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Abstract

Objectives The purpose of this study was to determine the level of periodontal tissue regeneration in a canine model
following post-extraction placement of an implant molded from a composite material made from extracted tooth dentin and a
calcium silicate cement (CSC) material. The investigation used autologous dentin in conjunction with a CSC material to
form a composite implant designed for immediate tooth replacement.

Methods Two (2) beagles had a periodontal and radiographic examination performed to rule out any pre-treatment
inflammation, significant periodontal disease, or mobility. Then, ination eleven (11) teeth were extracted and polyvinyl
siloxane molds were made to fabricate three different types of implants: Particulate Implant (Test Group 1, n =4), Shell
Implant Alone (Test Group 2, n =2), Shell Implant with Emdogain® (Test Group 3, n = 3). Teeth in the control group were
extracted, scaled (n=2), and then re-implanted into their respective fresh extraction sockets. At 4 weeks, a clinical,
radiographic, and histologic assessment was performed.

Results Clinical evaluation revealed no mobility in any of the test or control implants and no radiographic evidence of
significant bone loss or active disease. Based on the MicroCT analysis, direct bone to implant contact was observed in some
areas with an apparent periodontal ligament space. Implant-related inflammation, on average, was similar among all groups,
with low numbers of infiltrates. Implant-related inflammatory reaction was generally minimal and not interpreted to be adverse.
Conclusion The proposed novel composite materials revealed that not only do these materials demonstrate high bio-
compatibility, but also their successful integration in the alveolus is likely secondary to a partial ligamentous attachment. The
current investigation may lead to the use of calcium silicate-based materials as custom dental implants. Further research on
this novel composite’s biomechanical properties is necessary to develop the optimal material composition for use as a load-
bearing dental implant.
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1 Introduction

Titanium screw-type dental implants are the current standard
for replacing failing teeth that require extraction because of
dental caries, periodontal disease, or trauma. The dental
implant effectively replaces natural root function by con-
necting to both the jawbone and the crown via an abutment.
In most cases, teeth are extracted, the socket is filled with
some bone void filler, and the implant is placed 4—6 months
later after the bone graft has healed. After the implant is
placed, an additional 3—6 months is generally required for
healing before the implant can be loaded (restored with an
abutment and crown) functionally, which requires several
appointments for the final restoration. The typical process for
placing standard dental implants involves a surgical proce-
dure where a hole is drilled into the bone and the implant,
typically made of titanium alloy (or other metal or ceramic
material), is inserted (or threaded) into the cavity and allowed
to fuse with the bone by a process known as osseointegration
[1]. While dental implants are the current state of the art for
tooth replacement, they involve an invasive surgical proce-
dure and significant risks. Failures can occur because of
prosthetic material failure, improper surgical placement,
resulting in damage to adjacent teeth or vital anatomical
structures, poor esthetics, infection, and disease affecting the
supporting bone to implant interface known as peri-
implantitis [2]. Peri-implantitis is becoming a significantly
more prevalent issue because of the increased number of
implants that are failing over time [3]. Often when an implant
fails, the amount of bone already lost or the amount that must
be removed to retrieve the titanium implant can be cata-
strophic, and this loss of bone makes replacing that implant
extremely difficult, if not impossible, in some cases [4]. In
addition, in the case of immediate implants (implant place-
ment at the time of extraction), the defects found in extrac-
tion sockets are generally grossly different from the
dimensions of the screw-type implant. Thus, primary stabi-
lity and favorable placement of the implant in the bone can
be challenging to achieve. This issue makes traditional
implant placement at the time of extraction a far more
complex procedure, increasing the risk of surgical compli-
cations, and it often is simply impossible to perform
adequately.

