

University of the Pacific Scholarly Commons

Euler Archive - All Works

Euler Archive

1783

Nova subsidia pro resolutione formulae axx + 1 = yy

Leonhard Euler

Follow this and additional works at: https://scholarlycommons.pacific.edu/euler-works Part of the <u>Mathematics Commons</u> Record Created: 2018-09-25

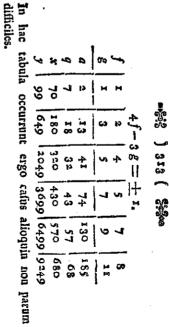
Recommended Citation

Euler, Leonhard, "Nova subsidia pro resolutione formulae axx + 1 = yy" (1783). *Euler Archive - All Works*. 559. https://scholarlycommons.pacific.edu/euler-works/559

This Article is brought to you for free and open access by the Euler Archive at Scholarly Commons. It has been accepted for inclusion in Euler Archive - All Works by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.

******) OIE (Seg			ကန္ကာနဲ့ဦ) III (ဦးခ်ိဳးက
考定我们就在外国法院与在历史入自己的人的保护在外国的保护和教育分组的行为在现在我们就在这些外国的资源	et can	BURGER STREET	et capiatur $x = 2c$ erit $y = 2bcc + 1$; vnde pluvimos ca-
PRO RESOLUTIONE FORMULAE	fus fin metho	A	fus fine viteriori calculo expedire liccost, qui quidem enam methodo Peli.na fatis prompte refolui poffunt. Sequentia autem problemata ad cafus magis abfrufos deducent.
axx -+ 1 y y.		l	Problema 1. 5. 2. Si fuerit app-1 = qq, inuenire numeros x et y, ot fat a x x + 1 == y y.
	•		Solutio. Ex proposita formula crit $app = qq - r$,
§. \mathbf{r} . Froblema hoc, ab auctore $Pellianum$ dictum, quo pro dato quocunque numero \boldsymbol{a} , neque quadrato neque negatiuo, au-	Vnde p 4 a p p igitur t y ==	quo pro dato negatiuo, au-	The part of a set of the set of
Juent quaeruntur x, vt normula a x x -+ 1 nat quadravuv, iam faepius pertractaui methodumque tradidi, cuius ope mul- to facilius refolui poteft quam methodo ab ipfo <i>Pellio</i> ex- cogitata. Interim tamen enolutio eorum cafuuin, qui pro x numeros praegrandes poftulant, cuiusmodi eft cafus a=бr.	đratum,	uius ope mul- ,fo <i>Pellio</i> ex- um, qui pro t cafus <i>a</i> = 61,	Corollarium 1. §. 3. Quoties ergo enenit, vt fiat $a p p + 1$ qua- dratum, facile inueniti poteft x, vt haec formula $a x x + 1$ fat output the fiberit $a - 2$, ob e. $1^3 - 1 = 2^3$ eric
mea methodo fuccinda, pluvimas non parum praefitific mihi rationes exigit; vnde equidem non parum praefitific mihi	hic p=	taediofas ope- raeftitiffe mihi ipfos praema-	Corollarium 2.
where x due and x products x and detext, nos these braches guess numeros mira facilitate inucciendi. Ante autom quam cam apperiam, circa indolem numerorum a , quos per minores numeros x et y refoluere licet, notafic inuabit: quoties a fuerit numerus huius formae: $a = b \ b \ c \ b \ a \ b$, formation in appendix $x \ c \ c \ c \ c \ c \ c \ c \ c \ c \ $	habere terum h Hinc au	e autem quam quos per mi- inuabit: quo- .c. + 2.b, fo- tum enim fit	5. 4. Hoc autem tantum pro iis numeris a locum habere poteft, qui funt fummae duorum quadratorum; cae- terum hace proprietas iam ipfi <i>Pellio</i> cognita fuifie videtur. Hine autem fequens Problema inuerfum, quo spfi ifti nu- meri quaeruntur, euoluam.
	1		· Pro-

