pp-1), p(qq-rr), q(pp-rr),r(pp-qq) $p_{1}(qqrr-1), q_{1}(pprr-1), r_{1}(ppqq-1), r_{1}(ppqq-rr, r, ppr-1), qq, r_{2}(pqrr-pp, r))$ I was a set of the second of the second ppggrrad, and the second second second second second second second second quae formulae omnes ita sunt comparatae, ut si earum quadratis addatur idem quadratum 4ppggrr, coproveniant eoraliantea anti ani orrelea di 12. e 14.624 A. m. T. I. p. 122. guadrata. $p_{ROBLEMA}$. Dato numero A, invenire conditiones numeri N, ut ambae istae formulae xx + Ayy, xx + NyySimul Revinpossint quadrata: to no- on the provident with charactering a netter presidential and the Solutio. Ponatur A - uv, pro casu scilicet, quo habet factores, et priori formae satisfiet sumendo $x = \mu pp - \nu qq$ et y = 2pq, tum enim erit $xx + Ayy = (\mu pp + \nu qq)^2$. Simul vero etiam altera formula evadet quadratum, si fuerit $N = mmppgg + m (\mu pp - \eta gq)$; tum enim erit white and closed and share $xx + Nyy = (\mu pp - \nu qq)^2 + \lambda mppqq (\mu pp - \nu qq) + 4mmp^4 q^4 = (\mu pp - \nu qq + 2mppqq)^2,$ erit ergo $N = mmppqq + m (\mu pp - \nu qq)$, ubi m pro lubitu assumere licet. Quin etiam pro m fractiones assumere licet, ita ut pro N nihilominus prodeant numeri integri, sumto enim $m = n + \frac{\nu_{\perp}}{pp}$, tum enim fiet $N = (n + \frac{\nu}{pp}) (nppqq + \mu pp) = (npp + \nu) (nqq + \mu).$ हो स्वीत का त A. m. T. I. p. 128. .≝₹ 72. In an a state of the state of it. PROBLEMA DIOPHANTEUM. - Invenire numerum x 'ut his duabus conditionibus satisfiat $xx^{2} + 2ax + mmc = 1$ et xx + 2bx + nmc = 0, 1. 11.111 cujus solutio particularis est an entraban entraba $(ma - mmb)^2 - mmnn (m - n)^2 c$. $\sum_{n=0}^{\infty} \frac{(ma - mmb)^2 - mmnn (m - n)^2 c}{(1 - 2mn (m - n) (na - mb))}$ Ita si proponantur hae duae formulae: $xx + 2ax + c = \Box$ et $xx + 2bx + c = \Box$, sumatur m = 1 et n = -1enitiques where $\frac{(a-b)^2-4c}{4(a+b)}$ we have a second realistic where a $b := \frac{a - b}{a - b} x - b : (a - b) = \frac{a - b}{a - b} = \frac{a - b}{a - b} x - b = \frac{a - b}{a - b} x - \frac{a - b}{a - b} = \frac{a - b}{a - b} x - \frac{a - b}{a - b} = \frac{a - b}{a - b} x - \frac{a - b$ A. m. T. II. p. 154. hurden the Filmer PROBLEMA. Resolvere has duas acqualitates¹ = 500 - 1 - 1 wall in the read (2 + 2a) and + (2 - 2a) yy = 4AA et (2 + 2b) and + (2 - 2b) yy = 4BB. Solutio. Hinc ergo primo erit $4A^2 + 4B^2 = (4 + 2(a + b))xx + (4 - 2(a + b))yy$; posito ergo a + b = 2c, erit $A^2 + B^2 = (1 + c) xx + (1 - c) yy$. Deinde vero erit $4A^2 - 4B^2 = 2(a-b)(xx - yy)$, unde posito a - b = 2a, erit $A^2 - B^2 = a(xx - yy)$. "Statuatur a_{1} go $A_{-1-B} = x = y$ critque $A_{1} = B = u(x + y)$. Addantur quadrata critque $A_{1} = u(x + y)$ $2A^2 + 2B^2 = (x^{\frac{1}{2}} y)^2 + \frac{2}{2} \frac{2}{3} (x^{-1} y)^2 = 2(1 + 2)(1 +$ guae evoluta fit (1-+ 2d) xx -+ (1-- 2d) 2xy -- (1 -+ 2d) yy == 2(1-+ c) xx -+ 2(1-- c) yy, sive (dd - 2c - 1) xx = 2 (1 - dd) xy = (dd + 2c - 1) yy = 0 while c = 0 with a sure of dt = 1劉健[g]用[1][g][A] sive (dd-1)(xx-2xy+yy)-2c(xx-yy)=0,

LERI OPERA POSTHUMA.

Arithmetica

guae commode per
$$w_{-}$$
 y diviso $d_{1-}(d_{1-}(t_{1})=y_{1-})=2e(x_{1}+y_{2})=0$ and treperture t_{1-} which with our module $\frac{x_{1}}{y_{1-}}=\frac{x_{1}+y_{2}-1}{x_{1-}}$ index reperture t_{1-} which with our module t_{1-} x_{1-} y_{1-} $\frac{d_{1-}+2z_{1-}}{x_{1-}}$ index reperture t_{1-} which with our module t_{1-} x_{1-} y_{1-} $\frac{d_{1-}+2z_{1-}}{x_{1-}}$ index reperture t_{1-} which with our module t_{1-} x_{1-} y_{1-} $\frac{d_{1-}+2z_{1-}}{x_{1-}}$ index reperture t_{1-} which with our module t_{1-} x_{1-} y_{1-} $\frac{d_{1-}+2z_{1-}}{x_{1-}}$ index reperture t_{1-} x_{1-} w_{1-} w_{1-} x_{1-} x_{1-} w_{1-} w_{1-}