What our group at Rutgers University has developed is a
novel method and composite material for the application of
immediate tooth replacement. This method involves
removing the patient’s failing tooth, and as opposed to
discarding it, the dentin is processed into either a particle or
shell form, sterilized, and then reconstructed into a tooth
form implant that mimics the shape and composition of the
original tooth. This strategy combines traditional techniques
used in dentistry such as tooth reimplantation with ortho-
dontic splinting and currently emerging digital dentistry
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technologies to provide patients with an alternative to tra-
ditional implant surgery. Commercially available calcium
silicate-based cement (CSC) material was used (Bio-
dentine®), which has shown great promise in other dental
applications and yields a composite material, which is much
closer in composition, appearance, and mechanical proper-
ties to natural teeth. This material, Biodentine®, manu-
factured by Septodont® (Saint-Maur-des-Fossés, France), is
a derivative of the traditional mineral trioxide aggregate
(MTA®) cements that have been used extensively in our
field because of their promising regenerative, antibacterial,
and adhesive properties in and around teeth. In endodontic,
periodontal, and restorative cases, the use of Biodentine®
cement has demonstrated the ability to stimulate the for-
mation of not only alveolar bone, but also a new periodontal
(cementum, PDL, and bone) attachment at its interface [5].
Numerous studies have shown its ability to induce the
release of pro-osteogenic factors and markers such as
osteopontin, alkaline phosphatase (ALP), pyrophosphatase,
bone morphogenetic protein (BMP)2, and transforming
growth factor (TGF)- 81, thereby increasing the prolifera-
tion and mineralization of osteoblasts, cementoblasts, and
odontoblasts [6, 7]. This bioactive cement mimics the
mechanical properties of natural teeth in terms of material
strength and high biocompatibility, and it has been mar-
keted as a dentin substitute with favorable long-term
mechanical and antibacterial properties.

Literature regarding the application of CSC for pulp with
capping [8—10], we anticipate that this cement composite can
have excellent biocompatibility. In addition, CSCs have a
very high alkaline pH, which is responsible for their anti-
bacterial effect. The release of Ca ions is one of the main
regenerative features of CSCs that induce the formation of
tertiary dentin [11]. The goal is to investigate how the pro-
cessing and sterilization of autologous dentin can be used in
conjunction with a regenerative cement material to form a
composite that, when implanted, mitigates the risk of surgical
implant complications and accomplishes the goal of period-
ontal tissue regeneration around these dental implants.

2 Materials and methods

The animal study protocol was approved by the NAMSA
Northwood Division Institutional Animal Care and Use
Committee (IACUC) by protocol #19-06 LLT. The study
included 2 young adult male beagles, and all surgical pro-
cedures were performed under general anesthesia by a
NAMSA veterinarian. Once induced, the animals were then
intubated, and 0.5% bupivacaine local anesthesia was
administered. Full mouth supragingival scaling and prophy-
laxis were performed. Before extractions, a periodontal
examination was performed, and tooth mobility was scored



Journal of Materials Science: Materials in Medicine (2021) 32:61

Page 3 of 11 61

based on the Grace & Smales Mobility Index. Teeth were
elevated and delivered with forceps in an atraumatic fashion.
The implants, which came from two canines, and included
native tooth controls (teeth extracted, scaled, and re-implan-
ted), implant controls (“T0,” non-implanted implants), and
three treatment groups. The treatment groups included mol-
ded composites which were made of: (1) dentin powder
resulting from grinding the entire tooth, mixed with dental
cement (“T1”); (2) dentin shells resulting from grinding only
the internal portion of the tooth, mixed with dental cement
(“T2”); and (3) dentin shells resulting from grinding only the
internal portion of the tooth, mixed with dental cement, and
inserted along with Emdogain® (“T3”). The as-received tis-
sues and “T0” implants were scanned and reconstructed by
using microCT analyses. All control and test groups included
by one maxillary and one mandibular implant limited to
the anterior (incisor) or posterior (first premolar) sites. For the
Control Group (No Treatment, C1): Teeth were extracted, the
roots were scaled to remove any calculus or residual
cementum and periodontal ligament fibers (using a scaler and
rotary instrument), held extra-orally in sterile saline (or the
animal’s saliva) for a period approximating the duration of
processing for the other test group procedures and re-
implanted without any significant modification. This process
simulates real-world scenarios that are encountered when
teeth are avulsed, gently cleaned, and stored in solution
before re-implantation in a dental office setting (n =2; one
(1) maxillary and one (1) mandibular).