E554


149.25.83

concludinus rore $x = 2pq$ et $y = 2qq + r$, quantum formularum vius quo clarius appareat, fequentia exempla adiiciemus, dum pro p nonnulos numeros, qui quidem fint fummae duorum quadratorum, aflumemus. Exemplum 1. §, 6. Sit $p = s$, erit $pp = 2s = bb + cc$, vade fit b = 3 et $c = 4$, tum ergo f et g tales funi debent, vt fiat $3g - 4f = +1$, indeque habebi aus $a = ff + gg$ et pro hue numero $q = 3f + 4g$, ac deniane $x = 10q$ et y = 2qq + 1. Puiu-modi autem valores pro litteris f et g in fequenti tabella exhibemus:	Solutio. Cum dibeat effe $a_{j} p = qq + r$, erit $a = \frac{q_{k+1}}{r_k}$. Cum dibeat effe $a_{j} p = qq + r$, erit $a = \frac{q_{k+1}}{r_k}$. fractio praebeat numerum integrum. Quia içıtur tam pp quam p debet effe fumma duorum quadratorum, flatuatur pp = bb + cc et $qq + r = (bb + cc)(ff + gg)vt flat a = ff + gg. lam vero erit q = bf + rg et\pm r = bg - cf. Ex datis ergo numeris b et c alteri fet g ita accipi debent, vt flat bg - cf = \pm r, quud qui-dem infinitis modis facile fleri poteft. Tum igitur eritq = bf + cg$, et quia numerus p vt datus fpecfatur, hinc	Prob'ema 2. S. S. Inuelligare numeros a, pro quibus fieri pough S. S. Inuelligare numeros x et y affiguare, vi <i>LXX + 1 = y y.</i>	
---	--	--	--

순 -

عر ۲

9 <u>9</u>	v n f us	<u>e</u> 5	
+ c , vnde fit umi debunt, vt = ff + gg et w x = 10 g et ; pro litteris f	b = bf + cg = t b = t c alteri f am igitur erit fpcctatur, hinc + x, quarum s, qui quidem aus.	erit $a = \frac{q+1}{p}$, debent, vt haec iquur tum p prum, flatuatur	bus fieri poteß y alfig.are, vt
		x .	

Exemplum 2.

the: $12f - 5g = \pm 1$; then vero erit a = ff + gg, et q = 5f + 12g, vide fit x = 26q et y = 2qq + 1. Ca-\$ 7. Sit $p = r_3$, ideoque $p p = r_5 g = g^2 + r_2^3$, ynde fit b = g et $c = r_2$. Nunc primo haberur if a aequafus ergo hinc oriundos in sequenti tabula exhibemus:

	بع	¥ '	9	•	0ne 1		
}	SOI	1820	70	29	U 1	4	12 J
•	19603	2574	66		L	ය	- 58
-	114243	6214	239	338 8	71	L L	 + !
	1143649	8969	268	425	- I9	00	

5. 8. Sit p = 17, idenque $p p = 289 \pm 8^{2} + 15^{2}$, ergo b = 8 et c = 15, vnde prima acquatio adimplenda erit 15 f = 8 g = + 1, quo facto fiet a = ff + g g, et Euleri Opuse. Anal. Tom. L. R r q = 8

Exemplum 3.

R I 2	r Pro-	+ Pro-	
EXAMPLIATE DEFINITION IN THE EXAMPLIATE PROVIDENT OF THE PROVIDENT OF T	de de hin -t- 1. gu	, multiplicemus = q q -i- x.	Solutio. Cum igitur fit $app = qq + 2$, multip vtrinque per qq , et adiefta vnitate erit $appqq + z = q^{2} + 2qq + z$ vnde manif;fto colligitur $x = pq$ et $y = qq + z$.
vel huns: 8 n + 3, qui ergo ita progreduntur: 3, 11, 17, 19. 41, 43, etc. et qui ex his componuntur, quamobrem fequentia exempla percurramus.	vel 19. <i>mire numeros</i> feg	inuenire zumeros	Problems 3. §. 10. Si fuerit $app-a=qq$, inuenire numeros x et y, vt flat $a x x + i = yy$.
we obtineatur $a = (bb + 2cc)(JJ + 2gg)$ $= \pm 1$, hincque orietur $q = bf + 2cg$, act tandem $x = pq$ = t y = qq + t. At forma $bb + 2cg$, act alios diulfores pri- mos non admirtit, nifi qui fint vel huius formae: $8\pi + t$,	j + 24 g et ; vnicum ca- ur $a = 53$, et. = 66249.	=7f + 24g et Hinc vnicum ca- oritur $a = 53$, t $y = 66249$.	Find $a = 7$ et $c = 24$, tait indettit indetttit indettit indettit indettit indettit indettit indett
habeant formam $bb + 2cc$, etham pro p allos numeros accipere non licer, nifi qui fint eiusdem formae, quocirca ponamus flatim $pp = bb + 2cc$, flatque			Exemplum 4. 5. 9. Sit $p = 25$, hinc $p p = 625 = 7^{5} + 24^{5}$
Solutio. Cum debeat effe $a p p = q q + 2$, etit $a = \frac{q_a + 2}{p_p}$, ficque pro p et q eiusmodi numeri quaeri de- bent, vt illa fractio praebeat numerum integrum. Quia au- tem formula $q q + 2$ alios diuifores non admittit, nifi qui			6 2 13 a 5 218 g 38 251 x 1292 8534 y 2889 126003
الله المحمد المحم المحمد المحمد ال	e p fai		$\begin{cases} 2 \\ 3 \\ 3 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\$

