

University of the Pacific Scholarly Commons

Euler Archive

Euler Archive - All Works

1793

Methodus facilis investigandi radium osculi ex principio maximorum et minimorum petita

Leonhard Euler

Follow this and additional works at: https://scholarlycommons.pacific.edu/euler-works

Part of the <u>Mathematics Commons</u> Record Created:

Recommended Citation

2018-09-25

Euler, Leonhard, "Methodus facilis investigandi radium osculi ex principio maximorum et minimorum petita" (1793). Euler Archive - All Works. 654.

https://scholarlycommons.pacific.edu/euler-works/654

This Article is brought to you for free and open access by the Euler Archive at Scholarly Commons. It has been accepted for inclusion in Euler Archive - All Works by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.

METHODVS FACILIS INUESTIGANDI RADIVM OSCVLI

EX PRINCIPIO MAXIMORVM ET MINIMORVM PETITA.

Auctore

L. EVLERO.

Conuent. exhib. die 11 Sept. 1776.

Problema.

Proposita curua quacunque eius radium osculi inuenire.

Solutio.

- §. I. Sit AY curua proposita, aequatione quacunque T_{ab} . I. inter binas coordinatas AX = x et XY = y expressa, ita vt fig. 3. y spectari possit tanquam certa sunctio ipsius x, vnde siat $\partial y = p \partial x$; et quia p denuo certam sunctionem ipsius x designat, sit porro $\partial p = q \partial x$, quibus positis innestigari proponitur radius osculi huius curuae in puncto Y, sine quaeri debet punctum Y, ex quo tanquam centro si describatur circulus per Y transiens, hic circulus non solum curuam in Y tangat, sed etiam communem habiturus sit curuaturam, quo casu is dicitur curuam osculari, eiusque radius sub nomine radii osculi designari solet.
- §. 2. Quodfi ad hanc curuam in Y ducatur normalis YN, eius quodlibet punctum O hac gaudet proprietate, vt eius

eius distantia O Y inuariata maneat, etiamsi punctum Y per interuallum infinite paruum promoueatur. Verum si punctum O suerit centrum circuli osculantis, quantitas interualli O Y non solum non variabitur, dum per differentialia prima procedimus, sed etiam nullam variationem patietur, etiamsi per differentialia secunda procedamus; quamobrem ex hoc ipso principio licebit istud centrum circuli osculantis O determinare.

§. 3. Hunc in finem ex puncto hoc quaesito O ad axem demittatur perpendiculum O P ac vocentur internalla A P = f et P O = g, eritque X P = f — x; et ducta axi parallela O Q fiet internallum Q Y = y — g, atque hinc colligitur O Y² = $(f - x)^2 + (y - g)^2$, cuius ergo ante omnia differentiale primum debet annihilari, vnde ob $\partial y = p \partial x$ fiet

$$-2 \partial x (f-x) + 2 p \partial x (y-g) = 0, \text{ fine}$$

$$-f + x + p (y-g) = 0;$$

deinde vero etiam huius expressionis differentiale denuo ad nihilum reuocari debebit, vnde ob $\partial p = q \partial x$ orietur ista aequatio:

$$\partial x + y \partial p + p \partial y - g \partial p = 0$$
, fine $x + q (y - g) + p p = 0$,

ex qua colligimus

$$g = y + \frac{x + pp}{q}$$
.

§. 4. At vero ex priòre aequatione colligitur f = x + p(y - g), vbi fi loco g valor modo inuentus fubstituatur, prodibit $f = x - p^{\frac{(x+pp)}{q}}$; ficque per fola elementa ad curuam pertinentia, scilicet x, y, p et q, centrum circuli osculantes O ita determinatur, vt sit

A P =
$$x - \frac{p(x+pp)}{q}$$
 et P O = $y + \frac{x+pp}{q}$

quod ergo punctum nullam plane ambiguitatem inuoluit.