2.1 Test Group 1 (Particulate Implant, T1)

As each tooth was extracted, a polyvinyl siloxane mold was
created of its original form, and it the tooth was processed to
dentin by grinding the entire tooth once the enamel was
removed with a highspeed handpiece and diamond bur. The
dentin was then processed following the KometaBio® (Smart
Dentin Grinder®) machining and cleansing protocols and
mixed with a marketed dental cement, Biodentine®, to form
a composite material. This chemical cleansing protocol
involved treating the ground dentin with a 0.5 M NaOH and
30% alcohol solution for 10 min and then two rinses in sterile
phosphate-buffered saline (PBS) for 3 min before drying on a
140 °C hot plate for 5min. The composite material was
packed into a mold form that mimics the shape and com-
position of the original tooth. Once set, the implant was
removed from the mold and placed in the extraction socket
(n = 4; at least one (1) maxillary and one (1) mandibular per
animal).

2.2 Test Group 2 (Shell Implant Alone, T2)

As each tooth was extracted, it was processed to dentin by
once again making a mold and then grinding just the nternal

portion of the tooth. The dentin was processed by subjecting
the dentin shell to the chemical cleansing protocol described
in Test Group 1 and then air-dried and mixed with Bio-
dentine® cement to form a composite material. The shell
implant was prepared by filling the residual shell with the
cement material while inside the mold. Once set, the
implant was removed from the mold and placed in the
extraction socket (n = 2; at least one (1) maxillary and one
(1) mandibular per animal).

2.3 Test Group 3 (Shell Implant+Emdogain°’, T3)

The same process was repeated for Test Group 2. Addi-
tionally, Emdogain® (EMD), an enamel matrix-derived
regenerative material, was applied to the root surface of the
tooth and the extraction socket before the implant was
placed. The implant then was placed in the extraction
socket. (n = 3; at least one (1) maxillary and one (1) man-
dibular per animal).

In all groups, the implants were splinted to the adjacent
teeth by using 0.018 inch round stainless-steel orthodontic
wire, which was bonded to the coronal portion of the teeth
and implants by using flowable composite resin after a 30 s
etch, followed by application of a bonding agent, which was
light-polymerized for 60 s intraorally. Once the resin fully
polymerized, post-implantation periapical radiographs were
made. One implant in Test Group 1 was left intentionally
partially implanted to observe the effect of periapical bone
fill surrounding these implants in clinical scenarios where a
gap between the implant and socket wall is present (as seen
in Fig. 1). Postoperative antibiotics were given for 7 days,
analgesics were administered for up to 5 days, and the dogs
were kept on a liquid diet for the first 3 days, followed by a
soft food diet after that. At four weeks after implantation,
general anesthesia was induced again to allow for clinical
re-evaluation and periapical radiographs. Animals were
euthanized and block sections of the mandibular and max-
illary test sites were taken and placed in 10% neutral buf-
fered formalin.

2.4 MicroCT

Upon receipt of the fixed tissues, micro-CT scans of the
entire implant site were performed at 18-micron resolution
on a pPCT 80 (Scanco, Switzerland) scanner. Following
scanning, representative 2D slices were imaged in the
transverse and sagittal plane at the center of each implant.
The scans were trimmed to include only the implant and
peri-implant tissues. The scan was then segmented, based
on the density of Biodentine® and tooth, into two separate
volumes. The measured volume (mm3) of each scan was
determined. Identification of peri-implant mineral deposits
(apical and lateral), peri-implant osseointegration
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Fig. 1 Animal radiographic images: A-D include radiographis for a
mandibular right first premolar. A Day pre-extraction. B Day 0 post-
extraction. C Day post-implantation. D Termination. E-H Include

(ankyloses) — apical and lateral vs. peri-implant periodontal
ligament regeneration assessment and homogeneity of the
implant was assessed qualitatively. This qualitative analysis
was done by using 2D slices, 3D models, and representative
images generated for the two different testing groups. The
images were also used to quantitate Biodentine® volume
(BV), the total volume of the region of interest (TV), and
the ratio of the two (BV/TV). Any elicited responses to the
implant were used in the comparison between the two
groups.

