The cytoplasmic tail domain of the vacuolar protein sorting receptor Vps10p and a subset of VPS gene products regulate receptor stability, function, and localization

Joan Lin-Cereghino
University of California, San Diego, jlincere@pacific.edu

Eric G. Marcusson
University of California, San Diego

Scott D. Emr
University of California, San Diego

Follow this and additional works at: https://scholarlycommons.pacific.edu/cop-facarticles

Part of the [Biochemistry Commons](https://scholarlycommons.pacific.edu/biochemistry), [Biology Commons](https://scholarlycommons.pacific.edu/biology), and the [Molecular Biology Commons](https://scholarlycommons.pacific.edu/molecularbiology)

Recommended Citation
[DOI: 10.1091/mbc.6.9.1089](https://doi.org/10.1091/mbc.6.9.1089)
https://scholarlycommons.pacific.edu/cop-facarticles/716

This Article is brought to you for free and open access by the All Faculty Scholarship at Scholarly Commons. It has been accepted for inclusion in College of the Pacific Faculty Articles by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.
The Cytoplasmic Tail Domain of the Vacuolar Protein Sorting Receptor Vps10p and a Subset of VPS Gene Products Regulate Receptor Stability, Function, and Localization

Joan Lin Cereghino,*† Eric G. Marcusson,* and Scott D. Emr‡

Division of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, School of Medicine, La Jolla, California 92039-0668

Submitted May 2, 1995; Accepted June 13, 1995
Monitoring Editor: Randy W. Schekman

VPS10 of Saccharomyces cerevisiae encodes a type I transmembrane receptor protein required for the sorting of the soluble vacuolar hydrolase carboxypeptidase Y (CPY). To characterize the essential structural features and intercompartmental transport itinerary of the CPY receptor, we have constructed mutant forms of Vps10p that alter the carboxy-terminal cytoplasmic tail of the protein. In addition, we have analyzed the effect these mutations as well as mutations in several VPS genes have on the function, stability, and localization of Vps10p. Although wild-type Vps10p is very stable over a 3-h chase period, overproduction of Vps10p results in PEP4-dependent degradation of the receptor. Immunofluorescence studies indicate that overexpressed receptor is delivered to the vacuole. A mutant form of Vps10p, in which 157 residues of the 164-residue cytoplasmic tail domain have been deleted, missorts CPY and is degraded rapidly. Additional mutations in the carboxy-terminus of Vps10p, including a deletion of a putative retention/recycling signal (FYVF), also result in CPY missorting and PEP4-dependent receptor instability. Because the cytoplasmic tail domain may interact with other factors, possibly VPS gene products, Vps10p stability was examined in a number of vps mutants. As was observed with the late Golgi protein Kex2p, Vps10p is unstable in a vps1 mutant. However, instability of Vps10p is even more severe in the class E vps mutants. Double mutant analyses demonstrate that this rapid degradation is dependent upon vacuolar proteases and a functional vacuolar ATPase. Fractionation studies of Vps10p in class E vps mutant strains indicate that the turnover of Vps10p occurs in a compartment other than the vacuole. These data are consistent with a model in which the cytoplasmic tail of Vps10p directs cycling of the receptor between a late Golgi sorting compartment and a prevacuolar endosome-like compartment, an exaggerated form of which is present in the vps class E mutants.

INTRODUCTION

The compartmentalized nature of eukaryotic cells is necessary to sequester often competing biochemical reactions such as proteolysis and protein synthesis.

* These two authors contributed equally to this study.
† Present address: Department of Biology, Haverford College, Haverford, PA 19041-1392.
‡ Corresponding author.

The secretory pathway mediates the proper delivery and sorting of proteins to a variety of subcellular compartments. One of the best understood pathways involves the sorting of proteins to the lysosome. Soluble lysosomal proteins are synthesized in the cytosol and cotranslationally inserted into the endoplasmic reticulum (ER) along with proteins destined for secretion. Lysosomal proteins then transit through the Golgi apparatus where they receive a mannose 6-phosphate moiety that acts as a recognition signal...
for the mannose 6-phosphate transmembrane receptor (MPR) in the trans-Golgi network (TGN). In the TGN, the MPR-ligand complexes are sorted into transport vesicles that fuse with the endosome. The low pH of the endosome then triggers the release of ligand from the receptor, the ligands move on to the lysosome, and the unoccupied receptors are recycled back to the TGN for further rounds of sorting (Kornfeld, 1992).

In the yeast Saccharomyces cerevisiae, several selection schemes (Jones, 1977; Bankaitis et al., 1986; Rothman and Stevens, 1986) have been undertaken to identify mutants defective for the delivery of proteins to the vacuole (the fungal equivalent of the lysosome). More than 45 complementation groups of vacuolar protein sorting (vps) mutants have now been identified (Jones, 1977; Robinson et al., 1988; Rothman et al., 1989). The hallmark of these mutants is that they mislocalize and secrete soluble vacuolar proteins, such as carboxypeptidase Y (CPY). The vps mutants can be divided into six groups based on their vacuolar morphology (classes A–F) (Banta et al., 1988; Raymond et al., 1992). We have previously shown that one of the VPS genes, VPS10, encodes a type I transmembrane glycoprotein that is localized to a Golgi-enriched fraction and serves as the sorting receptor for CPY (Marcusson et al., 1994). Thus, Vps10p and the MPRs serve analogous functions in yeast and mammalian cells.

The mechanism by which soluble proteins, such as CPY, reach the vacuole in yeast appears to be very similar to the mechanism of lysosomal protein sorting in mammalian cells. CPY is cotranslationally translocated into the ER where it is core glycosylated to generate the p1 precursor form of CPY (p1CPY). It next traverses the Golgi complex where its oligosaccharides are elongated to create p2CPY (Stevens et al., 1982). In the Golgi apparatus, a sorting signal in the propeptide portion of CPY is recognized by Vps10p, and a receptor-ligand complex is formed (Marcusson et al., 1994). This interaction is likely to occur in a distal Golgi compartment. Studies with a sec mutant that blocks intra-Golgi traffic have shown that a late Golgi compartment (TGN like) is the site at which p2CPY is sorted away from proteins destined to be secreted from the cell (Graham and Emr, 1991). Cell fractionation studies have also demonstrated the existence of a compartment containing p2CPY that lies between the Golgi apparatus and the vacuole. This compartment also appears to contain endocytosed α-factor and presumably represents an endosome-like intermediate (Vida et al., 1993). We have proposed that Vps10p delivers CPY to this endosomal compartment where it releases p2CPY before recycling back to the trans-Golgi for further rounds of sorting (Marcusson et al., 1994).

