

University of the Pacific [Scholarly Commons](https://scholarlycommons.pacific.edu/)

[Euler Archive - All Works by Eneström Number](https://scholarlycommons.pacific.edu/euler-works) **Euler Archive** Euler Archive

1806

Accuratior evolutio problematis de linea brevissima in superficie quacunque ducenda

Leonhard Euler

Follow this and additional works at: [https://scholarlycommons.pacific.edu/euler-works](https://scholarlycommons.pacific.edu/euler-works?utm_source=scholarlycommons.pacific.edu%2Feuler-works%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages) **C** Part of the [Mathematics Commons](http://network.bepress.com/hgg/discipline/174?utm_source=scholarlycommons.pacific.edu%2Feuler-works%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages) Record Created: 2018-09-25

Recommended Citation

Euler, Leonhard, "Accuratior evolutio problematis de linea brevissima in superficie quacunque ducenda" (1806). Euler Archive - All Works by Eneström Number. 727. [https://scholarlycommons.pacific.edu/euler-works/727](https://scholarlycommons.pacific.edu/euler-works/727?utm_source=scholarlycommons.pacific.edu%2Feuler-works%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Euler Archive at Scholarly Commons. It has been accepted for inclusion in Euler Archive - All Works by Eneström Number by an authorized administrator of Scholarly Commons. For more information, please contact [mgibney@pacific.edu.](mailto:mgibney@pacific.edu)

ACCURATIOR EVOLUTIO PROBLEMATIS DE LINEA BREVISSIMA IN SUPERFICIE QUACUNQUE DUCENDA

AUCTORE

L EULERO.

Conyentui exhibita die 25. Januarii 1779.

Pro superficie, in qua lineam brevissimam duci oportet, data sit inter ternas coordinatas orthogonales x_2, y_2, z_1 haec aequatio differentialis: $\partial z = f \partial x + g \partial y$, ubi f et g sint functiones binarum x et y, ita ut sit $\partial f = a \partial x + \beta \partial y$ et $\partial g = \beta \partial x + \gamma \partial y$. His positis, cum lineae euiuscunque in hac superficie ductae elementum sit $\sqrt{\partial x^2 + \partial y^2 + \partial z^2}$, loco ∂z hoc valore posito erit elementum istius curvae $= \sqrt{\partial x^2 + \partial y^2 + (f \partial x + g \partial y)^2}$; unde si statuamus $\partial y = p \partial x$, hoc elementum erit $\partial x \sqrt{1 + pp + (f + gp)^2}$.

§2. Formula igitur integralis, quam ad minimum revocari oporret, erit $\int \partial x \sqrt{1 + pp + (f + gp)^2}$, quam in Tractatu meo: *Methodus* inveniendi lineas curvas Maximi Minimive proprietate gaudentes, in genere per $fZ\partial x$ indicavi, ita ut pro hoc casu sit $Z\sqrt{1+pp+(f+gp)^2}$. Tum vero, posito $\partial Z \equiv M \partial x + N \partial y + P \partial p$, ostendi naturam Minimi vel Maximi hac aequatione exprimi: N $\partial x = \partial P_2$ quam ergo patet ad differentialia secundi gradus assurgere.

 \mathfrak{g} 3.

Cum igitur sit $Z^2 = \mathbf{r} + pp + (f + gp)^2$, diffe- δ α . rentietur haec formula, ac distinguantur triplicis generis elementa, scilicet ∂x , ∂y , ∂p , hocque modo reperietur: $2\dot{\theta} Z = \partial x (x + \beta p) (f + gp) + \partial y (\beta + \gamma p) (f + gp) + \partial p (p + g (f + gp)).$

Cum igitur in genere posuerim $\partial Z = M \partial x + N \partial y + P \partial p$, hoc casu habebimus:

$$
M = \frac{(\alpha + \beta p) (f + g p)}{Z}
$$

$$
N = \frac{(\beta + \gamma p) (f + g p)}{Z}
$$

$$
P = \frac{p + g (f + g p)}{Z}
$$

Hinc ergo (ob $\beta \partial x + \gamma p^2 x \equiv \partial g$) fiet $N \partial x = \frac{\partial g}{\partial x} \frac{(f + g p)}{z}$, ∂g $(f + g p)$ unde aequatio pro curua nostra quaesita erit \Rightarrow $\partial \cdot \frac{p+g\ (f+fgp)}{g}$. Pro qua aequatione evoluenda ponatur brevitatis gratia $p + g(f + gp) = S$, atque habebimus:

$$
\frac{\partial g}{\partial x} \frac{(f+gp)}{g} = \frac{\partial g}{\partial x} - \frac{\partial g}{\partial z},
$$
 since

$$
\partial g (f+gp) = \partial s - \frac{\partial^2 g}{g}.
$$

Quia igitur est $\partial S = \partial p + \partial g (f + g p) + g \cdot \partial (f + g p)$, erit nostra aequatio $o \equiv \partial p + g \partial (f + g p) - \frac{s \partial z}{z}$. Porro vero est: $\frac{\partial z}{z} = \frac{p\partial p + (f + gp) \partial \cdot (f + gp)}{1 + pp + (f + gp)^2}$ quod multiplicari debet per. S == $p + g(f + gp)$. Hinc multiplicando per denominatorem $\mathbf{x} \rightarrow pp + (\mathbf{f} + gp)^2$, habebimus: $\phi = \partial p + (g - f p) \partial \cdot (\tilde{f} + g p) - g p \partial f (f + g p) + \partial p (f + g p)^2$ seu $o = \partial p + (g - fp) \partial \cdot (f + gp) + f \partial p (f + gp)$, quae aequatio porro transmutatur in hanc formam:

 $o \equiv \partial p$ ($\mathbf{r} + f + gg$) + ($g \rightarrow f p$) ($\partial f + p \partial g$).

Quanquam haec aequatio satis est simplex, tamen $\sqrt{4}$ non patet, quomodo eam ad differentialia primi gradus revocare Observavi autem sequenti substitutione negotium conliceat. fici posse, scilicet: $v = \frac{\varepsilon - fp}{f + gp}$; unde fit $p = \frac{\varepsilon - fp}{g^v + f}$, hinc iam differentiando deducitur $\partial p = \frac{(f_f + gg) \partial v + (1 + vv) (f \partial g - g \partial f)}{(f + gv)^2}$. Porro erit $g - fp = \frac{v(f + gg)}{f + gv}$, denique $\overline{\partial f + p \partial g} = \frac{f \partial f + g \partial g + v (g \partial f) - f \partial g}{f + g v}$, quibus substitutis aequatio prodit: $\mathbf{v} = -\partial v \left(f + gg \right) \left(\mathbf{r} + f + gg \right) + v \left(f + gg \right) \left(f \partial f + g \partial g \right)$ $+(1+vv)(f\partial g - g\partial f) + (ff + gg)(f\partial g - g\partial f).$

 $= 40 =$

Ad hanc aequationem simpliciorem reddendam 6.5 statuamus $ff + gg = hh$, critque $f \partial f + g \partial g = h \partial h$, deinde $\frac{q}{f} = k$, ut fiat $f \partial g - g \partial f = f h$, sicque aequatio sit vero nostra contrahetur in hanc formam:

 $o \rightleftharpoons -hh \partial v \left(x + hh \right) + h^3 v \partial h + \left(x + hh + vv \right) f^2 h.$ Cum autem $g = fh$, erit $f(x + kh) = hh$, ideoque $\text{I}=\frac{bb}{1+kk}$, unde habebimus:

 $\sigma = -\partial v \left(x + h h \right) + v h \partial h + \left(x + h h + v v \right) \frac{\partial k}{x + k h}$

quae aequatio porro, ponendo $v = s \sqrt{1 + hh}$, reducitur ad hanc formam:

 $0 = - \partial s \gamma (1 + h h) + \frac{\partial k (1 + s s)}{\gamma + h h}$

Nunc igitur quantitatem s a reliquis separatam exhibere licet, cum sit $\frac{\partial s}{\partial s} = \frac{\partial k}{(1 + kk) \sqrt{1 + bb}}$, quae forma simplicissima esse videtur, ad quam in genere pertingere licet.

 $\begin{bmatrix} 4 \end{bmatrix}$

Quoniam autem hic binas variabiles y et x per $6\,6.$ eandem z determinare sumus conati, cum tamen omnes tres aequali ratione in calculum ingrediantur, universam hanc quaestionem ita tractare mihi est visum, ut omnes formulae pariratione tres coordinatas x, y, z involuant, quo pacto speculationi potius consulatur, quam usui, hancque ob rem investigationes sequentes subiungam.

Supplementum.