2.5 Pathology

Treatment sites were histologically processed at North
American Science Associates Inc. (NAMSA), 6750 Wales
Road, Northwood, Ohio 43619, and the resulting slides
were sent to Alizée Pathology, Inc., 20 Frederick Road,
Thurmont, MD 21788 for pathological evaluation. The
implant sites were processed by using the EXACT® method
(embedded in plastic, sectioned, surface edged, and
stained). Pathological evaluation of tissue response to the

@ Springer

radiographis for a maxillary right lateral incisor. E Day O pre-
extraction. F Day 0 post-extraction. G Day post-implantation.
H Termination

Particulate Implant (Test Group 1, T1), Shell Implant Alone
(Test Group 2, T2), Shell Implant + Emdogain® (Test
Group 3, T3), or Not Treated (Control Group, C1) was
completed by a board-certified veterinary pathologist, via
light microscopy. Tissue sections stained with H&E were
used to evaluate the cellular response following the scoring
criteria described in the International Organization for
Standardization (ISO) 10993-6, Part 61, as well as root
resorption. Also, tissue responses including, but not limited
to, lamellar and woven bone regeneration, residual implant
material, and periodontal ligament fibers were evaluated in
tissue sections stained with MGT.

3 Results
3.1 Radiographic/Clinical
One of the crucial questions relates to what happens at the

implant to periodontal tissue interface during physiologic
healing. The focus is on assessing the rate and quality of



Journal of Materials Science: Materials in Medicine (2021) 32:61 Page 5 of 11 61

1

L L
s & Salety Sl (O T- 21 229 - ©2 :
FP=SS 1-29-19

206 ¥ 3 SU0G

IR R R K" B _N_B K

i
Ty —— P | | 4 -

[ 4 <

Fig. 2 Radiographs of dentin/cement composite implants at 4-weeks before extraction — pre-extraction. D Implant immediately post-
post implantation. A Tooth and mold preparation. B Chairside implant implantation and splinting-post implant. E Implant at 4 weeks post op
fabrication T1 implant. C Natural tooth (mandibular left first premolar) after splint removal. Termination

Fig. 3 Radiographic images: figure includes radiographis for a maxillary left lateral incisor. A Day 0 pre-extraction. B Day O post-extraction.
C Day post implantation. D Termination

healing in an in vivo model. As shown in Fig. 2, the results ~ with conservation of a periodontal ligament space after
of our in vivo pilot study in beagle dogs revealed that not  splint removal at 4 weeks. Additionally, as observed in the
only are these implants biocompatible, but their integration  figures below, all test groups including the controls showed
in the alveolus is likely secondary to a ligamentous  no signs of infection or bone loss after the 4-week re-eva-
attachment suggested by the findings of no implant mobility ~ luation (Fig. 3).
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Fig. 4 3D rendering of TO control groups and representative 2D
microCT. A TO of an extracted tooth. B T1 implant group. C T2/T3
implant group. D Slice at about the coronal/transverse midline of an
implant control specimen. Red arrows indicate regions where calcified

3.2 Micro-computed tomography

Representative 2D microCT slices for all specimens can be
seen in Fig. 4 slice at about the coronal/transverse midline
of an implant control group specimen (left mandibular first
premolar, 305, animal 3580416). The implant control group
was an extracted tooth that was scaled and then re-
implanted. Red arrows indicate regions where calcified
bony tissue has appeared to be ingrown into the periodontal
ligament space, and green arrows indicate areas where the
space appears to be composed of soft tissue or gaps in the
calcified bony tissue.

3.3 Histology tissue response

Both implant and non-implant (i.e., procedural) related
inflammation was assessed as follows in Table 1. In addition,
the corresponding inflammatory cell types (polymorpho-
nuclear cells [neutrophils/eosinophils], lymphocytes, plasma
cells, macrophages, and multinucleated giant cells) were
assessed as follows:

As described in Table 1, implant-related inflammation
(evaluated for Groups T1, T2 and T3) was on average
similar among all Groups, with low numbers of infiltrates in
all specimens evaluated. Implant-related inflammatory
reaction was generally minimal and not interpreted to be

@ Springer

bony tissue has appeared to be ingrown into the periodontal ligament
space, and green arrows indicate area where the space appears to be
composed of soft tissue or gaps in the calcified bony tissue

Table 1 Implant and non-implant-related inflammatory assessment

Parameter Control Tl T2 T3

Mean + SD implant-related inflammatory cell types
1.0+0.0 1.0+0.0 0.8+0.3
03+03 03+04 0.0x0.0

Implant inflammation -

Polymorphonuclear -
(Neutrophils/Eosinophils)

08+£03 08+04 0505
0500 0.0+x00 0203
1.0£0.0 1.0+0.0 0.8+0.3
0.6+03 0500 03+0.6
Mean + SD non-implant-related inflammatory cell types