Vps10p presumably has a cellular itinerary similar to that of the MPRs, which have been shown to reside mainly in the TGN but also cycle through the endosome and plasma membrane (Kornfeld, 1992). Transit of the MPRs through the cell is controlled by sequences in the carboxy-terminal tail of the MPRs that are likely to interact with cytosolic proteins (e.g. clathrin adaptor proteins). Signals in the cytoplasmic tail of the MPRs that control the cellular itinerary of these receptors have begun to be elucidated: a tyrosine-based signal has been shown to physically interact with clathrin adaptor protein complexes (Glickman et al., 1989), and a dileucine motif near the carboxy-terminus plays a role in the exit of the receptors from the trans-Golgi network (Johnson and Kornfeld, 1992).

Like Vps10p, two other late Golgi proteins, Kex2p and DPAP A, are also believed to cycle between the Golgi and the endosome in yeast. The stability of these proteins has been shown to be dependent on signals in their cytoplasmic tail domains (Wilcox et al., 1992; Nothwehr et al., 1993). The signals in these proteins are similar to the tyrosine-containing signals in the MPRs in that they require aromatic residues. A common set of cytosolic proteins may interact with the cytoplasmic tails of Kex2p, DPAP A, and Vps10p to control the cellular itinerary of these proteins. It is likely that such proteins could be among the more than 45 VPS gene products, as any mutation that causes Vps10p to be displaced from its normal cellular pathway should result in the secretion of CPY.

In this paper, we show that the cytoplasmic tail domain of Vps10p is essential for the proper function and stability of this receptor molecule. A mutant form of Vps10p missing the cytoplasmic tail is nonfunctional and mislocalized to the vacuole, where it is rapidly degraded in a PEP4-dependent fashion. We further show that a signal containing aromatic amino acids in the tail domain plays a role in Vps10p function and stability. A survey of the six different classes of vps mutants reveals that two vps classes (E and F) cause instability of Vps10p. The proteolytically processed form of Vps10p in the class E mutants is shown to reside in a compartment other than the vacuole. Therefore, this compartment may represent the E compartment that has been shown to contain active vacuolar hydrolases (Raymond et al., 1992).

MATERIALS AND METHODS

Yeast and Bacterial Methods

Standard yeast genetic techniques for diploid formation, sporulation, tetrads dissection, and gene disruption were used throughout (Sherman et al., 1979). Yeast cells were transformed using the alkali cation treatment method (Lio et al., 1983) or the procedure of Elledge (1992). Escherichia coli transformations were performed using the method of Hanahan (1983). All yeast strains were grown in yeast extract, peptone, dextrose (YPD), or yeast nitrogen base (YNB) medium supplemented as necessary with the appropriate nutrients (Sherman et al., 1979). Strains lacking vacuolar ATPase (Δvma4) were grown in YNB medium supplemented with 0.2% yeast extract and buffered to pH 5.5 with 50 mM 2-[N-morpholino]ethanesulfonic acid (MES) (Morano and Kliosky, 1994).
Strain and Plasmid Construction

S. cerevisiae strains used in this study are listed in Table 1. Deletion-disruption strains were constructed as follows. To disrupt the *PEP4* gene in SEY28-2 (SEY2610 *tps28*), the plasmid, pPl:LEU2 (Ammerer et al., 1986), was digested with BamHI and transformed into SEY28-2 on YNB agar plates without leucine. Individual transformants were then picked, restreaked at least three times, and then assayed for CPY maturation to confirm the absence of proteinase A activity, yielding the strain JCY2801. VMA4 knockout strains, such as JCY2802 (*tps28 Δvma4::URA3*), were created by transforming yeast with an EcoRI-BamHI digestion of a disruption construct (pUC19/Avma4::URA3) kindly provided by K. Morano and D. Klionsky (University of California, Davis, CA). Proper transformants were selected by presence of the URA3 marker, inability to grow in medium buffered to pH 7.5, and absence of quinacrine staining of the vacuole, using 175 mM quinacrine (Banta et al., 1988). VPS10 deletion strain EMY20 (Δvps10::TRP1) was generated by transforming the wild-type strain SEY6210 with an Xhol-BamHI restriction fragment of the pEMY10-105. The construct pEMY10-105 was made by deleting the 4.4-kb *SalI-Stul* portion of VPS10 from the pBLUESCRIPT (Stratagene, La Jolla, CA) derivative pEMY10-102 (Marcusson et al., 1994) and replacing it with the TRP1 gene. To generate a Δtps35 strain, the NciI-XbaI fragment from plasmid pGPY35

Table 1. Strains used in this study

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Source or Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEY6210</td>
<td>MATa leu2-3, 112 ura3-52 his3Δ200 trp1Δ901 lys2-801 suc2-Δ9</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY6210</td>
<td>MATa leu2-3, 112 ura3-52 his3Δ200 trp1Δ901 ade2-101 suc2-Δ9</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY6210.5</td>
<td>SEY6210/SEY6211 diploid</td>
<td>Herman et al., 1990</td>
</tr>
<tr>
<td>SEY1-1</td>
<td>SEY6210 tps1-1</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY3-23</td>
<td>SEY6210 tps3-23</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY4-15</td>
<td>SEY6210 tps4-15</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY6-4</td>
<td>SEY6210 tps6-4</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY8-3</td>
<td>SEY6210 tps8-3</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY9-2</td>
<td>SEY6210 tps9-2</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY11-6</td>
<td>SEY6211 tps11-6</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY13-24</td>
<td>SEY6210 tps13-24</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY15-8</td>
<td>SEY6210 tps15-8</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY18-1</td>
<td>SEY6210 tps18-1</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY19-1</td>
<td>SEY6210 tps19-1</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY20-1</td>
<td>SEY6210 tps20-1</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY22-2</td>
<td>SEY6210 tps22-2</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY23-2</td>
<td>SEY6210 tps23-2</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY24-2</td>
<td>SEY6210 tps24-2</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY25-2</td>
<td>SEY6210 tps25-2</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY26-1</td>
<td>SEY6210 tps26-1</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY27-1</td>
<td>SEY6210 tps27-1</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY28-2</td>
<td>SEY6210 tps28-2</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY28-5</td>
<td>SEY6211 tps28-5</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY32-1</td>
<td>SEY6210 tps32-1</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY33-5</td>
<td>SEY6210 tps33-5</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>SEY34-1</td>
<td>SEY6210 tps34-1</td>
<td>Robinson et al., 1988</td>
</tr>
<tr>
<td>BHY10</td>
<td>SEY6210 leu2-3, 112::pBHY11 (CPY-Inv LEU2)</td>
<td>Horazdovsky et al., 1994</td>
</tr>
<tr>
<td>BHY110</td>
<td>SEY6210 *tps16A1::HIS3</td>
<td>Horazdovsky and Emr, 1993</td>
</tr>
<tr>
<td>BHY152</td>
<td>SEY6210 *Δtps5::HIS3</td>
<td>B. Horazdovsky, unpublished data</td>
</tr>
<tr>
<td>BWY100</td>
<td>SET6211 Δtps24::HIS3</td>
<td>B. Wendland, unpublished data</td>
</tr>
<tr>
<td>GBY10</td>
<td>SEY6210 Δtps21::HIS3</td>
<td>Horazdovsky et al., 1994</td>
</tr>
<tr>
<td>KKYO6</td>
<td>BHY10 Δtps17::HIS3</td>
<td>Koeherer and Emr, 1993</td>
</tr>
<tr>
<td>KY20</td>
<td>BHY10 Δtps28::URA3</td>
<td>K. Koehler, unpublished data</td>
</tr>
<tr>
<td>NY774</td>
<td>MATa ura3-52 leu2-3, 112 sec4-8</td>
<td>P. Novick, unpublished data</td>
</tr>
<tr>
<td>PSY129</td>
<td>SEY6210 Δtps29::HIS3</td>
<td>P. Scott, unpublished data</td>
</tr>
<tr>
<td>TVY1</td>
<td>SEY6210 Δeps4::LEU2</td>
<td>T. Vida, unpublished data</td>
</tr>
<tr>
<td>EMY3</td>
<td>SEY6210 Δtps10::HIS3</td>
<td>Marcusson et al., 1994</td>
</tr>
<tr>
<td>EMY14</td>
<td>SEY6210 Δeps4::LEU2 Δtps10::TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>EMY18</td>
<td>SEY6210 Δtps35::HIS3</td>
<td>This study</td>
</tr>
<tr>
<td>EMY20</td>
<td>SEY6210 Δtps10::TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>EMY21</td>
<td>SEY6211 Δtps10::TRP1 sec4-8</td>
<td>This study</td>
</tr>
<tr>
<td>JCY104</td>
<td>SEY6211 sec4-8</td>
<td>This study</td>
</tr>
<tr>
<td>JCY2402</td>
<td>BWY100 Δvma4::URA3</td>
<td>This study</td>
</tr>
<tr>
<td>JCY2404</td>
<td>JCY104 Δtps24::HIS3</td>
<td>This study</td>
</tr>
<tr>
<td>JCY2502</td>
<td>SEY25-3 Δvma4::URA3</td>
<td>This study</td>
</tr>
<tr>
<td>JCY2801</td>
<td>SEY28-2 Δeps4::LEU2</td>
<td>This study</td>
</tr>
<tr>
<td>JCY2802</td>
<td>SEY28-5 Δvma4::URA3</td>
<td>This study</td>
</tr>
<tr>
<td>JCY2804</td>
<td>JCY104 Δtps28::URA3</td>
<td>This study</td>
</tr>
<tr>
<td>JCY3000</td>
<td>SEY6210 Δtps30::HIS3</td>
<td>J. Cereghino, unpublished data</td>
</tr>
</tbody>
</table>
(Paravincini et al., 1992) was used to transform SEY6210 cells, yielding the strain EMY18.