holer of

6j	porró $x = 9q$ et $y = qq + r$. Ecce ergo caíus qui hinc oriuntur: $ \begin{array}{c} $	$ \begin{array}{c} \sup_{x \in \mathbb{Z}} \sup_{y \in \mathbb{Z}} \sum_{y \in Z$
	er fide er	
6 J -	2 7 7 142 140 160 160 1 == 7 ² + 2, 6 ² , 1 = 6 ² - 7g = ± 1, 2 g, vnde x = 11 g	$\begin{array}{c} 3 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$
Rr 3 Exem-	f = 1, g = 11, a = 243, q = 265, x = 4505 et $y = 265^{2} + 1.$ f = x, g = 13, a = 339, q = 313, x = 17.313 et $y = 313^{2} + 1.$ Exemplum 5. S. 16. Sit $p = 19$, erit $p p = 361 = x7^{2} + 2.6^{2}$, ideoque $b = 17$ et $c = 6$, et acquatio erit $6f - 17g = \pm x$, hinc fiet a = ff + 2gg; q = 17f + 12g; x = 19q et $y = qq + 1$, Ynde fequentes cafus nafcuntur: Si $f = 3$ et $g = x$, erit $a = 11, q = 63, x = 1197$ et $y = 3969$. Si $f = 14$ et $g = 5662, y = 298^{2} + 1$.	S. 15. Sit $p = 12$, while, duos calus nutafie furthere. S. 15. Sit $p = 12$, while, duos calus nutafie furthere. $S. 15. Sit p = 12$, while acquation $12f - g = \pm 1$, S. 15. Sit p = 12, while acquation $12f - g = 12$, whit

Carea da

N. LOSING

Problema 5.

5. 17. Si juerit app + 2 = q q, inuenire numeros x el y, vi fiat axx + 1 = y y.

UCRIFE BURGETOS

Solutio.

Cum fit app = qq - 2, manifestum est fore x = pq et y = qq - 1, vnde ad sequens problema puegredumur.

Problema 6.

5. 18. Inucfligare numeros a, pro quibus ficri possi app+2=qq, bincque numeros x et y assignare, et siat a x x + 1 = y y.

Solutio.

Ex acquatione $app + z \equiv qq$ deducitur $a \equiv \frac{qq-z}{pp}$, its vt pp debeat effe divifor furmulae qq - z, id quod evenire nequit, nift ft pp ideoque et p numerus formae bb-z e e. Hanc ob rem flatuanus $pp \equiv bb-2$ e e et $qq - z \equiv (bb-z e e)(ff - zgg, quod vt fleti poffit$ $debet effe <math>cf - bg \equiv + i$; tum vero erit $q \equiv bf - zeg$ et $a \equiv ff - zgg$, atque habebimus $x \equiv pq$ et $y \equiv qq - i$. Nune vero obfervari convenit, pro p alios numeros primos accipi non poffe, nift in aterutra harum formularum: 8n+iet 8n - i contentos. Quod fi iam fumeretur $p \equiv i$, foret a = qq - z, qui eft cafus per fe notifinus, ficretique $x \equiv q$ et $y \equiv qq - z$, qui eft cafus per fe notifinus, ficretique $x \equiv q$

Exem-

	\$ <u>6</u>	ā E	\$9 \$ 0 ⊒	д н н	なぶゆ
-	71				ي بي من ميريني محمد من مريم ميريني ميريني موري م
	$\frac{p}{p} = 1$			us fr. guare,	um eft roblema
F	lin spri		deducitur 99—2,	firi 1 re, vi	-
	foret VII q	nume- 	- situr	jiat	fore piu-

Exemplum I.