1.0£00 1.6+x05 1.0+x0.0 1.0+0.0
1.0+00 09«05 08+04 0.7+0.3

Lymphocytes -
Plasma cells -
Macrophages -

Multinucleated giant cells -

Overall inflammation

Polymorphonuclear
(Neutrophils/Eosinophils)

1.0£0.0 09+03 1.0+x00 0.8+0.3
05+£0.7 08+03 05+0.7 0.8+03
1.0£00 1.5+06 1.0+0.0 1.0+0.0
00£00 0.1+03 0.0+0.0 0.0+0.0

Lymphocytes
Plasma cells
Macrophages

Multinucleated giant cells

Inflammation Scoring Matrix: 0 = Not present; 1 = Present but slight
feature; 2 = Notable feature, mild; 3 = Prominent feature but is not
overwhelming, moderate; 4 = Overwhelming feature, severe

Inflammatory Cell Types Scoring Matrix: 0 = Absent; 1 = Rare, 1-5
per high magnification field (hpf, 400x; giant cells = 1-2/hpf); 2 =
5-10/hpf (giant cells = 3-t/hpf); 3 = Heavy infiltrate (giant cell =
numerous); 4 = Packed (giant cells = sheets)
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Table 2 Necrosis, fibrosis, fatty
infiltrates, neovascularization,
hemorrhage, epithelialization
and epithelial hyperplasia
assessment

Table 3 Mean tissue response
comparison to control

Minimal amount of fat associated with fibrosis

Several layers of fat and fibrosis

Necrosis 0 Absent

1 Minimal

2 Mild

3 Moderate

4 Severe
Fibrosis 0 Absent

1 Narrow Band

2 Moderately thick band

3 Thick band

4 Extensive band
Fatty Infiltrates 0 Absent

1

2

3

Elongated and broad accumulation of fat cells about
the implant site

Extensive fat completely surrounding the implant
Absent

Minimal capillary proliferation, focal, 1 to 3 buds

Neovascularization

N o= O B

Groups of 4 to 7 capillaries with supporting
fibroblastic structures

[O¥]

Broad band of capillaries with supporting structures

~

Extensive band of capillaries with supporting
fibroblastic structures

Hemorrhage, epithelialization, and epithelial 0 Not present
hyperplasia 1 Present but slight feature, minimal
2 Notable feature, mild
3 Prominent feature but is not overwhelming,
moderate
4 Overwhelming feature, severe
Parameter Control T1 T2 T3
Mean + SD Tissue Necrosis 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Fibrosis 1.3+0.4 1.3+0.4 1.5+0.7 1.8+0.3
Fatty Infiltrate 0.0£0.0 0.0+£0.0 0.0£0.0 0.0+0.0
Neovascularization 0.8+0.4 1.1+0.3 1.0+0.0 12+£0.3
Hemorrhage 0.0£0.0 0.0+£0.0 03+04 02+03
Epithelialization 38+04 39+0.3 4.0+0.0 3.8+03
Epithelial Hyperplasia 1.3+£04 1.3+0.5 1.0+£0.0 0.8+0.3

SD Standard Deviation

Necrosis Scoring Matrix: 0 = Absent; 1 = Minimal; 2 = Mild; 3 = Moderate; 4 = Severe

Fibrosis Scoring Factor: 0 = Absent; 1= Narrow band; 2 = Moderately thick band; 3 = Thick band;
4 = Extensive band

Fatty Infiltrate Scoring Matrix: 0 = Absent; 1 = Minimal amount of fat associated with fibrosis; 2 = Several
layers of fat and fibrosis; 3 = Elongated and broad accumulation of fat cells about the implant site;
4 = Extensive fat completely surrounding the implant

Neovascularization Scoring Matrix: 0 = Absent; 1 = Minimal capillary proliferation; 2 = Groups of 4 to 7
capillaries with supporting fibroblastic structures; 3 = Broad band of capillaries with supporting structures;
4 = Extensive band of capillaries with supporting fibroblastic structures

Morphological Changes Scoring Matrix: 0 =Not present; 1=Present but slight feature, minimal;
2 = Notable feature, mild; 3 = Prominent feature but is not overwhelming, moderate; 4 = Overwhelming
feature, severe
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Fig. 5 Root resorption: A Level 1. Control. Week 4. Note root
resorption (black arrows) and direct apposition between bone and
tooth (circles). B Bone, T Tooth. B Level 2. Particulate implant. Week
4. Note root resorption (black arrow( and direct apposition between

adverse. Non-implant-related inflammation (i.e., proce-
dural) was similar among all groups (Control, T1, T2, T3
and T4). Inflammation was as expected for an oral implant
model and was not interpreted to be adverse.