-lochmetica	Fragmenta es	x Adversariis depromta.	255
	ยา จำไหวรูป ๆ เมือง เป็นเร	frie 11-75. And incorrect partitions where substant	e on a constance of the
PROBLEMA. Inv	zenire quatuor numeros po	sitivos x, y, z, v , inter se primos, quoru	n tam summa quam
summa quadratorum	sit biquadratum.		
Sorutio. Posit	is $x = aa + bb + cc - dd$,	y = 2ad, z = 2bd, v = 2cd, erit	
	xx yy zz	$+$ $\nu \nu = (aa + bb + cc + dd)^2$.	striction, in a sub-sector of the sector of
an and fat biquadra		d + rr - ss, b = 2ps, c = 2qs, d = 2rs eritq	- 26. · · · · · · · · · · · · · · · · · · ·
ingeningen Alexandre I Andre Jacobie	$aa \rightarrow bb \rightarrow cc$	$\rightarrow dd = (nn \rightarrow aa \rightarrow rr \rightarrow ss)^2$.	
ann mar ann an	energy and a constitute state of the second second	ingen i lakser forste produktionen versteren førstere	an handdar the george lafe
Ut vero etiam ipsa si	$\operatorname{Imma} x \rightarrow y \rightarrow z \rightarrow v \text{ fiat}$	quadratum, hoc fiet sumendo $p = s + \frac{3}{2}r$	-q, floc enim modo
erit $V(x + y + z + y)$	·) == 2qq 3qr 2qs -+- $\frac{13}{4}$ rr	5rs 2ss. ? Quae quantitas ut denuo fiat	t quadratum, posito
a=r-1-7 reperitur r	$=\frac{uu-2tt+2ts-2ss}{t+3s+3u}$; hoce	que modo problemati satisfiet.' Hinc sequen	s exemplumente de la
	$a = 3 \qquad x = 409$	$x^2 = 167281$ $x + y + z + c = 6$	$25 \pm 5^{ m floor}$ and is
q=2	b = 20 $y = 24$	$y^2 = 576 \qquad xx + yy + zz + vv =$	=2 1 ⁴.
r=2	c = 4 $z = 160$	$z^2 = 25600$	•
s == 9	$d = 4 \qquad \nu = 32$	$e^2 = 1024$	
PROBLEMA. Inv	enire quinque numeros pe	ositivos et inter se primos x, y, z, v, u, v	quorum tam summa
and and and and	onum eit higunadratum		
Solutio. Statu	atur $x = aa + bb + cc + dd$	$\stackrel{v}{=} \underbrace{ee}_{v_1} \underbrace{y =}_{2ae} \underbrace{2ae}_{v_1} \underbrace{z =}_{2be} \underbrace{2be}_{v_1} \underbrace{v =}_{2ce} \underbrace{2ce}_{v_1} \underbrace{u =}_{2de} \underbrace{2de}_{v_1} \underbrace{ee}_{v_2} \underbrace{ae}_{v_2} $	ritque summa
	$x^2 + y^2 + z^2 + v^2$	$a^{2} + u^{2} = (a^{2} + b^{2} + c^{2} + d^{2} + c^{2})^{2}$	and the court of the
Praeterea capiatur a =	= pp - qq - rr - ss - tt,	b=2pt, c=2qt, d=2rt, c=2st; hocque	modo fiet
Allah Constants	$x^2 + y^2 + z^2 + \nu^2$	$b = 2pt, \ c = 2qt, \ d = 2rt, \ e = 2st; \ hocque$ $e^{1-t} u^{2} = (p^{2} - q^{2} - r^{2} - r^{2} - s^{2} - t^{2})^{2}.$	5 .
Nidoh isuli	mine fort gundnature current	debet $p = -q - r + 2s + t$ at que radix s	summae erit
am ut euam ipsa su 2000 - Jan ipsa su			
		q + rr + ss + tt + 2st	al a little anti-a anti-
	adratum posito $r = q + s$		-
THE AR	$s = \frac{6qq - 4qt + 1}{1}$	⊢ tt → 6gq — 2gt — 2ft → 2gg — ff allian p. 3ft — g. Stratt (a) by give strate and have	ant and the state of the
STATAS: Setto - Constantino Setto - Constantino Stata: Stata: Setto - Constantino Stata: Setto - Constantino Setto - Constantin	- あたからに、「たんらん」 「「「「「「「「「「」」」ない、「「たちたかを発われ」」「「しょい	and the second	nt numari avaasiti
This anature litteree	a t. f. a nostro arbitrio	relinguantur, quas facile ita accipere licet,	u numen quaesin
ubi quatuor litterae	q, t, f, g nostro arbitrio	relinquantur, quas facile ita accipere licet,	ut numeri quaesiri
fi «f diressione di ubi quatuor litterae fiant positivi.	q, t, f, g nostro arbitrio	relinquantur, quas facile ita accipere licet, $T_{1} \rightarrow T_{1} \rightarrow T_{2} \rightarrow T_{3} $	a. T. III. p. 125. 126.
ubi quatuor litterae fiant positivi.	q, t, f, g nostro arbitrio	relinquantur, quas facile ita accipere licet, T-1-2) (H -1 -2.37. (H - 2.31.2.) quite evil A. m	a. T. III. p. 125. 126.
ubi quatuor litterae fiant positivi.	q, t, f, g nostro arbitrio	relinquantur, quas facile ita accipere licet,	a. T. III. p. 125. 126.

summa autem quadratorum cubus. of the former of the form of the second seco A.F. Tales numeri simpliciores sunt x = 29601 = 9.11.13.23, y = 25624 = 8.3203, unde $x + y = 235^2$, the table is the state of the sta ាម ទេសមិនតែក្នុង សាវ 👘

ANALYSIS. Cum debeat esse $xx + y = p^3$, necesse est, ut sit p = aa + bb; tum vero evadit x = a(aa - 3bb)y = b (3aa - bb). Hinc autem erit $x + y = a^3 + 3aab - 3abb - b^3 = (a - b) (aa + 4ab - bb) = \Box$. Fiat igitur $\int dt = cc \quad \text{erique} \quad x + y = cc \quad (6bb + 6bcc + c^*) \equiv \Box \quad \text{Sit igitur } c^* + 6bcc + 6bb = \left(\frac{cc}{cc} + 3b - \frac{f_{c}}{a}\right)^2$, unde haec $\frac{1}{c} = \frac{1}{c} \frac{$