To create a temperature-sensitive sec4 strain that would carry more auxotrophic markers, NY774 (MATα ura3-52 leu 2-3, 112 sec4-8), generously provided by Peter Novick (Yale University, New Haven, CT), was mated to SEY6211. The resulting diploids were sporulated. Spore clones were chosen for the proper markers and temperature-sensitive growth at 35°C, yielding JCY104. Other strains containing the sec4-8 mutation were then created by crossing with JCY104 and choosing segregants with the proper markers and temperature sensitivity.

pEMY10-14 was created by subcloning the VPS10-containing 8-kb Xhol–BamHI fragment from pEMY10–1 into pRS414 (Sikorski and Hieter, 1989), p6 MYC (a generous gift from Randolph Hampton, University of California, Berkeley) was cut with ClaI, filled-in with Klenow fragment, digested with SacI, and then blunted with T4 DNA polymerase. The 255-bp blunt end fragment thus generated was then subcloned into the StuI site at the 3’ end of VPS10 in pEMY10–14 to create pEMY10–21. This construct encodes a Vps10p that has six myc epitopes (EQKLISEEDL) in tandem near the C-terminus. A 2µ version of this construct was then generated by cloning the 6-kb BgIII fragment from pEMY10–21 into pRS426 (Sikorski and Hieter, 1989).

Oligonucleotide Site-directed Mutagenesis
Site-directed mutagenesis was performed using the method of Deng and Nickoloff (1992) with reagents from Clontech (Palo Alto, CA). pEMY10–1 (Marcussson et al., 1994) was used as the template for all mutagenesis reactions. In the plasmid pEMYm1–10 (ΔC197), the codons G421 and G422 were mutated to stop codons (GGG–TAG and GGA–TGA, respectively), resulting in the deletion of the last 157 amino acids of Vps10p. The codon for N1420 was also changed from AAT to AAC to create a SpeI site, which was used to help screen for mutants. The plasmids pEMYm7–10 (ΔTaII1) and pEMYm8–10 (ΔTaII2) were created by looping out the DNA encoding amino acids 1420–1497 and 1497–1576, respectively. pEMYm11–10 (ΔFYYV) was made by looping out the codons for amino acids 1454–1457. In this mutant, the codon S1458 was changed from TCA to TCC to create a BamHI site for screening.

Cell Labeling and Protein Immunoprecipitation
Protein stability assays, cell labeling, and immunoprecipitation were performed essentially as described in Gagnor et al. (1994). Yeast cells were grown to mid-logarithmic phase (A660 = 0.7–1.0) in YNB medium supplemented with the appropriate nutrients. Growth medium of Δmatd strains was additionally supplemented with yeast extract to 0.2% and buffered with 50 mM MES, pH 5.5. Cells (2–3 OD600 equivalents per ml) were labeled in YNB medium, without yeast extract, with 20–30 μCi of Tran35S-label (ICN Biochemicals, Costa Mesa, CA) per OD equivalent of cells. Chase was initiated by adding a 10 × chase solution (50 mM methionine, 10 mM cysteine, 4% yeast extract, 20% glucose) to a 1 × final concentration. A 2 × chase solution diluted in medium was also used in some cases, without any variation in result. Chase was terminated at indicated times by adding trichloroacetic acid to a final concentration of 5–10%.

Immunoprecipitation of the samples was carried out as previously described (Klionsky et al., 1988) with the following modifications. Before glass bead lysis, dried cell pellets were resuspended in boiling buffer (50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 1% sodium dodecyl sulfate (SDS), 6 M urea). Immunoprecipitates were washed in a succession of four buffers: Tween-20 IP buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1 mM EDTA, 0.5% Tween-20), Tween-20 IP buffer plus 2 M urea, 0.1% SDS, and finally, Tris-buffered saline (TBS; 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1 mM EDTA). Immunoprecipitates were resuspended in urea protein sample buffer (100 mM Tris-HCl, pH 6.8, 4.5% SDS, 6 M urea, 8% β-mercaptoethanol, 0.005% bromophenol blue) and heated to 65°C for 5 min. Samples were then electrophoresed as previously described by Laemmli (1970) in 8 or 9% SDS-polyacrylamide gels. Antibodies to alkaline phosphatase (ALP), α1,3-mannosyltransferase, and Vps10 protein have been previously described (Klionsky and Emr, 1989; Graham et al., 1994; Marcusson et al., 1994). Ke2 antibody was a generous gift from R. Fuller. Quantitation of stability and CPY sorting assays was performed with a Molecular Dynamics Phosphorimager (Sunnyvale, CA) and ImageQuant version 3.3 software.