Tissue response evaluation looked at the parameters
characterizing tissue reaction surrounding the implant sites
and included necrosis, fibrosis, fatty infiltrates, neovascu-
larization, hemorrhage, epithelialization, and epithelial
hyperplasia, which is outlined in Tables 2 and 3. In general,
fibrosis varied from a narrow band (Score 1) to a moder-
ately thick band (Score 2) in all groups. There was no
implant encapsulation in any of the evaluated specimens.
Overall average fibrosis scores were highest in Group T3
(Shell Implant + Emdogain®), but fibrosis scores were not
associated with decreased bone regeneration, as is apparent
from the histologic slices in Fig. 5, or with decreased
numbers of PDL fibers. Overall average neovascularization
and epithelialization scores were as expected for this oral
surgical model and biologically similar for all groups.
Epithelial hyperplasia was overall minimal and as expected
for this canine oral surgical model. There was no evidence
of fatty infiltration, necrosis, infection, or suppurative or
granulomatous inflammation in any of the specimens eval-
uated. Hemorrhage, when present, was focal, minimal, and
non-adverse.

@ Springer

bone and implant (circle). B Bone, T Tooth. C Level 4. Shell Implant
Alone. Week 4. Note root resorption (black arrow). B Bone, I Implant.
D Level 2. Shell implant + Emdogain®. Week4. PDL fibers are shown
(arrow). B Bone, I Implant

4 Discussion

This study examined the first application of combining
dentin and CSC for use as a load-bearing and biocompatible
dental implant. In regard to the antibacterial effects of CSC
and MTA® in particular, several investigations tested and
reported on the antibacterial effects of mineral trioxide
aggregate on a range of microorganisms [12—-14]. In one
study comparing the antimicrobial effects of root-end filling
materials against S. aureus, E. faecalis, and P. aeruginosa
the authors reporated that IRM® and Gray MTA® demon-
strated a more significant antibacterial effect compared with
the other tested biomaterials [15]. Additionally, other stu-
dies revealed that Gray MTA® [16] and White MTA® [17]
also have an antifungal effect, including on C. albicans. It is
believed that this antimicrobial effect of MTA® may be
because of its high pH or because of ion release from the
MTAZ® into surrounding local environments [18]. Based on
the wealth of information available about these materials, it
appears that MTA® is a bioactive material with the inherent
ability to create an ideal wound healing environment. As
soon as the material is implanted, the cement matrix forms
calcium hydroxide which releases calcium ions and aids in
cell attachment and proliferation [19-25]. Calcium hydro-
xide in the cement matrix raises the pH of the material’s
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surface to an alkaline environment [16, 26] and increases
cytokine production [27, 28] that enhances differentiation
and migration of osteopromotive cell types [29]. Calcium
hydroxide also forms a carbonated apatite layer on the MTA
surface, thereby creating a biologic seal that relates speci-
fically to the bioactivity of the materials [30]. Another study
tested the effects of ground dentin powder in combination
with either Bioaggregate (BA) or MTA powder compared
to the cement materials alone. It observed that the addition
of equal amounts of dentin powder to the suspension of
either BA or MTA powder, which were both prepared as
fresh and set materials, resulted in faster elimination of E.
faecalis in an in vitro study [31]. This interesting and
important finding allows us to transition to the next
important component of our study. The second key com-
ponent of our approach is the processing of autologous
dentin for reuse in the oral cavity. This concept was initially
developed to serve as an additional source of bone void
filler material for alveolar ridge and socket preservation
following tooth extraction. We used technology that was
already introduced into the market by Binderman et al.,
known as the Smart Dentin Grinder (manufactured by
Kometabio, Inc.) for the application of processing extracted
teeth into autologous particulate dentin autograft material
[32]. Their process, which has been documented exten-
sively in the literature, involves extracting human teeth,
grinding and sorting the material, cleansing the particulate
dentin, and grafting these particles back into the socket as
an alternative to the use of traditional particulate bone graft
for socket preservation [32]. The practice of tooth reim-
plantation has been documented since the beginning of the
18th century, and since then, a vast amount of information
has been collected about the factors contributing to its high
success rates under certain conditions. The most common
factors influencing these outcomes involve the length of
extraoral time before reimplantation, the amount of trauma
to the periodontal structures, duration of splinting, and more
recently, the addition of adjunctive treatments such as the
application of growth factors like enamel matrix derived
proteins (EMD) and platelet-derived growth factor (PDGF)
to support periodontal regeneration [33-35]. Studies have
also outlined the viability and regenerative capacity of
periodontal ligament fibroblasts that are present and col-
lected immediately after tooth extraction [36].