LEMEULERI, OPERA POSTHUMA,

Quia numeri x et y debent esse positivi, necesse est, $at sit aa > 3bb$, sive $a > b V3$, ergo $b + cc > b V3$	> 0 / 3, siv
$cc > b$ ($V3 - 1$) side oque $\frac{b}{cc} < \frac{1}{\sqrt{3-1}} < \frac{\sqrt{3-1}}{2}$. Ponaturgigiting commentations with $b = 0$	J.IIIA DO
$b = 2g (g - f)$ et $cc = 3ff - 2gg$, ergo $3ff - 2gg = \Box$.	nan sinan
Huic satisfit sumendo $f = 11$ et $g = 1$, vel etiam sumto $f = -3$ et $g = 1$, unde fit $c = 5$, $b = 1$	17 D. Y. A. 「約110000
$\lim_{x \to 2} x = 29001$ et $y = 20024$.	
haquadratium commun a coperation to mere to a the constant of a three of the tagent	and eiger
Si quaerantur tres numeri x, y, z , positivi et primi inter se, quorum summa sit quadratum, q	
vero' summa cubus," tales numerivsinf autor ball and amaritany tal 1 2 -1 yet is amarite sage an	110 our a
noren un ord nun 16 th corre th dir 35tin∺i9: ;+-5i≕ 7² seiet i- 35²-+-9²	
Simili modo etiam $67.\pi + 9 + 5 = 9^{2} + 67^{2} + 9^{2} + 5 = 19^{3};$	
at vero methodus tales numeros inveniendi adhuc latet. The second s	
Conversion of the second will be a second to the second of the second to	
All and the second s	
1 Augusta Anna Anna Anna Anna Anna Anna Anna An	
PROBLEMA. Has duas formulas $xx \rightarrow abyy$ et $xx \rightarrow contrast and the product of the second se$	MER'S
Solutio. Pro priore ponatur $x = \zeta (app - bqq)$, erit $y = 2\zeta pq$, pro altera ponatur $x = \eta$	
eritque $y = 2\eta rs$. Ponatur igitur $\zeta pq = \eta rs = \zeta \eta fghk$, fiatque $p = \eta fg$, erit $q = hk$ et $r = \zeta fh$ et s	=gk. Qui
valores pro x substituti praebent in the second	
$\frac{gg}{hh} = \frac{gg}{\eta} \cdot \frac{\xi\eta eff + bkk}{\xi\eta aff + dkk} \cdot \frac{Quadratum ergo}{\eta = 1 - 1} \cdot \frac{gg}{(\xi\eta eff + bkk)} \cdot (\xi\eta aff + dkk),$	n de rolear
vel posito $\zeta \eta = \vartheta$, quadratum esse debet $\vartheta (\vartheta eff + bkk) (\vartheta aff + dkk)$, vel loco ϑ scribamus $\frac{\mu}{2}$,	C 1
$\mu\nu$ ($\mu cff \rightarrow \nu bkk$) ($\mu aff \rightarrow \nu dkk$), quod siz reddi queat guadratum, tunc etiam ambae formulae prop	ositae fiunt
$\mu\nu (\mu cff \rightarrow \nu bkk) (\mu aff \rightarrow \nu d kk)$, quod sie reddi queat quadratum, tunc etiam ambae formulae prop quadrata. Ubi scilicet litterae f, k, μ , ν prof lubitur accipi possunt. W	ositae fiuit
	ositae" finit
quadrata. Ubi scilicet litterae f, k, μ, ν' prof lubitu ² accipi possinit. W $\frac{1}{ -m } = \frac{1}{ k } - \frac{1}{ k } -$	ositae ⁿ fiuit 111. p.(436-m
quadrata. Ubi scilicet litterae f, k, μ, ν prof lubitu accipi possunt. W $\frac{1}{1 - n + n} = \frac{1}{2k} - \frac{1}{2k} - \frac{1}{2k} - \frac{1}{2k} - \frac{1}{2k} - \frac{1}{2k}$ Ut hae duae formulae $xx + nyy$ et $yy + nxx$ simul quadrata reddi queant, necesse est, ut nu	ositae ⁿ fiuit 111. p.(436-m
quadrata. Ubi scilicet litterae f, k, μ, ν' prof lubitu ⁿ accipi possunt. W $\frac{1}{11 - m} = \frac{1}{12} - 1$	ositae ⁿ fiuit 111. p.(436-m
quadrata. Ubi scilicet litterae f, k, μ, ν' prof lubitu ⁿ accipi possunt. W $\frac{1}{11 - m} = \frac{1}{12} - 1$	ositae ^u fiint 111. p.[436411 merus 17 111
quadrata. Ubi scilicet litterae f, k, μ, ν' prof lubitu accipi possunt. W $\frac{1}{1 - 60} = \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} - \frac{1}{2} $	ositae ^u finit III. p.[436- merus n 11 oninop (11 iii.aog 110
quadrata. Ubi scilicet litterae f, k, μ, ν' pro lubitu accipi possunt. W $\frac{1}{11 - ac. + \frac{1}{2} - $	ositae ^u finit III. p.[430- merus n ili aninop ili ili 201 ili t y=a-ili
quadrata. Ubi scilicet litterae f, k, μ, ν' pro lubitu accipi possunt. W W accipi possunt. W Ut hae duae formulae $xx + nyy$ et $yy + nxx$ simul quadrata reddi queant, necesse est, ut nu sequenti formula contineatur: $(x + a)$ is the equation of th	ositae ^u finit III. p.[436-m merus n in anthup id attag 100 t y=a-1 m enim di
quadrata. Ubi scilicet litterae f, k, μ, ν' pro lubitu accipi possunt. W Ut hae duae formulae $xx + nyy$ et $yy + nxx$ simul quadrata reddi queant, necesse est, ut nu sequenti formula contineature is a still desire exp. The neuropedier of the order of $x = a + 1$ e fiet $nxx + yy = (aa + a + 2)^2$ et $nyy + xx = (aa - a + 2)^2$. Hinc solus casus $a = 1$ excipitur; tu $n = \frac{(x + xx - yy)(x - xx + yy)(x - xx - yy)}{4ssxxyy}$	ositae ^u fini 111. p.[430-rr merus n ili 111. auf 1131 111. auf 1131 11. auf 11. auf 11. auf 1
quadrata. Ubi scilicet litterae f, k, μ , ν 'prof lubitu accipi possunt. We We can be set the set of the	ositae ^a fini III. p.[436m merus n ill autom id. ilian 1881 ilian 1881 m enim ill m enim ill m nümenta
quadrata. Ubi scilicet litterae f, k, μ, ν prof lubitu accipi possunt. We We have the scilic difference in the scilic difference in the scilic difference is the scilic	ositae ⁴ finit II. p.[430 merus n in output in output in output in t $y=a$ m enim in m enim enim enim enim enim enim enim eni
quadrata. Ubi scilicet litterae f, k, μ, ν prof lubitu accipi possunt. We We have the scilic difference in the scilic difference in the scilic difference is the scilic	ositae ⁴ finit II. p.[430 merus n in output in output in output in t $y=a$ m enim in m enim enim enim enim enim enim enim eni
quadrata. Ubi scilicet litterae f, k, μ , ν problibitu accipi possinit. W With a construction of the formulae formulae $xx + nyy$ et $yy + nxx$ simul, quadrata reddi queant, necesse est, ut num sequenti formula contineature is a abilitation of the mathematical and the mathematical and the formula contineature is a abilitation of the mathematical and the math	ositae ^a fund III. p.[430-m merus n ill output fi ill and find t $y=a-1$ m enim fill m enim fill m enim fill n - 1 - 20 N
quadrata. Ubi scilicet litterae f, k, μ, ν profubitu accipi possunt. We We can be added a continuation of the second state	ositae ⁴ finit II. p.[430 merus n in output di turnup di turninerus t $y=a-11$ m enim di u nimerus i. f n -p -1 - 50 (v - 1) (v -
quadrata. Ubi scilicet litterae f, k, μ , ν problibitu accipi possinit. W With a construction of the formulae formulae $xx + nyy$ et $yy + nxx$ simul, quadrata reddi queant, necesse est, ut num sequenti formula contineature is a abilitation of the mathematical and the mathematical and the formula contineature is a abilitation of the mathematical and the math	ositae ⁴ finit II. p.[430 merus n in output di turnup di turninerus t $y=a-11$ m enim di u nimerus i. f n -p -1 - 50 (v - 1) (v -
quadrata. Ubi scilicet litterae f, k, μ, ν pro lubitu accipi possunt. W Ut hae duae formulae $xx + nyy$ et $yy + nxx$ simul quadrata reddi queant, necesse est, ut nu sequenti formula contineature is all that are provided with the number of the second secon	ositae ⁴ finit II. p.[430 merus n in output di turnup di turninerus t $y=a-11$ m enim di u nimerus i. f n -p -1 - 50 (v - 1) (v -
quadrata. Ubi scilicet litterae f, k, μ, ν pro lubitu accipi possunt. W Ut hae duae formulae $xx + nyy$ et $yy + nxx$ simul quadrata reddi queant, necesse est, ut nu sequenti formula contineature is all that are provided with the number of the second secon	ositae ⁴ finit II. p.[430 merus n in output di turnup di turninerus t $y=a-11$ m enim di u nimerus i. f n -p -1 - 50 (v - 1) (v -
quadrata. Ubi scilicet litterae f, k, μ, ν pro lubitu accipi possunt. W Ut hae duae formulae $xx + nyy$ et $yy + nxx$ simul quadrata reddi queant, necesse est, ut nu sequenti formula contineature is all that are provided with the number of the second secon	ositae ⁴ finit II. p.[430 merus n in output di turnup di turninerus t $y=a-11$ m enim di u nimerus i. f n -p -1 - 50 (v - 1) (v -

Fraqmenta ex Adversariis depromta.