§. 19. Sit $p = \gamma$, erit $pp = 49 = 9^1 - 2$, 4^2 , hind b = 9 et c = 4, ergo acquatio noftra $4f - 9g = \pm 1$; una vero erit a = ff - 2gg et q = 9f - 8g, $x = \gamma q$ et y = qq - 1, vnde cafus fequentes eucluamus, $1^\circ, f = 2, g = 1, a = 2, q = 10, x = \gamma 0$ et y = 99, $2^\circ, f = 7, g = 3, a = 31, q = 39, x = 272$ et y = 1520, $3^\circ, f = 11, g = 5, a = 71, q = 59, x = 413$ et $y = 3480_1$

2°. f = 7, g = 3, a = 31, q = 39, x = 273 et y = 1520, 3°. f = 11, g = 5, a = 71, q = 59, x = 413 et y = 3480, 4°. f = 16, g = 7, a = 158, q = 88, x = 616 et y = 7744. Hic autem notari debet, omnes numeros formae bb = 2.6infinitis modis in eadem forma contineri poffe. Ita mane te p = 7 erit quoque $pp = 49 = 11^2 - 2.6^2$, ita vt nunc fit b = 11 et c = 6, fieque noftra aequatio crit 6f - 11g = +1, tum vero vt ante a = ff - 2.gg, at vero q = 11f - 12g et x = 7q atque y = qq - 3. Hinc fequentes cafus enoluamus :

1°: f = 2, g = 1, a = 2, q = 10, x = 70 et y = 99,

a[•], f = 9, g = 5, a = 31, q = 39, x = 273 et y = 1520, hinc autem manifestum est, cosdem cafus este prodituros

quos iam ante inuenimus.

Exemplum 2.

5. 20. Sit p = 17, erit $p p = 289 = 19^{5} - 2.6^{5}$, vude noftra aequario fit $6f - 19g = \pm 1$, tum vero erit $a = \int f - 2gg$, q = 19f - 12g ei x = x7g et y = 29f - 3. x° , f = 3, g = x, a = 7, q = 45, x = 765 et y = 2024,

Exem

Exem-

2°. f=16, g=5, a=206, q=244, x=4148 et y=244²⁻¹.

5. 21. Sit p = 23, crit $pp = 529 = 27^5 - 2$. 10⁵, ideoque $b \cdot = 27$ ct c = 10. Acquatio ergo no-fira erit 10 f - 27 $g = \pm 1$, hinque $a = \int \int -2g g$. q = 27 f - 20 g, x = 23 q et y = q q - 1. Hinc fi f = 8, crit g = 3, a = 46, q = 156, x = 3588cognita hunc fecundum cafum: $x = \frac{p_1}{2}$ et $y = \frac{q_1}{2} \pm 1$, qui numeri autem etiamnum funt fracti. Hinc autem tertius 5. 22. Si fuerit a p p + 4 = q q, invenire numeros x et y et fat $a \times x + z = y y$. et y == 156" - 1. $x = p \ (\frac{q q}{1})$ et $y = q \ (\frac{q q}{1}),$ cantur et primi fubtrahuntur, hinc autem prodibit, qui an bo valores ob q numerum imparem crunt integri, cafus deducatur, dum valores fecundi cafus per q multiplinotandum eft, ex hoc cafu concludi poffe feenndum praecepta forct maxime obuius. At fi p et q fint numeri impares, fi quidem effent p et q numeri pares, qui ergo cafus Quia numerus 4 est quadratum, crit in forma deliderata $\frac{q \cdot p}{r} + \mathbf{1} = \frac{q \cdot q}{r}$, ita vt iam esset $x = \frac{q}{r}$ et $y = \frac{q}{r}$ Exemplum 3. Problema. 7. Solutio.

quocirca hanc finnus adepti (olutionem problematis, **v**t fit $x = p \left(\frac{q - 1}{2}\right)$ et $y = q \left(\frac{q - 1}{2}\right)$.