Subcellular Fractionation
Yeast strains were grown in YNB medium and converted to spheroplasts as previously described (Vida et al., 1990) except 5 μg/OD zymolyase 100T (Seikagaku, Tokyo, Japan) and 0.2% gluclase (Du- pont, Wilmington, DE) were used. Five OD equivalents/milliliter of spheroplasts resuspended in YNB containing 1 M sorbitol were labeled for 30 min at 30°C and chased for 45 min with the chase solution described above. Labeled spheroplasts were harvested and resuspended at 10 OD equivalents/milliliter in cold lysis buffer (0.2 M sorbitol, 50 mM Tris-Cl, pH 7.5, 1 mM EDTA, and protease inhibitors [phenylmethylsulfonyl fluoride (1 mM), α1-macroglobulin (5 μg/ml), aprotinin (1 μg/ml), leupeptin (1 μg/ml), and pepstatin (1 μg/ml)]). The spheroplast suspension was dounced 5–10 times with a glass tissue homogenizer, and then centrifuged (500 × g, 5 min) to remove unbroken spheroplasts. The resulting supernatant (SS) was subsequently centrifuged at 13,000 × g for 15 min to generate pellet (P13) and supernatant (S13) fractions. The S13 was centrifuged at 100,000 × g for 45 min to create a high speed pellet (P100) and supernatant (S100) fraction. Five OD equivalents of each pellet or supernatant fraction was precipitated with a final concentration of 10% trichloroacetic acid. The presence of Vps10 protein, ALP, or Ke2 protease was determined by immunoprecipitation and analyzed by SDS-polyacrylamide gel electrophoresis (PAGE) and fluorography.

Immunofluorescence
For immunofluorescence using diploid wild-type yeast cells (SEY6210.5), the method of Redding et al. (1991) was used with the following modifications. Cells were fixed for 14–18 h, spheroplasted with 45 μg/ml Zymolyase 100T (Seikagaku), then treated with 1% SDS instead of 0.5%. Fixed spheroplasts were incubated in either 2 ng/ml anti-myc monoclonal (Cambridge Research Biochemicals, Wilmington, DE) or 10 ng/ml anti-60 KDa vacuolar ATPase subunit (Molecular Probes, Eugene, OR) as the primary antibody, followed by serial incubations of 0.5 μg/ml goat anti-mouse IgG, 1.0 μg/ml rabbit anti-goat IgG, and a 1/100 dilution of FITC-conjugated goat anti-rabbit IgG, all from Jackson ImmunoResearch, West Grove, PA.

RESULTS

Turnover of Vps10 Protein
A major assumption in models of receptor-mediated protein sorting is that receptors must be used multiple times to efficiently transport their cargo. Recycling is likely to be involved in the mechanism of Vps10-mediated CPY sorting, because the synthesis rate of Vps10p is at least 10-fold lower than that of its ligand, carboxypeptidase Y (Marcusson et al., 1994; Marcusson and Emr, unpublished data). Consequently, the stability and recycling of Vps10p would contribute significantly to efficient sorting of CPY. To assess the stability of Vps10p, we carried out an extended pulse-chase analysis of metabolically labeled receptor pro-
tein. Whole cells from the wild-type strain SEY6210 were labeled for 15 min with Tran³⁵S-label, then chased with the addition of cold methionine and cysteine for 2 h. Equivalent samples were removed at 0-, 30-, 60-, and 120-min intervals. Cell extracts generated from these timepoints were immunoprecipitated with polyclonal antiserum specific to Vps10p (Marcusson et al., 1994). Labeled Vps10p was then visualized by SDS-PAGE and subsequent autoradiography. Wild-type chromosomal Vps10p was found to be stable over a 2-h chase period (Figure 1, lanes 1–4). Additionally, longer chases have indicated that the half-life of wild-type Vps10 protein is far greater than 3 h (see Figure 7).

To determine whether overexpression of Vps10p influenced protein stability, wild-type cells containing vps10 on a 2μ-based multicopy plasmid pEMY10-2 (Marcusson et al., 1994), were pulse labeled for 15 min with Tran³⁵S and chased for 2 h. Increasing the intracellular pool of Vps10p 10- to 20-fold resulted in the appearance of a proteolytically clipped intermediate concomitant with the disappearance of full-length Vps10p. This proteolytic product of Vps10p has a molecular mass of approximately 170 kDa, 20 kDa less than intact Vps10p. Although other peptides are sometimes observed, this 170-kDa Vps10p product appeared to be a fairly stable intermediate that was only slowly proteolyzed. After a 2-h chase, approximately 30% of the overexpressed Vps10p was degraded to the lower molecular weight form (Figure 1, lanes 5–8).

Overexpression of a number of S. cerevisiae membrane proteins including Ste6p (the α-factor transporter) (Berkower et al., 1994), the α1,3 mannosyltransferase (Mnn1p) (Graham et al., 1994), and three proteases involved in the final proteolytic maturation of α-factor mating pheromone precursor, Kex1p (Cooper and Bussey, 1992), Kex2p (Wilcox et al., 1992), and DPAP A (Roberts et al., 1992), leads to an increased degradation rate for these various proteins. In proteinase A-minus strains (Δpep4), Kex1p, Kex2p, Ste6p, and DPAP A are stabilized and accumulate in the vacuole, the major site of protein degradation in yeast (Jones, 1984; Klionsky et al., 1990; Jones and Murdock, 1994). Without proteinase A, yeast cells are pleiotropically deficient in the activities of the major vacuolar proteases (Jones et al., 1982). Therefore, because we wanted to determine the role of vacuolar proteases in degradation of overexpressed Vps10p, we performed a pulse-chase stability analysis of overexpressed Vps10p in a Δpep4 strain. We found that overexpressed Vps10p was stabilized (t₁/₂ > 2 h) in an isogenic Δpep4 strain (Figure 1, lanes 9–12), demonstrating that PEP4-dependent vacuolar proteases were involved in the degradation of Vps10p.

Overexpressed Vps10 Protein Accumulates in the Vacuole

The PEP4-dependent degradation of Vps10p indirectly indicated that the overexpressed receptor was delivered to the vacuole. To test directly for the presence of Vps10p in the vacuole, the subcellular distribution of overexpressed Vps10p in a Δpep4 strain was examined by differential centrifugation. Spheroplasts were labeled for 20 min at 30°C and chased for 45 min. Cells were osmotically lysed in the presence of protease inhibitors with five strokes of a Dounce homogenizer. After homogenization, the lysate was cleared of unbroken cells and centrifuged sequentially at 13,000 × g and 100,000 × g. The resulting pellets and supernatants were then immunoprecipitated for Vps10p, the vacular membrane marker protein ALP, or the late Golgi marker protein Kex2 protease. Previously, we reported that the majority (> 90%) of Vps10p in wild-type cells fractionated in the high speed pellet, which contains Golgi membranes in addition to small vesicular structures (Marcusson et al., 1994). Although a large proportion of overexpressed Vps10p did fractionate with the P100 pellet (70%), a significant portion of Vps10p (30%) cofractionated with the vacular marker ALP (Figure 2). The distribution of Kex2p in the high speed pellet (P100) in the presence of overexpressed Vps10p was not altered in comparison with the wild-type strain (Figure 2).