-ambae formulae simul quadrata fieri nequeunt. Cum his formulis 7xx + yy = pp et 7yy + xx = qq satisfiat sumendo x = 3 et y = 1, unde fit p = 8 et x = 4, innumerabiles alii dabuntur valores pro x et y, ex quibus magno labore hos eruimus: x = 1121 et y = 477, unde fit p = 3004 et q = 1688, uti ex hoc schemate apparet: xx = 32566417xx = 8796487A STREET 7yy = 1592703yy = 227529A THE PROPERTY pp = 9024016qq = 2849344q = 1688p = 3004.Nu de la com A. m. T. III. p. 146. 77. **PROBLEMA.** Invenire quatuor quadrata xx, yy, zz, vv, ut sit $xxyy - zzyy = A^2$, $xxzz - yyyz = B^2$, $yyzz - xxyy = C^2$. and the second aninSonvino. Quaeratur formula F, quae addita producat quadrata. Talis est a constitue of classes $F = x^4 + y^4 + z^4 - 2xxyy - 2xxzz - 2yyzz + 2xxyy + 2yyvy + 2zzvy + y^4, \qquad \text{if the shear of the shear of$ inni: si addatur 4xxyy - 4zzvv prodit quadratum $(xx - yy - zz - vv)^2$. Si addatur 4xxzz - 4yyvv oritur $(xx + zz - yy + vv)^2$ All de the Area et addito 4yyzz - 4xxvv prodit $(yy + zz - xx + vv)^2$. Hinc ergo facto F = 0, erit $A = \frac{xx + yy - zz + vv}{2}, \qquad B = \frac{xx + zz - yy + vv}{2}, \qquad C = \frac{yy + zz - xx + vv}{2}.$ Fiat igitur F = 0, et per extractionem quaeratur vv, eritque vv = -xx - yy - zz + 2V(xxyy + xxzz + yyzz).Fonatur ergo V(xxyy + xxzz + yyzz) = S, ut fiat yy = 2S - xx - yy - zz. Fingatur autem S = xy + tz, ita at -SS = xxyy + 2xytz + ttzz = xxyy + xxzz + yyzz, unde fit $z = \frac{2txy}{xx + yy - tt}, \quad \text{bincque} \quad S = \frac{xy (xx + yy + tt)}{xx + yy - tt}.$ Verum hi valores substituti pro vv dant expressionem inextricabilem. Fieret enim sex dimensionum. Necesse ergo est, ut rem ad formulas simpliciores reducamus. Casus I. Sumatur t = x - y fietque z = x - y et S = xx - xy + yy, hincque porro vv = 0, qui ergo casus prorsus est inutilis. CASUS II. Sumatur t = y fietque $z = \frac{2yy}{x}$ et $S = \frac{xxy - 2y^3}{x}$. **Alus** constus. Ex acquatione F = 0 quaeratur valor ipsius xx, qui est $xx = yy + zz - yy \pm 2V(yyzz - yyyy - zzyy) = 2S + yy + zz - yy.$ Quia hic yy multiplicatur per zz-vv, pro z et v tales valores sumantur, ut zz-vv fiat quadratum, quod fit sumendo z = 5 et v = 3; tum erit S = V(16yy - 225) = 4y - t, unde $y = \frac{225 - tt}{8t}$ et $S = \frac{225 - tt}{2t}$. Tum igitur $x_{1} = x_{2} = y_{2} + 16 \pm 2S$. Sumatur t = 5, erit $y = \frac{25}{4}$ et S = 20, ergo $xx = \frac{625}{16} + 16 \pm 40 = \frac{39^{2}}{4^{2}}$, ergo 33 🕂 🚣 Ealeri Op. posthuma. T. I.

L. EULERI OPERA POSTHUMA.

 $x = \frac{39}{4}, y = \frac{25}{4}, z = 5$ et $\nu = 3$, sive $x = 39, y = 25, z = 20, \nu = 12$. Tentemus etiam casum i = 3. $y = \frac{39}{4}$ et S = 36, ergo $xx = \frac{625}{16}$, ergo $x = \frac{25}{4}$; unde prodit casus praecedens. Possemus etiam sumere z = 5 et v = 4: erit S = V(9yy - 400) = 3y - t, hine $y = \frac{400 - tt}{6t}$ et $S = \frac{400 - tt}{2t}$, hinc $xx = yy - 9 \pm 2S$.

Sumatur t = 10, erit $y = \frac{25}{3}$ et S = 15, hinc xx = incongruo.

Ex priore solutione yy = 2S - xx - yy - zz existence $z = \frac{2txy}{xx + yy - tt}$, $S = \frac{xy(x^2 + y^2 + t^2)}{x^2 + y^2 - t^2}$. Sumatur w = 1et y=4, fiet $z=\frac{40t}{41-tt}$ et $S=\frac{20(41+tt)}{41-tt}$. Porro si $t=\frac{13}{3}$, solutio supra data oritur, ex quo casu derivat sequentem:

 $t = \frac{185}{453}$, eritque $z = \frac{5.485.153}{145693}$ et $S = \frac{5.496997}{145693}$.

A. m. T. III. p. 117. 148

A BREAD

WE HAR

Arithmetic

78.

PROBLÈME. Trouver trois nombres x, y, z tels, que le carré de chacun avec le produit des deux autres fasse un carré.

Solution. Qu'on pose, pour les deux premières conditions xx + yz = pp et yy + xz = qq, et l'on aux pp-qq = (x-y)(x+y-z). Soit donc p-q = x-y et p+q = x+y-z, d'où l'on tire $p = x - \frac{1}{2}z$. Gette valeur substituée dans la première équation donne z = 4 (x + y). Maintenant la troisième équation sera

$$16 (x \rightarrow y)^2 \rightarrow xy = \Box$$

Donc la racine sera plus grande que 4(x - 1 - y). Soit cette racine

$$4x + 4y + s$$
, et il y aura $8sx + 8sy - xy = -ss$.

Ajoutons de part et d'autre - 64ss, pour avoir

$$(x - 8s)(y - 8s) = 65ss = \frac{5ts}{4} + \frac{13us}{t}$$

四方 出開 Soit $x - 8s = \frac{5ts}{u}$ et $y - 8s = \frac{13us}{t}$, et pour ôter les fractions, supposons s = tu, et l'on aura x = 8tuet y = 8tu + 13uu. De là z = 4(x + y) = 64tu + 20tt + 52uu.

EXEMPLE. Soit t=1 et u=1, et il y aura x=13, y=21, z=136, car alors

$$136^2 + 13.21 = 137^2$$
, $21^2 + 13.136 = 47^2$, $13^2 + 21.136 = 55^2$.