ទូ

dem eritq

> 1 27 - 2. IO tio ergo no-

tes ($= \frac{ff - z g g}{q - 1}$. Hinc 5, * 11 3588

l, insenire nu-

far . qođu crit in forma ni ergo cafus <u>ب جار</u> در با جار م lum praecepta meri impares, er q multipliautem tertius — (내 - I, qui

oblematis, VI crunt integri,

() || tauod drato

rodibit

oid

cinb. hoc .

ergo

ဂ္ဂ

••\$??) 321 (\$??*•

Corollarium.

dem pro b numeros impares accipi oportet, vude sequeneritque q = b, hinque $x = \frac{b \cdot b}{q} = \frac{b}{q} = \frac{b}{b} \left(\frac{b \cdot b}{q} - s \right)$, vioi qui-**5.** 24. Si ergo filerit $a = b \ b - 4$, capi poterit $p = x_1$

tes cafus euoluiffe inuabit:

2? Sit b = 5, crit a = 21, hinc x = 12 atque y = 55; 1°. Sit b = 3, crit a = 5 et x = 4 atque y = 9. 5°. Sit b = 11, erit a = 117 et x = 60 atque y = 649 3°. Sit b = 7, crit a = 45, hinc x = 24 at us y = 163, 4°. Sit b = 9, crit a = 77 et x = 40 atque $y = 35^{x}$,

Problema 8.

fat a x x + 1 = y y. app + 4 = qq, bincque numeros x et y allignare, us S. 25. Inuefligare numeros a, pro quibus fieri poffit

Solutio.

quo facto reperietur $x = p \left(\frac{q}{2}\right)$ et $y = q \left(\frac{q}{2}\right)$. Hinc ponendo b = te + et e = te - '; tum vero flat q q - 4 doquidem numerator q q - 4 est differentia duorum qua-dratorum. Semper igitur flatui poterit p p = b b - c c, pro p omnes numeros impares accipere licet, quanhoc vero requiritur vt fit $cf - bg = \pm 2$ et q = bf - cg. ergo fequentia exempla euoluamus. = (b b - c c) (f - g g), vt hint oriatur a = f f - g g; ad Cum hinc fit a p p = q q - 4, flet $a = \frac{q q - 4}{r^2}$, vbi

Euleri Opuse. Anal. Tom. I. C9

Exem-

hine $4f - 5g = \pm 2$, porro a = ff - gg, q = 5f - 4, $x = 3(\frac{1}{2} - \frac{1}{2})$ et $y = q(\frac{1}{2} - \frac{1}{2})$; vnde cafus fequentes confideremus : Hic quoque valor iplins q in genere allignari poteft ex unico valore cognito $q \equiv 2$. Ponatur enim $q \equiv 9$ $n \pm 2$, erit-Vero crit $x = 3 \left(\frac{3 + n\pi \pm \frac{1}{2}}{2} + \frac{3 + 3}{2}\right)$ et que qq-4=81 nn+36 n, vnde fit a=9 nn+4 n, tunn vbi pro n quemlibet numerum imparem assumere licet. 1°. f = 2, g = 2, hinc a = 0, vnde ergo nihil fe 3°. f=7, g=6, hinc a=13, q=11, x=180 4°. f = 8, g = 6, hinc a = 28, q = 16, x = 3. $\frac{37}{2}$ 2°. f=3, g=2, hinca=5, q=7, x=72 5°, f = 12, g = 10, vnde pariter nihil colligitur, 6°. f = 13 et g = 10, vnde a = 69, q = 25, ergo 8°. f= 23 etg= 18, vnde a= 205, q= 43, ergo x = 2772 γ° , f = 17 et g = 14, vnde a = 93, q = 29, ergo x = 12605. 26. Sumatur p = 3, fietque b = 5 et $c = 4g_1$ quitur. y == 9 n ± 2 (<u>いれれ生がホナ・</u>) et y == 161. et y == 649. qui cafus inutilis. necelle enim elt vt numerus f fit impar. et y= 12151. x == 936 et y == 7775. et y 📰 39689. ₩\$??) 322 (**දි**??... Exemplum 1. Exem-