Pro superficie data sit haec aequatio differen- $6.7.$ tialis: $p \rightarrow x + q \rightarrow r \rightarrow z = 0$, ubi p, q, r sint functiones coordinatarum x , y , z , unde, ut aequatio sit possibilis, haec conditio inesse debet:

 $\frac{p\partial q - q\partial p}{\partial z}$ \rightarrow $\frac{q\partial r - r\partial q}{\partial x}$ \rightarrow $\frac{r\partial p - p\partial r}{\partial y}$ \rightarrow 0.

Hoc posito pro linea brevissima in hac superficie ducenda sequens habebitur aequatio, quam ternae coordinatae x, y, z pari ratione ingrediuntur:

$$
\frac{\partial \partial x}{\partial y - q}dx - r\partial y + \frac{\partial \partial y}{\partial x - p}dx - d\partial z
$$

Vel si brevitatis gratia ponamus:

$$
\frac{\partial y}{\partial x} - \frac{\partial x}{\partial y} = f;
$$

\n
$$
\frac{\partial x}{\partial x} - \frac{\partial x}{\partial x} = g;
$$

\n
$$
\frac{\partial x}{\partial y} \frac{\partial y}{\partial x} = h;
$$

erit $fp + gq + hr = o$; tum vero etiam $f \partial x + g \partial y + h \partial z = o$. Deinde si elementum curvae brevissimae ponatur $\equiv \partial s$, erit $\partial s^2 = \partial x^2 + \partial y^2 + \partial z^2$; tum vero quoque

 $\frac{\partial \partial s}{\partial s} = \frac{q \partial \partial z - r \partial \partial y}{q \partial z - r \partial y} = \frac{r \partial \partial x - p \partial \partial z}{r \partial x - p \partial z} = \frac{p \partial \partial y - q \partial x}{p \partial y - q \partial x}$

Appli-

Applicatio ad superficiem sphaericam.

Sit aequatio pro hac superficie $x\partial x + y\partial y + z\partial z = 0$, ita ut hic habeamus $p = x$, $q = y$, $r = z$, et prima aequatio pro linea brevissima erit sequens:

 $\partial \partial x(y \partial z - z \partial y) + \partial \partial y(z \partial x - x \partial z) + \partial \partial z(x \partial y - y \partial x) = 0,$ cuius ergo integrale completum est $ax + \beta y + \gamma z = 0$, uti Quaestio igitur huc redit, que nodo hoc ex rei natura pateť. integrale erui possit.

Cum iam altera aequatio sit $fx + gy + hz = 0$, $\partial \Pi = \frac{x}{(y \partial x - x \partial y)^2} [(\partial y \partial \partial z - \partial x \partial \partial y) x + (\partial x \partial \partial x - \partial x \partial \partial z) y$ $+$ $(\partial x \partial \partial y - \partial y \partial \partial x)^2$]

et introductis f, g, h , erit $\partial \Pi = x \frac{(fx + gy + bz)}{(y \partial x - x \partial y)^2}$. Cum autem sit $fx + gy + hz = 0$, erit $\partial \Pi = 0$, ideoque Π quantitas constans, quam si statuamus \equiv A, erit aequatio differentialis primi gradus $\Pi = \frac{z \partial x - x \partial x}{y \partial x - x \partial y}$, ita expressa: A (ydx - xdy) $x^3x - x^2$, quae divisa per xx erit integrabilis; fiet enim $\frac{Ay}{x} = \frac{x}{x} + B$, sive $Ay - Bx - x = 0$, vel mutatis constantibus $ax + \beta y + \gamma z = 0$, quae aequatio cum sit pro plano quocunque per centrum sphaerae ducto, in superficie sphaerica nascentur circuli maximi; unde sequitur omnes circulos maximos esse lineas brevissimas omnium, quae in superficie sphaerae duci possunt.

> \$. IO.

 $\hat{\mathbf{c}}_i$

 $a($

A

ħ

K

 ${\bf F}$

(10. Quoniam in huiusmodi calculis omnia ad unicam variabilem reduci solent, si provhoc efficiendo ponamus $\tilde{\epsilon}$ y = tox et ∂z = udx, sumto ∂x pro constante, erit prima aequatio vt sequitur:

 ∂t $(r - pu) + \partial u$ $(pt - q) \stackrel{d}{\leq} 0$.