The rationale for our alternative approach to tooth
replacement and the anticipated mechanism of healing
resembles reinsertion of avulsed teeth as a result of trauma
far closer than it does osseointegration secondary to
osteotomy preparation and titanium implant placement.
This difference is important because the majority of peri-
implant diseases are the result of the differences in orien-
tation and quality of connective tissue fibers within the
gingival cuff and missing down the surface of the titanium

that leave implants susceptible to significant bone loss.
While it is true that titanium will always be stronger than
natural teeth, there is still a substantial biochemical and
mechanical mismatch between this inert metal alloy and
surrounding tissues in the body, which is the reason for
many of the observed failures that have motivated our
research. Reinsertion in less than an hour and proper sta-
bilization of the implant during the healing period is
essential for success, as is documented in the literature. The
justification for choosing the materials (autologous dentin
and a CSC) is that they naturally complement each other in
their biological and physical properties and have both
demonstrated the capacity to develop new periodontal
attachments on their previously denuded surfaces. These
new attachments include the generation of new cementum,
periodontal ligament fibers, and alveolar bone. The main
advantages of periodontal regeneration versus ankylosis or
“fusion” of implants to the jawbone include the main-
tenance of proprioception, which is recorded within the
periodontal ligament space, and a cushioning effect, thereby
reducing stress transfer to the surrounding structures.

The results of the current study suggest that this novel
material can integrate successfully into the alveolar pro-
cesses in a canine model. The parameters evaluated to
examine the tissue response of these implants included
clinical, radiographic, and histologic assessment. The data
suggest no significant adverse effects when evaluating these
parameters in test groups compared to controls. Within the
limited number of test specimens that were examined in this
pilot study, the outcomes suggest a promising personalized
implantation method that may pave the way for future
research into the concept of customized immediate dental
implants. This novel implant method and material may also
allow for a safer and more affordable procedure that can be
performed by a broader range of providers. The reason for
the choice is because of the intraoperative simplicity of this
technique, which was specially designed for clinicians with
limited conventional implant surgical training and equip-
ment to provide another therapeutic option for their patients.
Further advancements in this concept may someday address
the significant issue of access to care and tooth replacement,
particularly in developing nations or rural areas. It also has
potential applications in multiple age groups, especially
patients between the ages of 6-21 years of age (a subset of
the population that previously was unable to receive fixed
implants because of complications of titanium implants and
hindered craniofacial growth) [37], numerous clinical sce-
narios because of the versatility of implant design can be
applied globally because of the nature and availability of the
materials, rapid chairside fabrication methods, and the
relatively inexpensive cost of materials, equipment, and
training. The goal of this research is to develop a system
that is reproducible and may provide an opportunity for
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tooth replacement in areas of the world that have limited
resources, access to care, and currently no means of tooth
replacement. We hope that this technique could dramati-
cally reduce the high incidence of edentulism globally and
mitigate the detrimental medical effects of malnutrition and
untreated dental infections [38].

5 Conclusion

Based on the limitations of this study, the results revealed
that not only do these materials demonstrate high bio-
compatibility, but their integration in the alveolus is likely
secondary to a partial ligamentous attachment suggested by
the findings of no implant mobility with the conservation of a
periodontal ligament space after splint removal at 4 weeks.
The histological evaluation suggests favorable integration of
all implants with the surrounding peri-implant tissues and
minimal inflammation present compared to controls. The
current investigation may open new avenues into the use of
CSC materials for the fabrication of custom dental implants.
Further research into the biomechanical properties of this
novel composite is necessary to develop the optimal material
composition for use as a load-bearing dental implant.
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