				<u> </u>	ថ្ងីចំស		3 8 9
			1.1		<u>، المحمد المحمور ا</u>	لج استندی است.	
Елет-	nere licet.	oteft ex unico $n - \frac{1}{2} 2$, erit- $n - \frac{1}{2} 4 n$, tum	rgo x∷ 1260 ergo x∷ 2772	il colligitur, impar. == 25, ergo	(1, x == 180 6, x == 3, ==;;	rgo nihil (e- 7, x=72	5 et e 4 g , 9 5 f - 4 , fequentes con-

Exemplum.

que $12f - 13g = \pm 2$, vnde fita = ff - gg etq = 13f - x2g, $x = 5\left(\frac{44}{3} + 1\right)$ atque $y = q\left(\frac{44}{2} + 5\right)$, vbi iterum f debet effe numerus impar. Sit \$. 26. Sit p = 5, eritque b = 13 etc = 12, ideo-

1°. f = 11 et g = 10, hinc a = 21, q = 23, x = 1320et y == 6049.

2°: f == 15 et g == 14, hinc a == 29, q == 27, x == 1820 et y == 9801.

eritque a = 25 $nn \pm 4$ n; tum vero ve ante erit $x = 5 \left(\frac{1.9}{5}\right)^{-1}$ Statim autem fine litterarum fet g ope flatui poterit $q = 25 n - \frac{1}{2}$ binas dabunt folutiones pares assumere licet, quorum finguli ob fignum ambiguum et $y = \left(\frac{q_{\frac{1}{2}}}{1}\right)$; at que hic iam pro *n* quosvis numeros im-

1°. Si n = 1 erit a = 25 + 4 et q = 25 + 2.

2°. Sin= 3 crit a = 225 ± 12 ct q = 75 ± 2.

3°. Sin= 5 erit a = 625 ± 20 et q = 125 ± 2.

4°. Si n = 7 erit a = 1225 ± 28 et q = 175 ± 2.

Euolutio generalis.

matur $q = npp \pm 2$, eritque $a = \frac{q_{a_{1}}}{p_{p}} = npp \pm 4n$, tum vero habebitur $x = p \left(\frac{q_{1}}{2}\right), y = q \left(\frac{1}{2}, \frac{q_{1}}{2}\right)$, quae unica folutio locum habet quando p erit numerus primus; verum fi p inuoluat factores inter fe primos, aliae infu-5. 27. Si p fuerit numerus impar quicunque, fuber

ง ร ร

et 4 addendo prodit $rrss+4=s^2+4ss^2+4=(rs+2)^2$, ficque ad cafum praecedentem reuoluimur, quo erat app+4=qq; crit feikicet nunc $p=rs$ et $q=ss+2$, ex quibus valoribus colligimus vt ante $x = p \left(\frac{qq}{2}\right)$ et $y = q \left(\frac{qq}{2}\right)^2$. Co-	Problema 9. §. 28. Si fuerit arr-4=s 5, invenire numeros x et y, vt fat a xx + 1 = y y. Solutio. Cum fit arr - co + 4. multiplicando per 5 5	$w_{6}^{2} = 324 \left(\frac{2}{2} \frac{2}{3} \frac$	
an a	f_{L} f_{L	enim $p = r s_{s}$ udo $b = \frac{rr + s_{s}}{r}$ udo $b = \frac{rr + s_{s}}{r}$ it g_{s} vt fat ritque $k k - 4$ hinque $\frac{k_{k-1}}{p_{p}}$ ac reperietur hi u a hic iterum hi r = s et $s = 3$, 2, hinque lutione habe- $17 g = \frac{1}{2} 2$, t k = 5 2. Si t k = 5 2.	
q = s s + 2, C_{um} fit $a r r = s s + 4$, erit $a = \frac{s s + 1}{r r}$; vade patet, pro r alios numeros impares aflumi non pofie S = 3 S = 3 niti	Pr 5. 30. Inuefliga fis arr - 4 - 5 5, inde fat a x x + z = y y.	5. 29 e e 4, den quo erit r = 1 hincque port cafus eucluan Sit r°. e = 3°. e = 4°. e =	