AUTRE SOLUTION. Pour la première formule qu'on prenne $x = \frac{yz - ss}{c_{0}y}$, pour avoir $xz + yz = \frac{yz - ss}{c_{0}y}$ La seconde $yy \rightarrow xz = \Box$ donne $\frac{2syy \rightarrow yzz - ssz}{2s} = \Box = (y \rightarrow pz)^2$, d'où l'on tire

$$y = \frac{2ppsz \rightarrow ss}{z - 4ps}$$
, et de là $x = \frac{p(pzz \rightarrow 2ss)}{z - 4ps}$.

Ces valeurs étant substituées dans la troisième équation $zz \rightarrow xy = \Box$, celle-ci deviendra

$$z^{4} + (2p^{4} - 8p) sz^{3} + 17pp sszz + 4p^{3}s^{3}z + 2ps^{4} = 0$$

Pour rendre carré le dernier terme, je prends p=2, et la formule sera

$$z^4 + 16sz^3 + 68sszz + 32s^3z + 4s^4 = \Box$$

Mais on s'aperçoit d'abord qu'elle est carrée et que sa racine est zz -+- 8sz -+- 2ss; par conséquent z dement

新闻的社会

259

Donc puisque p=2, nous aurons $y=\frac{8sz+ss}{z-8s}$ et $x=\frac{4zz+4ss}{z-8s}$, et pour ôter les fractions, mettons **Contraction** arbitraire. tans ces formules t au lieu de z, et ainsi on pourra multiplier tous ces nombres par t-8s et l'on aura and on $x = 4 (t + ss), \quad y = s (8t + s) \quad \text{et} \quad z = t (t - 8s),$ doù il est clair que pour t il faut prendre une valeur >8s. En prenant s=1 et t=9, on aura x=328, 73, z=9, plus grands que les précédents. Cependant les deux solutions s'accordent; mais pour avoir le cas le plus simple, il faut prendre t=13 et 1; car alors on aura on bien x = 136, y = 21, z = 13. x = 680, y = 105, z = 65,A. m. T. III. p. 145. and the 79. Ad PROBLEMA, quo quaeruntur tres numeri x, y, z, ut quadratum cujusque una cum producto reliquorum faciat quadratum, cujus solutio specialis facile invenitur haec x = aa - 8ab, y = bb + 8ab, z = 4aa + 4bb. Generaliter statui potest x = aa + 2b, y = bb + 2a, z = ab(ab - b), quibus satisfit duabus conditionibus $mx_{x+y}z = \Box$, $yy + xz = \Box$, et ut tertiae quoque $zz + xy = \Box$ satisfiat, fieri debet $a^{4}b^{4} - (8a^{3} - 2)b^{3} + 17a^{2}b^{2} + 4ab + 2a^{3} = \Box$ Hinc is to svalores inveni: x = 33, y = 185, z = 608, tum vero x = 297, y = 377, z = 320. A. m. T. III. p. 176. 機利的 ROILING - 15 and the second second 80. energi un Invenire tria quadrata pp, qq, rr, ut semisumma binorum sit quadratum, scilicet PROBLEMA. $\frac{pp + qq}{2} = zz, \quad \frac{pp + rr}{2} = yy, \quad \frac{qq + rr}{2} = wx.$ Hinc solutiones simpliciores hujus problematis erunt hae quinque stitut 17. 17 p = 89, 97. 119. 23. q = 191, 553, 833,289, 697 r = 329, 833, 1081, 527. 1127 Directa autem hujus problematis solutio ita se habet: $p = (ff - 2gg) (ss - 2tt), \quad q = (ff + 2gg + 4fg) (2tt + ss + 4st) - 8fgst$ Bar to the Quia hic omnes litterae tam negative quam positive accipi possunt, haec formula plures admittit variationes, quarum una pro q, altera pro r accipi potest. Quo facto necesse est, ut $\frac{qq + rr}{2}$ reddatur quadratum. Praeterea vero notetur, quemlibet numerum formae aa — 2bb infinitis modis per similes formas exprimi posse. Ita formula aa - 2bb infinitis modis fieri potest $= \pm 1$, scilicet ponendo 8 a = 1, 3, 7, 17, 41, 99, etc. on asterne b = 1, 2, 5, 12, 29, 70, etc.BE HILL HILL $\frac{1}{1000}$ igitur numeri ff-2gg et ss-2tt infinitis modis per similes formas exprimi queant, formula pro q et r data infinities infinitis modis variari poterit. Si enim fuerit $aa - 2bb = \pm 1$, erit $ff - 2gg = (af \pm 2bg)^2 - 2 (ag \pm bf)^2$, Will Harris

LEULERI OPERA POSTHUMA.

ita tamen, ut p eundem valorem retineat. At vero hoc modo quaelibet solutio particularis satis difficient postulat evolutionem; unde praecedens solutio longissime praecellit, cum sumtis numeris c et d pro lubit valores jam evolutos pro litleris p, q, r suppedilet. Hic etiam notasse juvabit infinitis modis fieri posse

$$aa - 2bb = 2cc - dc$$

Cum enim fieri debeat $aa \rightarrow dd = 2(bb \rightarrow cc)$, hoc fiet sumendo $a = b \rightarrow c$ et d = b - c. Erit ergo

c = a - b et d = 2b - a.

A. m. T. III. p. 178. 179

16. 516.

81.

(Lexell.)

PROBLEMA de inveniendis quotcunque numeris p, q, r, s, t, etc., quorum quilibet ductus in summan reliquorum faciat quadratum, facile tentando sine analysi resolvi potest. Sit enim S summa omnium, et enn p(S-p) debeat esse quadratum, ideoque $pS = pp + - \Box$, evidens est tam p quam S esse debere summam duo rum quadratorum, ideoque pro S sumi conveniet talem numerum, qui pluribus modis in bina quadrata resolvi patiatur, cujusmodi est S = 130, qui in binas partes secari debet, quarum productum sit quadratum quandoquidem si una pars sit p, altera erit S-p, tales resolutiones hoc modo exhibemus:

ubi notandum, valores ipsius p ex utraque columna sumi posse, ex his igitur excerpi oportebit vel ternos m meros, vel quaternos, vel quinos, vel senes etc., quorum summa faciat 130, ut sequitur: ternio 32, 49, 49 Sicque quinque habemus numeros 2, 5, 26, 32, 65, quorum quilibet in summam reliquorum ductus, produci quadratum. Alii quini: 2, 13, 26, 40, 49. Alii numeri idonei pro S assumendi, qui plurimas resolution admittunt, sunt 2210

 $S = 2210, \qquad \begin{array}{c|c} p \\ S = p \end{array} \begin{vmatrix} 1, & 5, & 13 \\ 2209, & 2205, & 2197 \\ \end{array}$

A. m. T. I. p. 112

tetuti digante

5.6

82.

CONSIDERATIO CIRCA QUADRATA MAGICA.