- §. 5. Invento autem puncto O longitudo radii osculi nulla amplius laborat difficultate. Cum enim sit $O(Q) = -\frac{p(1+pp)}{q}$ et $Q(Y) = -\frac{(1+pp)}{q}$ erit $O(Y) = \frac{(1+pp)^2}{q}$ quod cum sit quadratum radii osculi, erit ipse radius osculi $= \pm \frac{(1+pp)^3}{q}$, quae est expressio notissima radii osculi. Cum enim sit $q = \frac{\partial p}{\partial x}$, erit radius osculi $= \pm \frac{\partial p}{\partial x}$, vbi ambiguitas signi nihil turbat, quia locus puncti O iam ante est definitus.
- §. 6. Hinc iam facile formulae vulgares pro radio osculi dari solitae deduci possunt. Ac primo quidem cum sit $\partial \cdot \frac{p}{\sqrt{x+p} p} = \frac{\partial p}{(x+p) p \choose 2}$, si ponamus $\frac{p}{\sqrt{x+p} p} = t$, erit $\frac{\partial p}{(x+p) p \choose 2} = \partial t$, ex quo valore erit radius osculi $\frac{\partial x}{\partial t}$.
- §. 7. Deinde etiam radius osculi per sola differentialia tam primi quam secundi gradus exprimi solet. Cum enim sit $p = \frac{\partial y}{\partial x}$, erit $x + pp = \frac{\partial x^2 + \partial y^2}{\partial x^2}$, ideoque $(x + pp)^{\frac{3}{2}} = \frac{(\partial x^2 + \partial y^2)^{\frac{3}{2}}}{\partial x^3}$; tum vero nullo differentiali pro constanti sumpto erit $\partial p = \frac{\partial x \partial y \partial y \partial x}{\partial x^2}$; quibus substitutis erit radius osculi $\frac{(\partial x^2 + \partial y^2)^{\frac{3}{2}}}{\partial x \partial y \partial y \partial \partial x}$.
- §. 8. Sin autem elementum ∂x pro constanti accipiatur, siet radius osculi $\frac{(\partial x^2 \partial y^2)^{\frac{3}{2}}}{\partial x \partial \partial y}$; at si alterum elementum ∂y constant assumatur, siet radius osculi $\frac{(\partial x^2 + \partial y^2)^{\frac{3}{2}}}{\partial y \partial \partial x}$.
- §. 9. Quodfi porro elementum curuae in computum trahatur, idque vocetur $= \partial s$, vt fit $\partial s^2 = \partial x^2 + \partial y^2$, erit radius osculi $= \frac{\partial s^3}{\partial x \partial y \partial y \partial \partial x}$, vbi nullum differentiale pro constanti est assumtum.

stans accipere velimus, erit $\partial s \partial \partial s = 0$, ideoque $\partial x \partial \partial x + \partial y \partial \partial y = 0$, ex qua aequatione fit primo $\partial \partial y = -\frac{\partial x \partial \partial x}{\partial y}$, ideoque denominator ille $\partial x \partial \partial y - \partial y \partial x$ fiet $= -\frac{\partial \partial x (\partial x^2 + \partial y^2)}{\partial y}$, ficque hoc casu radius osculi erit $= -\frac{\partial y \partial s}{\partial x}$.

§. 11. Simili modo cum fit $\partial \partial x = -\frac{\partial y \partial \partial y}{\partial x}$, erit denominator

 $\partial x \partial \partial y - \partial y \partial \partial x = \frac{\partial \partial y(\partial x^2 + \partial y^2)}{\partial x} = \frac{\partial z^2 \partial \partial y}{\partial x}$, which radius of culi colligitur $\frac{\partial x}{\partial y}$. How mode funto elements ∂s confrante duae habebuntur formulae pro radio of culi, quae funt $\frac{\partial z}{\partial x}$ et $\frac{\partial z}{\partial y}$.