As an independent means of directly examining the steady-state distribution of overexpressed Vps10p, indirect immunofluorescence of an epitope-tagged version of Vps10p was performed. The myc epitope, iterated six times, was inserted into the Stul restriction endonuclease site at the carboxy terminus of the Vps10 protein. The insertion did not affect the reading
frame or the stability of Vps10p and the epitope-tagged receptor efficiently complemented the CPY sorting defect of a Δvps10 disruption strain. This construct was subcloned into CEN and 2μ vectors and transformed into wild-type diploid cells. Indirect immunofluorescence of the CEN version of Vps10p-MYC with monoclonal anti-MYC antibody revealed a punctate pattern, possibly Golgi or endosomal, not observed in diploid cells without Vps10p-MYC (Figure 3, A and B). When Vps10p-MYC was overexpressed, immunofluorescence revealed localization to the vacuole in addition to nonvacuolar, punctate structures (Figure 3C). In the control, using a monoclonal antibody to the 60-kDa peripheral subunit of vacuolar ATPase, the expected pattern of vacuole membrane was seen. Punctate staining was not observed (Figure 3D).

The Cytoplasmic Tail Domain of Vps10p Is Required for Retention and Recycling of the Receptor

The carboxy-terminal tail domains of both the 300- and 46-kDa mannose 6-phosphate lysosomal protein sorting receptors (MPRs) contain leucine- and tyrosine-based signals that direct transport and recycling of the receptors between the Golgi, plasma membrane, and endosomes. These domains are thought to interact with components of the lysosomal delivery system (i.e., clathrin-associated adaptor molecules) to direct loaded receptors into transport vesicles destined for the endosome (Pearse and Robinson, 1990; Kornfeld, 1992). Similar in structure to MPRs, Vps10p appears to be a type I integral membrane protein with 164 carboxy-terminal amino acids exposed to the cytoplasm (Marcusson et al., 1994). To examine the functional requirement of Vps10p’s cytoplasmic domain, a mutant was constructed in which two stop codons were inserted into the sequence of VPS10 after codon 1420. This resulted in the production of a truncated Vps10p protein lacking 157 C-terminal cytoplasmic residues but leaving the transmembrane domain intact, including a few charged amino acids on the cytoplasmic side of the membrane to properly anchor the protein. A CEN plasmid containing the VPS10 carboxy-terminal deletion construct (pΔC157) was introduced into the Δvps10 strain EMY3, and the ability of the transformants to sort CPY properly was determined. Wild-type and ΔC157 strains were labeled with Tran35S for 10 min and chased for 30 min by the addition of cold methionine and cysteine. Cells were converted to spheroplasts, and cultures were split into spheroplast pellet (intracellular, I) and medium (extracellular, E) fractions, and CPY was then immunoprecipitated from each fraction (Figure 4A). EMY3 cells carrying wild-type VPS10 on a CEN vector correctly localized a majority of CPY (∼90%) to the vacuole, as indicated by the presence of CPY inside the cell in its mature vacuolar form (mCPY, Figure 4A, lanes 1 and 2). Similar to the phenotype of a Δvps10 strain (Marcusson et al., 1994), Vps10p ΔC157 mislocalized and

Figure 2. Subcellular fractionation of Vps10p. Spheroplasts from wild-type cells (SEY6210) or 2μ VPS10 Δtep4 (TVY1 + 2μ VPS10) were labeled with Tran35S for 20 min, chased for 45 min, and used to generate subcellular fractions as described in the text. The presence of Vps10p and marker proteins for the vacuole (ALP) and the late Golgi compartment (Kex2p) in the P13, S100, and P100 fractions was determined by quantitative immunoprecipitation.

Figure 3. Indirect immunofluorescence of MYC-tagged Vps10p. Wild-type diploid cells (SEY6210.5) containing no plasmid (A), or CEN (B), or 2μ (C) VPS-MYC containing plasmids were prepared for immunofluorescence as described in MATERIALS AND METHODS. Cells were stained with antibodies against MYC (A, B, and C) or the 60-kDa subunit of vacuolar ATPase (D).
secreted to the medium approximately 70% of Golgi-modified p2CPY (Figure 4A, lanes 3 and 4).

We further analyzed Vps10p ΔC157 by testing whether expression or stability of the mutant receptor was altered. The metabolic stability of Vps10p ΔC157 was determined by pulse-chase experiments. Wild-type cells transformed with a plasmid carrying the ΔC157 mutation were labeled with Tran35S for 10 min, then chased with cold methionine and cysteine for 0, 30, 60, or 120 min. Wild-type as well as mutant Vps10 proteins were immunoprecipitated. Wild-type and mutant Vps10p ΔC157 were produced at comparable levels (0 min chase, Figure 4B, lane 5). However, at later time points, Vps10p ΔC157 exhibited marked instability (t1/2 ≈ 1 h), as demonstrated by the disappearance of the full-length protein and the appearance of smaller proteolytic products (Figure 4B, lanes 6–8). In the absence of active vacuolar proteases, degradation of Vps10p ΔC157 was blocked (Figure 4B, lanes 9–12), suggesting that the mutant receptor was delivered to the vacuole. Similar results were obtained for ΔC157 Vps10p in a Δvps10 strain; therefore, the presence or absence of wild-type Vps10p has no influence on the stability of the mutant receptor. Additionally, it is possible that Vps10p is first delivered to the plasma membrane, then transported to the vacuole by endocytosis, we have found that the amount of degradation of the cytoplasmic tail deletion mutant protein ΔC157 Vps10p is not altered by blocking traffic to the plasma membrane at the restrictive temperature in a sec14 mutant. Using a sec1 mutant, it has been shown that vacuolar delivery of mutant or wild-type Kex2 or DPAP A proteins is not disrupted in the absence of vesicular transport from the Golgi to the plasma membrane (Roberts et al., 1992; Wilcox et al., 1992; Nothwehr et al., 1993).