I. Quadrata magica facile eo reduci possunt, ut summae per columnas tam horizontales quam vertical evanescant, quod fit admittendo etiam numeros negativos; scilicet si quadratum fuerit impar, numeri inscribent erunt $0, \pm 1, \pm 2, \pm 3, \pm 4$, etc., sin autem quadratum fuerit par, numeri inscribendi erunt $\pm 1, \pm 3, \pm 7$, etc. Quodsi enim ad singulos addatur numerus quidam impar, et summae per 2 dividantur, orientur numer naturales; ita si ad singulos illos numeros addatur 9, semisses dabunt hos numeros ordine 4, 5, 3, 6, 2, 7, 8

II. In omni quadrato magico quaterna loca connexa voco, quando duo pro lubitu in columna quadam for rizontali accipiuntur, quorum illud primum, alterum secundum voco, duo reliqua vero in alia columna horizontali tali ita accipiuntur, ut primum et tertium, itemque secundum et quartum in ea columna verticali existant, si ut lineae 1...2 et 3....4 sint horizontales, rectae vero 1....3 et 2....4 verticales. Jam sumtis hujusmoti quaternis locis, si primo inscribatur numerus quicunque -a, secundo -a, tertio -a et quarto +a, hor

Fragmenta ex Adversariis depromta.

anodo nec summa horizontalium nec verticalium mutatur; hic enim nondum respicio ad eam conditionem, qua tiam summae per diagonales eacdem, hoc est nostro casu = 0 esse debent.

III. Proposito igitur quadrato, in arcolas quotcunque more solito diviso; omnes arcolae hoc modo litteris mscribantur, ubi nihil impedit, quominus in eandem areolam quandoque duae, vel tres pluresve litterae hoc modo inscribantur: tot scilicet litteras hoc modo inscribi oportet, ut deinceps omnes numeri revera inscribendi obtineri queant, simulque proprietas diagonalium adimpleatur.

IV. Ita si proponatur quadratum novem areolarum, litterae inscribantur, ut in schemate adjecto videre est

- 1 -a	- - b	-a -b	
-1-0	-b -c	- j b	. 44
-c -a	- - -c	- + -a	

problem of the gonalibus antem practices a case debet 2a-b-c=0, 2a+2b+2c=0, unde sequitur a=0 et b+c=0. seu c = -b; unde quadratum ita se habebit

÷	1.11	; ? 		
•	0	÷þ	— b	
	b	0	- t -b	
	-+-b	<u> </u>	0	

bine autem numeri propositi obtineri nequeunt.

... thanaka

308 90 AT

James 2 ----

Million to D A 14

Padi n

V. Commode autem in hoc quadrato areola media vacua relinquitur, scilicet cyphra implenda, ac tum Received a style of the second inscriptio litterarum ita se habebit 鹤翔(小)注云。

-+-a -+-b	— b	— a
- i -c	0	c
-c -b -a	- - -b	-1-c -1-a

Whi diagonales dant 2a + b + c = 0, ideoque c = -2a - b, et numeri inscripti erunt

	-	I. a b		II. — b		— a
		IV. $-2a-b$	- 12 (C)	V 0	en de la constante de la consta La constante de la constante de	2a b
all moster.		VII. a	•	VIII b	IX.	-a - b

Nunc quaerantur numeri pro a et b sumendi, ut prodeant numeri ± 1 , ± 2 , ± 3 , ± 4 . Sit igitur a = 1 et 2 et habebitur hoc quadratum

«L. EULERI OPERA POSTHUMA.

	• <u>•</u> • • • • • • • • • • • • • • • • •			
in to Anno 199	3	<u>-2</u>	11-01 APTS 	۱ċ
	- 4	0 05500	-1 4	
t anto	±.1 ≦	2	а т 3	

ac si ad singulos numeros addatur 5, oritur quadratum solitum:

·	·····	
8	3	4.
. 1.	5	.9
6	7	2

VI. Tentetur quadratum sedecim areolarum. . Proprietas diagonalium hic dat

2a + 2b + 2e + 2f = 0, 2a + 2b + 2g + 2h = 0, ergo f = -(a + b + e)et h = -(a + b + g)et numeri inscripti sunt

III. -a - b - c - gIV. II. c - e1. a -1- e VI. b + eVII. $a \rightarrow g$ VIII. — a V., d - e-g - dX. -b - qXI. -a - eXII. a + b + d + eIX. -d + gXIV. -c + gXV. $a \rightarrow b \rightarrow c \rightarrow c$ XVI. $-b - e_{1}$ XIII. -a - q

Notentur ii, quorum negativa non occurrunt: II. c-e, III. -a-b-c-g, V. d-e, VIII. -a-b-gIX. -d+g, X. -b-g, XII. a+b+d+e, XIV. -c+g, XV. a+b+c+e. Ut horum cuique so cius comparetur, statuatur g = e, et nunc bini socii junctim repraesententur:

I.	a + e, II. $c - e$, III. $-a - b - c - e$, IV. $b + e$	XI. $-a-e$, XIV. $-c-e$, XV. $a-b-e-e$, X IX. $-d-e$, XVI. $-b-e$, XIII. $-a-e$	С. <i>— b—e</i>
V.	d - e, VI. $b + e$, VII. $a + e$	IX. $-d + e$, XVI. $-b - e$, XIII. $-a - e$	
VIII.	-a - b - d - e	3711 7 7	

Hic autem quidam bis occurrunt. Verum haec methodus accuratiorem evolutionem postulat.

A. m. T. I. p. 28-30

E CHEINE

83.

N. Fuss I.

Eine LEICHTE REGEL, alle magische Quadrate von ungeraden Zahlen, die sich nicht durch 3 theilen lassen zu verfertigen, in welchen nicht nur alle Horizontal- und Vertikalreihen nebst den beiden Diagonalen, 🕷 gewöhnlich erfordert wird, sondern auch die den Diagonalen parallel gezogenen Zahlenreihen, wenn man me nämlich durch die gegenüberstehenden, gleich weit entfernten ergänzt, einerlei Summen geben, und wobei män zugleich nach Belieben in jedem Fache anfangen kann.

Dies geschieht vermittelst des bekannten Springerganges im Schachspiel, nach welchem man immer in die folgende Vertikalcolumne abwärts fortgeht, wobei zu merken, dass, wenn man unten an das Ende gekommen man von da hinaufspringt, und ebenfalls, wenn man auf der rechten Seite ans Ende gekommen, wiederum die erste Columne linker Hand einschlägt. Wo aber die Stelle schon besetzt ist, prallt man links nach en dem Gang abwärts zurück, wie aus folgendem Schema zu ersehen: nduð St

262

Arithmet

10. 164.6 • 1.55.452 3561 ΪŦ₽ at d

1	14	22	10	18
25	8	16	4	12
19	2	15	23	6
13	21	9	17	5
7	20	<u>3</u>	11	24

Hievon wird die Ursache deutlicher werden, wenn man eben diese Operation auf eine allgemeine Art mit lateinischen Lettern a, b, c, d, e und griechischen α , β , γ , δ , ϵ anstellt, und dabei diese Ordnung beobachtet, dass man nach $a\alpha$, $a\beta$, $a\gamma$, $a\delta$, $a\epsilon$ auf $b\alpha$, $b\beta$, $b\gamma$, u. s. w. fortgeht

еδ	bβ	đε	'aγ	сα	
dγ	aα	сδ	¢β	bε	
cβ	ee	bγ	dα	аδ	
bα	dδ	aβ	CE	еү	
ae .	сү	ea	bδ	dβ	

A. m. T. H. p. 237. 238.

D. Miscellanea.

84.

(J. A. Euler.)

Wie blos aus den dreieckigten Zahlen alle vieleckigten Zahlen leicht gefunden werden können.