At aequatio pro superficie erit $p + qt + ru = 0$; unde cum hine fiat $p = -qt - ru$, prior aequatio hance induct formam:

$$
\frac{\partial t\left(r + qtn + ruu\right) - \partial u\left(q + rtu + qtt\right) = o.}{\partial r^2(t\partial u - u\partial t) - \partial r^2(t\partial u - u\partial t)}
$$

 $\vec{v} = \partial x^2(t \partial u - u \partial t)$; $g = -\partial x^2 \partial u$; $h = \partial x^2 \partial t$; tum vero $\partial s^* = \partial x^* (1 + tt + uu)$, et denique $\frac{\partial \partial s}{\partial s}$ $\frac{\partial s}{\partial s}$ $\frac{\partial s}{\partial t}$ $\frac{\partial s}{\partial t}$ $\frac{\partial u}{\partial t}$

§ 11. At si malimus quartam quandam variabilem, puta angulum ϕ introducere, ponendo $\partial x = t \partial \phi$; $\partial y = u \partial \phi$; $\partial z = v \partial \phi$; aequatio pro superficie erit $pt + qu + rv \equiv o$. Porro pro litteris f , g , h , habebimus

 $f = \partial \phi^2 (u \partial v - v \partial u)$ $g = \partial \phi^2 (v \partial t - t \partial v)$ $h = \partial \Phi^2(t) du - u \partial t$

hine ergo erit $ft + gu + hv = o$. Aequatio pro brevissima erit: linea

 $fp + gq + hr = p (u \partial v - v \partial u) + q (v \partial t - t \partial v)$ $+r(t) = u(t) = 0,$ denique fiet $\partial s^2 = \partial \phi^2 (tt + uu + vv)$, ideoque

 $\frac{\partial \partial s}{\partial s}$ = $\frac{\partial t + u \partial u}{\partial t} + v \partial v$ = $\frac{q \partial v}{qv}$ = $\frac{r \partial u}{r u}$ = $\frac{r \partial t}{r v}$ = $\frac{p \partial v}{r v}$ = $\frac{p \partial u}{r u}$ = $\frac{q \partial t}{r u}$. Nova Acta Acad. Imp. Scient. Tom. XV. - G $\sqrt{12}$ quae ergo hanc induit formam:

$$
\begin{array}{l}\n\hline\n-\partial\pi\left(1+pp+qq\right)+\partial p\left(\pi p-q\right)+\pi\partial q\left(\pi p-q\right)=0,\text{sev} \\
\partial\pi\left(1+pp+qq\right)+\left(\partial p+\pi\partial q\right)\left(q-\pi p\right)=0.\n\end{array}
$$

§ 16. Quoniam in hac aequatione potissimum binae formulae $p + \pi q$ et $q - \pi p$ occurrunt, plurimum inuabit rationem inter eas inducere. Statuatur hunc in finem $\frac{q - \pi p}{p + \pi q}$ = v_2 unde iam fit $\pi = \frac{q - v p}{p + v q}$; tum vero vicissim $q - \pi p = \frac{v (p p + q q)}{p + v q}$; porro autem erit $\partial p + \pi \partial q = \frac{p \partial p + q \partial q + w (q \partial p - p \partial q)}{p + q \nu}$.
Si nunc ponatur $q = up$, erit $\pi = \frac{\mu - v}{\pi + u \nu}$, hincque $\partial \pi = \frac{\partial u (x + v v) - \partial v (x + u u)}{(x + v v)^2}$. Ponatur porro pp + qq = tt, et cum sit $q = up$, erit $pp = \frac{t}{1+u}$ et $\partial \cdot \frac{q}{p} = \partial u = \frac{p\partial q - q\partial p}{pp}$, hincque $p\partial q - q\partial p = pp\partial u = \frac{tr_{\partial u}}{1 + uv}$

quibus valoribus substitutis, ob $q = \pi p = \frac{vt}{p(1+v^2)}$ $\partial p + \pi \partial q = \frac{p + (-\pi \tau \partial u) \cdot (x + u \pi)}{p(x + u \pi)}$, erit

$$
\frac{\partial u (I + v v) - \partial v (I + u v') (I + H)}{(I + u v)^2} \longrightarrow \frac{\partial u (I (I (I + u u) \partial - v u) u}{p^2 (I + u u) (I + v v)^2}
$$

sive

$$
\begin{array}{l}\n\text{(1 + tt) } (\partial u (1 + vv) - \partial v (1 + uu) \\
\qquad + vt \cdot ((1 + uu) \partial t - vt \cdot u) = 0\n\end{array}
$$

quae aequatio porro reducitur ad hanc formam: ∂u (($x + v v$) ($x + tt$) - vvt) - ∂v ($x + tt$) ($x + uu$) $+ v t \partial t$ (1 + uu) $= 0$,

sive ad hanc concinniorem:

 $\frac{\partial u}{\partial t} (1 + v v + tt) - \partial v (1 + tt) + vt \, dt \equiv 0.$ Ponatur nunc $v = w \sqrt{1 + it}$, eritque $\partial w = \frac{\partial v (1 + it) - v}{(1 + it)^{\frac{3}{2}}}$

seu

 \mathbb{S}^t ť١

h

q f seu erit dv $(\mathbf{r} + t\mathbf{t}) - \nu t$ dt $= (\mathbf{r} + t\mathbf{t})^3$ dws tum vero erit

 $x + tt + vv = (1 + tt)(1 + uvv)$, quibus substitutis aequatio nostra ita se habebit

 $-\frac{\partial^2 u}{\partial x^2}$ (**r** + tt) (**r** + ww) – (**r** + tt)³/₃ dw = $\sigma_{\mathbf{y}}$

 $\frac{1}{53}$ $\frac{1}{20}$

hine separando nanciscimur $\frac{\partial w}{\partial x + u} = \frac{\partial w \sqrt{x + it}}{\partial x + w w}$, consequenter

$$
\frac{1}{1+w}
$$
 $\frac{1}{1+w}$ $\frac{1}{1+w}$ $\frac{1}{1+w}$ $\frac{1}{1+w}$

quae ergo aequatio semper integrari potest, quoties t fuerit functio ipsius u_2 , sive quoties $pp + qq$ fuerit functio ipsius $\frac{q}{b}$, sive q functio ipsius p.

Evenit autem, ut q sit functio ipsius p , primo $617.$ si z et y it a determinentur per x et aliam novam variabilem ω , ut sit $\gamma = Ax$ et $x = Bx$, existentibus A et B functionibus quibuscunque ipsius ω . Cum ergo posuerimus $\partial x = p\partial x + q\partial y$, erit

 $B\partial x + x\partial B = p\partial x + qA\partial x + qx\partial A,$ ubi terminos differentiale ∂x involuentes seorsim inter se comparari oportet, unde fit $p \equiv B - Aq$; et comparatis seorsim terminis ipsam quantitatem x continentibus, erit $q = \frac{\partial B}{\partial A}$, ideoque $p = \frac{B_0 A - A_0 B}{\partial A}$. Sicque p et q sunt functiones ipsius ω_{γ} ideoque et $tt = pp + qq$ et $u = \frac{q}{b}$ erunt functiones eiusdem quantitatis ω_2 et γ τ + tt erit functio ipsius u . Quocirca aequatio supra inventa pro linea brevissima integrationem admittit. Hoc autem casu, quo seilicet $y = Ax$ et $z = Bx$, prodit superficies conica super basi quacunque constructa.

 \S 18.

Aequatio supra tradita porro fit integrabilis sta-6 IS. tuendo $y = Ax + C$ et $z = Bx + D$; tum enim erit $\partial z = p\partial x + q\partial y = B\dot{x} + x\partial B + \partial D.$ et quia $\partial y = A\partial x + x\partial A + \partial C$, erit etiam $\partial x = p\partial x + q\partial y = p\partial x + Aq\partial x + xq\partial A + q\partial C$ ideoque, comparatis inter se membris ipsam quantitatem x continentibus, tum vero iis quae differentiali ∂x affecta sunt, **crit** hinc $q = \frac{\partial B}{\partial A}$ et $p = \frac{\partial B}{\partial A}$ et $p = \frac{B \partial A}{\partial A}$ $\frac{A \partial B}{\partial A}$. Praeterea Praeterea vero esse debet $\partial D = q \partial C = \frac{\partial B \partial C}{\partial A}$, sive functiones A, B, C, D, ita debent esse comparatae ut dAdD = dBdC, quod si contigerit, erunt iterum p et q functiones eiusdem variabilis ω , hincque erit etiam $\sqrt{1 + it}$ functio ipsius u_2 , quo ergo casu quoque lineam bre-Hic vero casus complecti videtur

omnes plane superficies, quae in planum explicari possunt.

 $\mathbf{D} \mathbf{\Gamma}$

vissimam definire licebit.