Mutations in the Vps10p Cytoplasmic Domain Affect Receptor Stability and Function

To define specific domains in the cytoplasmic tail of Vps10p that may direct transport and/or recycling of the receptor, oligonucleotide site-directed mutagenesis was used to generate three deletions in addition to ΔC157 (pictured in Figure 5): ΔTail1 (Δ1420–1497), ΔTail2 (Δ1497–1576), and ΔFYV (Δ1454–1457). ΔTail1 and ΔTail2 were created to subdivide the cytoplasmic domain into two halves. The sequence FYV starting at residue 1454 was deleted because it resembles the Golgi retention motif F/Y-X-F/Y found in other late Golgi proteins such as DPAP A (Roberts et al., 1992; Nothwehr et al., 1993) and Kex2p (Wilcox et al., 1992). CEN plasmids expressing these mutant forms of Vps10p were transformed into the Δvps10 strain EMY3 and tested for CPY sorting and Vps10 protein stability. Results of these assays are summarized in Figure 5. All mutations resulted in degradation of the mutant receptor protein and mis-sorting of CPY. The relative defect in protein stability correlated with severity of the CPY mis-sorting phenotype. The removal of 80 amino acids from the carboxy-terminus (ΔTail2) of Vps10p had a slight effect on CPY sorting. Deletion of
the first half of the cytoplasmic tail closest to the transmembrane domain (ΔTail1) or just the FYVF residues in this domain resulted in more instability of the mutant receptor and missorting of CPY. Just as was the case for a complete deletion of the cytoplasmic tail domain (Vps10p ΔC157), degradation of these tail mutant proteins is also PEP4-dependent, indicating each is delivered to the vacuole.

Subcellular Fractionation Demonstrates That Vps10p ΔC157 Cofractionates with Vacuolar Membranes

To determine the subcellular localization of Vps10p cytoplasmic tail domain mutants, we carried out differential centrifugation of Vps10p ΔC157 in Δvps10 Δpep4 cells as described above. Osmotically lysed yeast were cleared of unbroken cells (S5) then subjected to sequential fractionation steps to yield a 13,000 \(\times\) g pellet (P13), a 100,000 \(\times\) g pellet (P100), and the corresponding supernatant (S100). Vps10p, the late Golgi protein Kex2 protease, and the vacuolar membrane protein ALP were then quantitatively immunoprecipitated from the different fractions. As previously demonstrated in wild-type cells (Figure 2), ALP associated with the P13 pellet, and Kex2p was found in the P100 fraction in the Δvps10 Δpep4 strain (Figure 6). Even at a 45 min chase point (Figure 6), a substantial portion (50–60%) of truncated Vps10p is already associated with the P13 fraction. This supports the hypothesis that the decreased half-life (~1 h) of Vps10p ΔC157 is indicative of delivery to the vacuole. Although other organelles such as the endoplasmic reticulum and the plasma membrane have been fractionated in a 13,000 \(\times\) g pellet (Marcusson et al., 1994), the PEP4-dependent instability of Vps10p ΔC157 along with the fractionation results, strongly suggest that the mutant receptor is transported to the vacuole. A fractionation pattern similar to Vps10p ΔC157 was also observed for the ΔFYVF mutant.

Vps10p Is Unstable in Class E and Class F vps Mutant Strains

Previously, it has been proposed that Vps10p may interact with other components of the vacuolar transport machinery through its cytoplasmic domain (Marcusson et al., 1994). To examine whether VPS gene products are necessary for Vps10p retention or recycling, we initiated a study of Vps10p stability in a number of vps mutant strains. Mutants from each of the six morphological classes of vps complementation groups were tested. Distinctions among these classes are based on differences in vacuolar features such as morphology, inheritance, protein composition, and function (Banta et al., 1988; Raymond et al., 1992). Class A vps mutants have one to three large vacuoles per cell, similar to wild-type cells. Class B mutants have many small, apparently fragmented, vacuole-like structures, whereas class C mutants appear to lack

Figure 5. Determination of the stability and function of the Vps10p cytoplasmic tail mutants. Wild-type and mutant Vps10 proteins are shown schematically inserted into the membrane (shaded gray area). The amino terminus of Vps10p faces the lumen whereas the carboxy-terminal domain is cytosolic. The tail domain has been divided into two halves, 1 and 2. Numbers corresponding to residues defining these halves are shown above the cytosolic domains. Tyrosine (Y) and phenylalanine (F) residues are noted below. The ΔFYVF deletion is marked by the hatched box. Transmembrane (TM) segments are shown in black and the membrane itself is shaded in gray. Stability data were generated by labeling EMY3 (Δvps10) cells containing each of the various constructs for 15 min. Samples were chased for a total of 3 h. Half-lives were determined through PhosphorImager quantitation of immunoprecipitated Vps10p. The same strains were pulse-labeled for 10 min and chased for 30 min to perform CPY sorting assays. % CPY secreted was determined by averaging values obtained from several experiments.
vacuoles altogether. In addition to exhibiting defects in vacuolar segregation, class D mutants have a single large, spherical, vacuole. Class E mutants have been proposed to contain an exaggerated prevacuolar compartment. Class F mutants are distinguished from class B mutants by a large central vacuole surrounded by fragmented vacuolar structures.

For Vps10p stability assays, whole cells were labeled for 15 min with Tran35S. Equal aliquots of labeled cells were removed 0, 1, 2, and 3 h after a chase was initiated with unlabeled methionine and cysteine. Vps10 protein was then immunoprecipitated and visualized by SDS-PAGE and subsequent autoradiography. Over a 3-h chase period, Vps10p remained quite stable in wild-type, Δvps35 (class A), or Δvps21 (class D) strains (Figure 7). This was also true for other vps mutants of classes A (vps 8, vps 13, vps 29, and vps 30) and D (vps 3, vps 6, vps 9, vps 15, vps 19, vps 21, and vps 34) as well as for classes B (Δvps5) and C (vps 11, vps 16, vps 18, and vps 33). In contrast, moderate degradation of Vps10p was observed in a vps1 (class F) mutant; after 3 h of chase, about 40% of the labeled Vps10p had been degraded (Figure 7). All other alleles of vps1 that were examined (SEY1-2 and SEY1-3) as well as the only other member of class F, vps26, also displayed this instability phenotype.

Interestingly, Vps10p was most unstable in class E vps mutants. In Δvps24, as well as in all other class E mutants tested (vps2, vps4, vps20, vps22, vps25, vps27, vps28, and vps32), Vps10p was very unstable, exhibiting a half-life of less than 30 min (Figure 7). The dramatic instability of Vps10p in the class E but not other classes of vps mutants suggests that the class E mutants may alter either the trafficking of Vps10p or the composition and function of compartments through which the receptor normally cycles. As the intracellular itinerary of Vps10p is likely to involve transport to a prevacuolar endosome-like organelle followed by recycling back to the Golgi, the class E mutants may alter the endosomal compartment and therefore the stability of Vps10p.