Wenn die *m*-eckigte Zahl für die Seite *n* gefunden werden soll, so suche man die dreieckigte Zahl für eben die Seite *n* und auch die vorhergehende dreieckigte Zahl, für die Seite n-1; diese multiplicire man mit m-3 und zum Product addire man jene, so hat man die verlangte vieleckigte Zahl.

Denn für die Seite *n* ist die dreieckigte Zahl = $\frac{nn - n}{2}$ und für die vorhergehende Seite n - 1 ist die Dreieckzahl = $\frac{nn - n}{2}$; also diese mit m - 3 multiplicit gibt $(m - 3) \left(\frac{nn - n}{2}\right)$, hiezu $\frac{nn + n}{2}$ addirt gibt $\frac{(m - 2)nn - (m - 4)n}{2}$.

Also wenn die 365-eckigte Zahl von 12 verlangt wird, so ist m-3 = 362, die Dreieckszahl für 12 ist 78, die für 11 ist 66, also die gesuchte Zahl wird sein

A. m. T. I. p. 237.

L. EULERI: OPERA POSTHUMA.

85. (<u>N. Fuss. 1</u>)

THEOREMATA CIRCA PROBLEMA PELLIANUM.

I. Si fuerit nff - 1 = gg, erit $n (2fg)^2 \rightarrow 1 = (2gg \rightarrow 1)^2$.

DEMONSTRATIO. Cum enim sit nff = gg - 1, multiplicando per 4gg fiet

$$4nffgg = 4g^4 - 4gg$$

et addendo unitatem

$$nffgg \rightarrow 1 \stackrel{4}{=} 4g^4 \rightarrow 4gg \stackrel{4}{\rightarrow} 1 \stackrel{4}{=} (2gg \rightarrow 1)^2$$

DEMONSTRATIO: Cum enim sit nff = gg + 4 et per gg multiplicando et 4 addendo prodit.

$$n_{11}gg + 4 = g^* + 4gg + 4 = (gg + 2)^2$$
. Q. 1

III. Si fuerit nff + 4 = gg, erit $nff \left(\frac{gg - 1}{2}\right)^2 + 1 = \left(\frac{g^3 - 3g}{2}\right)^2$.

DEMONSTRATIO. Cum sit nff = gg - 4, multiplicando per $\left(\frac{gg - 4}{2}\right)^2$ et addendo 1 fiet

$$nff\left(\frac{gg-1}{2}\right)^2 + 1 = (gg-4)\left(\frac{gg-1}{2}\right)^2 + 1 = \frac{g^5-6g^4-9gg}{4} = \left(\frac{g^3-3g}{2}\right)^2.$$

Hinc si n = 13, quia $13 \cdot 1^2 - 4 = 9 = 3^2$ in theoremste secundo habemus f = 1 et g = 3, unde sequinu $13.3^2 + 4 = 11^2$. Nunc pro tertio theoremate habemus f = 3 et g = 11', hinc $\frac{gg-1}{2} = 60$ et $\frac{gg-3}{2} = 59$ hine $\frac{g^3 - 3g}{2} = 649$; ex quo sequitur fore: 13.3².60² + 1 = 649² = 13.180² + 1.

A. m. T. I. p. 281

Arithmeti

86.

THEOREMA. Si habeantur duo casus' hujusmodi qq - app = k et ss $- arr = \pm k$ et capiatur $x = qr \pm k$ et $y = qs \pm apr$, erit $yy - axx = \pm kk$. At si k sit numerus primus, semper evenit, ut alterutri horum valorum scilicet x = qr + ps et y = qs + apr fiant per k divisibiles, sicque habebitur

$$\frac{yy}{kk}-\frac{axx}{kk}=\pm 1.$$

A. m. T. I. p. 289

THEOREMA I. Si x fuerit numerus trigonalis, tum etiam 9x + 1 erit numerus trigonalis. Sit enim $x = \frac{aa + a}{2}$ erit $9x + 1 = \frac{9aa + 9a + 2}{2}$. Est vero 9aa + 9a + 2 = (3a + 1)(3a + 2), ideog 9x + 1 erit numerus trigonalis, cujus radix est 3a + 1.

COROLLARIUM 1. Si ergo x fuerit summa duorum trigonalium, tum etiam 9x + 2 erit summa duorum trigonalium. Sit enim $x = \frac{aa + a}{2} + \frac{bb + b}{2}$, erit $9x + 2 = \frac{9aa + 9a + 2}{2} + \frac{9bb + 9b + 2}{2}$. COROLLARIUM 2. Simili modo si x fuerit summa trium trigonalium, tum etiam erit 9x - 3 summa triu trigonalium. Si enim sit x = 4 + 4' + 4'', tum erit 9x + 3 = 94 + 1 + 94'' + 1 + 94'' + 1 + 94'' + 1.

THEOREMA II. Si x fuerit numerus trigonalis, tum etiam 25x -t- 3 erit numerus trigonalis. Sit enim $x = \frac{aa+a}{2}$, erit $25x + 3 = \frac{25aa + 25a + 6}{2}$. Est vero 25aa + 25a + 6 = (5a + 2)(5a + 3), un

Fragmenta ex Adversariis depromta.

adix trigonalis erit $5a \rightarrow 2$. Hinc si x fuerit summa duorum trigonalium, erit etiam $25x \rightarrow 6$ summa duorum gonalium; ac si x fuerit summa trium trigonalium, tum etiam erit $25x \rightarrow 9$ summa trium trigonalium.

THEOREMA III. Si fuerit x numerus trigonalis, erit etiam 49x + 6 numerus trigonalis.

Sit enim $x = \frac{aa+a}{2}$, erit $49x + 6 = \frac{49aa+49a+12}{2} = \frac{(7a+3)(7a+4)}{2}$ numerus trigonalis, cujus radix $x = \frac{aa+a}{2}$, erit $49x + 6 = \frac{49aa+49a+12}{2} = \frac{(7a+3)(7a+4)}{2}$ numerus trigonalis, cujus radix $x = \frac{aa+a}{2}$, erit $49x + 6 = \frac{49aa+49a+12}{2} = \frac{(7a+3)(7a+4)}{2}$ numerus trigonalis, cujus radix $x = \frac{aa+a}{2}$, erit $49x + 6 = \frac{49aa+49a+12}{2} = \frac{(7a+3)(7a+4)}{2}$ numerus trigonalis, cujus radix $x = \frac{aa+a}{2}$, erit $49x + 6 = \frac{49aa+49a+12}{2} = \frac{(7a+3)(7a+4)}{2}$ numerus trigonalis, cujus radix $x = \frac{aa+a}{2}$, erit $49x + 6 = \frac{49aa+49a+12}{2} = \frac{(7a+3)(7a+4)}{2}$ numerus trigonalis, cujus radix $x = \frac{aa+a}{2}$, erit $49x + 6 = \frac{49aa+49a+12}{2} = \frac{(7a+3)(7a+4)}{2}$ numerus trigonalis, cujus radix $x = \frac{aa+a}{2}$, erit $49x + 6 = \frac{49aa+49a+12}{2} = \frac{(7a+3)(7a+4)}{2}$ numerus trigonalis, cujus radix $x = \frac{aa+a}{2}$, erit 49x + 12 summa duorum trigonalium; erit fuert 49x + 18 summa trium trigonalium.