Degradation of Vps10 Protein Occurs in the Class E Compartment

The class E vps mutants have been demonstrated to contain an organelle distinct from the vacuole. Immunofluorescence studies have shown that although the vacuolar membrane protein ALP stained the vacuole in the class E mutants, the novel “E” compartment accumulated active vacuolar H+-ATPase complex, soluble vacuolar hydrolases, as well as a DPAP A (late Golgi protein)-ALP fusion (A-ALP) (Raymond et al., 1992). To determine whether the degradation of the Vps10 receptor protein in the class E mutants might be a result of trafficking to the E compartment, we constructed double mutants to address the role of vacuolar proteases and the vacuolar ATPase activity on Vps10p instability. Double mutants were constructed between the class E vps28 mutant and either Δpep4 or Δvma4. VMA4 encodes the 27-kDa peripheral subunit of the vacuolar H+-ATPase. Vps10p remained stable in the vps28 Δpep4 double mutant (Figure 8A, lanes 5–8) indicating that active hydrolases are required for Vps10p degradation in this class E mutant. Additionally, disruption of VMA4 dramatically reduced the instability of Vps10p in the strains vps28 Δvma4, Δvps24 Δvma4, and vps25 Δvma4 (Figure 8A, lanes 9–12). The function of the vacuolar H+-ATPase is to maintain an acidic environment in the vacuole (Anraku et al., 1992; Kane and Stevens, 1992; Nelson, 1992). Acidification of the vacuole has been implicated in the maturation of precursor proteins by stimulating

Figure 6. Truncated Vps10p is delivered to the vacuole. Spheroplasts from EMY14 (Δvps10 Δpep4) carrying the plasmid pΔC157 were labeled for 20 min, chased for 45 min, and used to generate the P13, S100, and P100. The presence of Vps10p, ALP, and Kex2p in the fractions was determined by quantitative immunoprecipitation.

Figure 7. Survey of Vps10p stability in vps mutants. Yeast cells were pulse-labeled with Tran35S for 15 min and chased for 3 h. Vps10p levels were determined by quantitative immunoprecipitation. Strains used were as follows: SEY6210 (WT), EMY18 (Δvps35), BWY10 (Δvps21), BWY100 (Δvps24), and SEY1-1 (vps1). The “*” denotes the major proteolytic fragment of Vps10p.

Vol. 6, September 1995
the autocatalytic maturation of precursor proteinase A (Jones 1984; Klionsky et al., 1990). Because inactivation of VMA4 substantially reduced Vps10p instability, acidification of the class E compartment appears to play an important role in receptor degradation.

Class E mutants display a modest vps phenotype in that they secrete about 30–50% of newly synthesized CPY in its precursor form (Robinson et al., 1988; Raymond et al., 1992). The presence of active proteases in the E compartment presumably contributes to the rapid turnover of Vps10p, thus rendering the receptor unable to execute multiple rounds of protein sorting. We thought we might be able to rescue the class E mutant CPY sorting defect by taking advantage of the Δpep4 vps28 strain and protecting the receptor from degradation. However, the same quantity of CPY is secreted in Pep4− as compared with Pep4+ isogenic strains. Therefore, not only is Vps10p degraded, its intracellular itinerary is altered. Apparently, in the Class E vps mutants, protein traffic to the vacuole as well as traffic returning from the endosome is disrupted.

To determine the subcellular location of Vps10p in Δvps28 mutant cells, differential centrifugation of osmotically lysed spheroplasts was performed. Spheroplasts were labeled for 20 min and chased for 45 min to examine the fractionation of the processed form of Vps10p. As expected from previously reported immunofluorescence data (Raymond et al., 1992), ALP was found in the vacuole-enriched P13 fraction (Figure 8B). The majority of both the clipped and remaining intact forms of Vps10p were fractionated in the high-speed 100,000 × g pellet (P100) (Figure 8B), indicating that the Vps10 protein was degraded in a compartment other than the vacuole, possibly the E compartment.

Kex2p Also Exhibits Instability in the vps28 Class E Mutant

As previously noted, other Golgi proteins such as the fusion A-ALP (DPAP A fused to ALP) have been localized by immunofluorescence to the E compartment (Raymond et al., 1992). To determine whether the instability observed for Vps10p was perhaps common to other Golgi proteins, we also examined the stabilities of the Kex2 protein, a late Golgi enzyme, and Mnn1p, a medial Golgi α1,3-mannosyltransferase. Like Vps10p, Kex2p is a type I integral membrane protein whose Golgi localization is dependent upon signals in its carboxy-terminal cytoplasmic tail domain (Wilcox et al., 1992). Mnn1p, on the other hand, is a type II membrane protein of 89 kDa; its short cytoplasmic tail (18 amino acids) is not necessary for Golgi retention (Graham et al., 1994). In wild-type cells, Vps10p, Kex2p, and Mnn1p all appeared to be quite stable, even at the 90-min chase time (Figure 9, lane 4). Both Kex2p and Mnn1p exhibit an increase in molecular weight during the 90-min chase period due to the slow acquisition of additional carbohydrate modifications (Wilcox and Fuller, 1991; Graham et al., 1994). However, in Δvps28 cells, Vps10p and Kex2p were rapidly degraded. In fact, after a 30-min chase, most of the Vps10p (∼80%) and Kex2p (>90%) had been proteolytically digested (Figure 9, lane 6). Mnn1p was stable in the Δvps28 strain and appeared to gradually increase in molecular weight as observed in wild-type cells.
Vps10p is likely to execute multiple rounds of CPY sorting by recycling back to the late Golgi sorting compartment after transporting the CPY to a prevacuolar endosome-like compartment (Figure 10A). Vps10p mutants from morphological classes E and F appear to disrupt the Vps10p recycling pathway. These two classes of mutants exhibit only partial defects in the sorting of vacuolar hydrolases. In the mutants tested in this study, 30–60% of CPY is sorted and matured. Most other classes of vps mutants exhibit stronger sorting defects. It may be that other vps mutants, such as the class C vps mutants, are so defective in vacuolar protein sorting and vacuolar function that measurements of Vps10p stability cannot be used to demonstrate alterations in receptor trafficking. Therefore, alternative approaches will be necessary to fully elucidate the roles of these VPS gene products in Vps10p retention and recycling.

VPS1 (class F) function is required for the retention/recycling of membrane proteins Kex2p and DPAP A in the Golgi (Wilsbach and Payne, 1993; Nothwehr et al., 1995). Because Vps10p may reside in the same late Golgi compartment as these membrane proteins (Vida et al., 1993; Marcussen et al., 1994), it is not surprising that Vps10p is also degraded and presumably delivered to the vacuole in a vps1 mutant. A common mechanism for the retention of late Golgi proteins in wild-type cells may involve recycling of membrane proteins from a prevacuolar compartment. Speculation that VPS1 acts in the formation of vesicular structures (Pryer et al., 1992; Kelly, 1995; Nothwehr et al., 1995) fits in well with its apparent role in Vps10p and Golgi membrane protein recycling. It is not certain whether VPS1 participates in vesicle formation during anterograde or retrograde traffic; however, it has recently been reported that the VPS1 and MVP1 (multicopy suppressor of a dominant-negative vps1 mutant) gene products both localize to the E compartment in Δvps27 cells. Therefore, Vps1p may associate with a late Golgi compartment or an endosomal compartment or cycle between the two (Ekena and Stevens, 1995).