THEOREMA IV. Si fuerit x numerus trigonalis, erit etiam 81x + 10 numerus trigonalis.

Sit enim $x = \frac{aa + a}{2}$, crit $81x + 10 = \frac{81aa + 81a + 20}{2} = \frac{(9a + 4)(9a + 5)}{2}$ numerus trigonalis, ejusque midix = 9a + 4. etc. etc.

Ex his igitur sequitur, si numerus 9x -- 3 nullo modo in tres trigonales resolvi queat, tum etiam numerum x in tres trigonales resolvi non posse. Simili modo si numerus 25x -- 9 resolutionem in tres trigonales nen admittat, etiam numerus x non admittet. Ac si numerus 49x -- 18 non admittat resolutionem in tres trigonales, numerus ipse x etiam non admittet.

A. m. T. II. p. 25 26.

THEOREMA. Si productum P = 2n(2n-1)(2n-2)(2n-3)...(n+1) dividatur per potestatem 2^n , quotus rerit productum ex omnibus numeris imparibus:

94 - 15 **88.** Cett

$$1, 3, 5, 7, 9 \dots (2n-1).$$

DEMONSTRATIO. Cum sit

$$P = \frac{1 \cdot 2 \cdot 3 \cdot 4 \dots \cdot 2n}{1 \cdot 2 \cdot 3 \cdot 4 \dots \cdot n}$$

multiplicetur supra et infra per 2^n eritque

$$P = \frac{2^n \cdot 1 \cdot 2 \cdot 3 \cdot 4 \dots \cdot 2n}{2 \cdot 4 \cdot 6 \cdot 8 \dots \dots \cdot 2n}$$

ac divisione actu facta fiet $P = 2^n \cdot 1 \quad 3 \cdot 5 \cdot 7 \dots \cdot (2n - 1)$. Q. E. D.

892

THEOREMA NUMERICUM. Si sumantur quotcunque numeri pro lubitu, veluti quatuor p, q, r, s, hincque lumentur bini ordines totidem aliorum, hoc modo

 $a = p, \quad b = p + q, \quad c = p + q + r, \quad d = p + q + r + s$

similique modo a = s, $\beta = s + r$, $\gamma = s + r + q$, $\delta = s + r + q + p$.

un semper erit $\frac{1}{abcd} - \frac{1}{abca} + \frac{1}{abca\beta} - \frac{1}{aa\beta\gamma} + \frac{1}{a\beta\gamma\delta} = 0.$ Cuti si fuerint numeri dati 1, 2, 3, 4 erit $a = 1, b = 3, c = 6, d = 10, \alpha = 4, \beta = 7, \gamma = 9, \delta = 10$, eritque

 $\frac{1}{1.3.6.10} - \frac{1}{1.3.6.4} + \frac{1}{1.3.4.7} - \frac{1}{1.4.7.9} + \frac{1}{4.7.9.10} = 0.$

L. Euleri Op. posthuma. T. I.

A. m. T. II. p. 208.

Á. m. T. II. p. 60.

المقديمة والدارية الرابعة الربوين و

L. EULERI OPERA POSTHUMA.

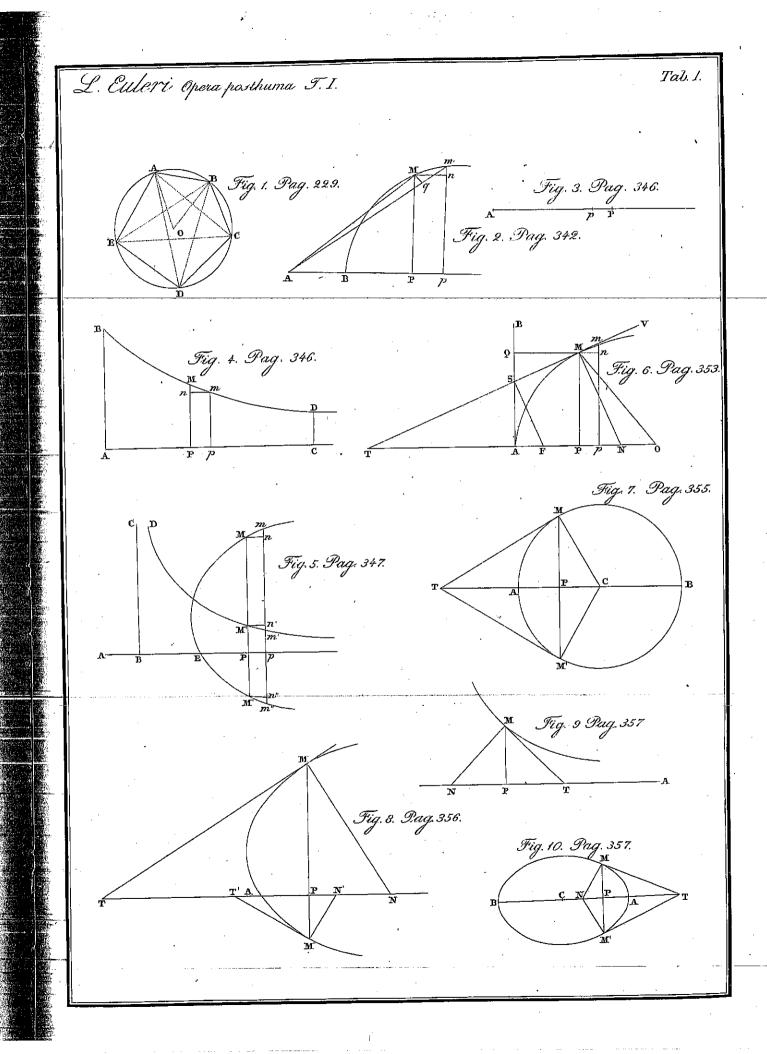
THEOREMA. Si proposita fuerit haec formula $zz = aa + 2abx + max^2 + 2dex^3 + eex^4$, in qua sit

90.

$$m - hb - dd - ff$$

tum eadem forma sequentibus modis repraesentari potest:

i le na


1)
$$zz = (a + bx)^2 + xx(ex + d + f)(ex - d - f)$$

2) $zz = xx(ex + d)^2 + (a + (b + f)x)(a + (b - f)x)$

unde sequitur z = a + bx si fuerit vel $x = \frac{-d - f}{e}$, vel $x = \frac{-d + f}{e}$. Ex altera

$$z = x (ex + d)$$
 si fuerit vel $x = \frac{-a}{b+f}$ vel $x = \frac{-a}{b-f}$

Praeter hos quatuor valores operationes vulgares praebent adhuc sequentes sex valores

1.
$$x = \frac{2ae + ff - dd}{2e(a - b)}$$
, II. $x = \frac{2a(b - d)}{2ae + ff - bb}$, III. $x = \frac{2ae + ff - dd}{2e(d + b)}$, IV. $x = \frac{2a(b + d)}{-2ae + ff - b}$, V. $x = \frac{3aade + 4ab(ff - dd)}{(ff - dd)^2 - 4aaee}$, V. $x = \frac{(ff - bb)^2 - 4aaee}{8abee + 4de(ff - bb)}$.
A. m. T. III. p. f.