Indirect immunofluorescent detection of late Golgi (DPAP A-ALP fusion) and vacuolar (vacuolar ATPase, CPY, and proteinases A and B) marker proteins in the class E compartment are consistent with the view that this compartment represents an exaggerated prevacuolar organelle (Raymond et al., 1992). Rapid degradation of Vps10p in the class E vps mutants demonstrates that the receptor does seem to follow an intercompartmental itinerary that includes cycling through a prevacuolar compartment (Figure 10C). How Vps10p arrives at this compartment is poorly understood. The pathway from the Golgi to the endosome may be direct, or it may involve mislocalization to the plasma membrane followed by transport to the endosome by
an endocytic mechanism. Vps10p stability experiments in sec4ts and sec4ts/class E (Δups24 and Δups28) double mutants suggest that at the nonpermissive temperature, when vesicular traffic to the plasma membrane is blocked (Salminen and Novick, 1987), the rate of degradation of Vps10p is unchanged. Therefore, delivery of Vps10p to this exaggerated prevacuolar compartment is likely to occur directly from the late Golgi and not via endocytosis from the plasma membrane. Results demonstrating the localization of Vps10p to punctate structures by immunofluorescence in wild-type cells (Figure 3) and the degradation of Vps10p in the E compartment in the class E mutants (Figures 7 and 8) are consistent with a late Golgi to endosome recycling pathway. However, in the absence of any unique endosomal markers, direct localization of Vps10p to the yeast endosome by subcellular fractionation or immunofluorescence is not yet possible.

Mutation of the cytoplasmic tail or overproduction of Vps10p leads to delivery and subsequent degradation of the receptor in the vacuole (Figures 1–5 and 10B). These data seem to corroborate previously reported results involving Kex2p (Wilcox et al., 1992), DPAP A (Roberts et al., 1992; Nothwehr et al., 1993), and mutant Wbp1-invertase fusion proteins (Gaynor et al., 1994) suggesting that the vacuole, not the plasma membrane, is the default destination for membrane proteins of the yeast secretory pathway. Additional results from mutational analysis of the 164 amino-acid carboxy-terminus of VPS10 indicate that the cytoplasmic tail domain plays a critical role in Golgi retention/recycling and thus in receptor function. Deletion of amino acid residues in the first half of the cytoplasmic tail (Δ1420–1497; ΔTailI) has a greater impact on the stability of the mutant receptor and CPY sorting than removal of the outer half (Δ1497–1576; ΔTail2) of the cytoplasmic tail (see Figure 5). Mutational analysis of the cytoplasmic tail domains of Kex1p, Kex2p, and DPAP A (Cooper and Bussey, 1992; Roberts et al., 1992; Wilcox et al., 1992) have shown that retention in or recycling back to the Golgi relies upon a signal containing aromatic residues. The FYVF sequence found in Vps10p matches the consensus Golgi retention/recycling signal (Y/F-X-Y/F) found in Kex2p and DPAP A as defined by Nothwehr (Nothwehr et al., 1993; Nothwehr and Stevens, 1994). Aside from the tyrosine residue at position 1455 in the FYVF motif, there are only two other tyrosines in the entire tail domain. These other tyrosines appear to be less influential; one is contained with the ΔTail2 (Δ1497–1576) deletion and the other at position 1480 has no effect when mutated to an alanine (Marcusson and Emr, unpublished data). The deletion of the FYVF residues appears to result in a significant degree of instability, indicating that the FYVF motif may be one of the more important sequence elements in the tail domain. However, because deletion of the entire cytoplasmic tail domain has a greater effect on stability and sorting than any of the smaller deletions, multiple signals for

Figure 10. Model of Vps10p-mediated CPY sorting. (A) In wild-type cells, Vps10 protein binds p2CPY through interactions involving the presegment sorting signal of CPY. The receptor-ligand complexes are packaged into vesicles and transported to a prevacuolar endosomal compartment. At the endosome, Vps10p releases p2CPY, then the unoccupied receptor recycles back to the Golgi for additional rounds of sorting. Precursor CPY continues on to the vacuole where it is matured to its active form. (B) Although recycling of other proteins from the endosome to the Golgi may continue (as indicated by the dotted arrow), mutant receptors lacking cytoplasmic tail domains are delivered to the vacuole and degraded. Precursor CPY is secreted to the plasma membrane (PM). (C) An exaggerated form of a prevacuolar endosome-like compartment may exist in the vps class E mutants. Vps10p is rapidly degraded in this compartment due to the presence of active vacuolar hydrolases. Vesicular traffic back to the Golgi from the endosome, as well as traffic to the vacuole appears to be blocked in these mutants.
recycling may exist within the cytoplasmic domain of Vps10p.

The cytoplasmic tail of M6P/IGF-II, which also contains aromatic signals thought to be necessary for recruitment of the receptor into clathrin-coated pits at the plasma membrane (Canfield et al., 1991), has been shown to interact biochemically with Golgi and plasma membrane adaptor complexes (Glickman et al., 1989). Such interactions have not been demonstrated with Vps10p; however, it is possible that when these interactions are disrupted or saturated, Vps10p may be mislocalized to the vacuole. Speculation on a list of possible interacting partners of Vps10p includes clathrin and clathrin adaptor proteins, as well as other Vps proteins such as Vps29p and Vps35p. Vps29 and Vps35 mutants result in the same differential sorting defect as vps10 mutants: precursor CPY is missorted whereas the majority of proteinase A, proteinase B, and ALP are converted to their mature forms (Paravicini et al., 1992; Marcusson and Emr, unpublished data). Subcellular fractionation experiments (Paravicini et al., 1992) have demonstrated the saturable association of Vps35p with the P100 membranous particulate cell fraction, which also contains Vps10p, but further data are not yet available. The tail domain, or more likely, proteins interacting with the cytoplasmic tail domain, may trigger activation of the Vps15 protein kinase/ Vps34p phosphatidylinositol kinase complex (Stack et al., 1993, 1995; Chapman, 1994). This signal transduction complex is essential for protein sorting to the vacuole. Further experiments are underway to elucidate roles for Vps29p and Vps35p in regulating receptor traffic and to define interactions between Vps10p and other components of the machinery (such as Vps15p) required for the segregation, packaging, and delivery of receptor-ligand complexes in the vacuolar protein delivery system.

ACKNOWLEDGMENTS

We thank members of the Emr laboratory for many helpful discussions during the course of this work. We are grateful to Robert Fuller for antibody to Kex2p, Kevin Morano and Dan Klionsky (University of California, Davis) for the VMA4 disruption construct, Randolph Hampton (University of California, Berkeley) for the plasmid p6 MYC, and Peter Novick (Yale University, New Haven, CT) for the sec4 strain NY774. This work was supported by a grant from the National Institutes of Health to S.D.E. (GM32703) and by an NIH Postdoctoral Fellowship to J.L.C. (GM15638). S.D.E. is supported as an Investigator of the Howard Hughes Medical Institute.

REFERENCES