the second second

-		
$\begin{array}{l} \mathbf{\hat{g}}, \ \hat{$, tum vero $s = 39$, atque hinc conclu- 6319049. Ex cafu , flatim poni pc- 25 n + 22 n + 5; $(25 n + 11)^2 + 2$, $= q(32^{-9})$. Hinc dem	numerus impar, hic excludimus. 3°. Sit $f = 6$ et $g = 5$, erit $a = 61$, tum vero $s = 39$, hiucque porto $p = 195$ et $q = 1523$; aque hinc conclu- duntur valores $x = 226153980$ et $y = 1766319049$. Ex cafu autem primo, quo erat $s = 11$ et $\frac{11}{12} + \frac{1}{2} = 5$, flatim poni po- teft $s = 25 n + 11$, vnde deducitur $a = 25 n n + 23 n + 5$; tum vero erit $p = 5(25 n + 11)$ et $q = (25 n + 11)^2 + 2$; vnde denique deducitur $x = p(\frac{a_1 - 1}{a_1})$ et $y = q(\frac{a_2 - 1}{a_1})$. Hinc autem fuffecerit valores numeri a deriuaffe vbi qui- dem vero vero erit $p = 5(25 n + 11)$ et $y = q(\frac{a_2 - 1}{a_1})$.
The $p = 12$ er turn vero erit i tem fimplicifin $et s \equiv 29$, ex quo vnde deducitur ro fiet $p = 13$ denique colligit numeros pares impar. 1° . Si $n =$ qui autem cali 2° . Sit n	$= 25 = 4^{n} + 3^{n},$ $3 \int -4 g = \pm 2,$ $- 3 g, \text{ vnde folu-}$ $s = 11, \text{ hincque}$ heri problemati fa- hins autem, quibus <i>a</i> us.	 Exemplum I. S. Sit r = 5, ideoque r r = 25 = 4^s + 3^s, tem fittum vero fit a = ff + gg et s = 4f + 3g, vude folution conficient vt ante. r. Sit f = 2 et g = r, erit a = 5, s = 11, hincque porto p = 55 et q = 123. Vnde pro x et y ingentes prodeunt numeri problemati fatisfacientes, fed non minimi. 2. Si f = 2 et g = 2, erit a = 8; cafus autem, quibus a qui an qui an participation of the second second
dem pro p nu numerus par. \mathbf{r}° . Si $n = c$ \mathbf{a}° . Si $n = 4$ 3° . Si $n = 4$ pro his ergo crefcçuit. §. 32.	forum. Sit igitur b + c c ($ff + g g$), = + 2, tum vero n numeris r et s ro concluditur rgo alios numeros , vel x7, vel 25, xemplis euoluemus.	

numeros pares fumi oportet; ne a prodeat

: 2 fit yel a ____ 61 vel ____ 149,

4 fit vel a = 317 vel a = 493, cafibus numeri x et y in immenfum ex-

Exemplum 2.

Sit nunc r = 13, crit $rr = 169 = 12^{2} + 5^{3}$, et r = 5, ita vt fieri debeat $5f - 12g \pm 2_{5}$ it a = ff + gg et s = 12f + 5g. Cafus aucs accipi oportet, vt quidem fiat a numerus or a = 169 nn ± 58 n ± 5 , pro quo nume-3 (179 n ± 29) et q(169 n $\pm 29)^2 \pm 2$, vnde 3 jtur $x = p(\frac{n}{2}, \frac{1}{2})$ et $y = q(\frac{n}{2}, \frac{1}{2})$. At pro n no flatim generaliter flatui poteff $s \equiv 169 \ n \pm 29$, inus eft f= 2 et g = 1, qui praebet a = 5

fus per se est notus. = o fit a = 5 et s = 29, hincque p= 13, 29,

n = 2, erit vel a = 565 vel a = 797.

Exemplum 3.

+gg et s = 15f + 8g. Pro cafu fumpli-nus f = 4 ct g = 2, vnde fit a = 20 et s = 76; pro c == 8, fierique debet 8 f = 15 g = ± 2, hinc-+gg et s == 15 f + 8 g. Pro cafu fumpligenerali ponamus s = 289 n 土 76, fietque Sit r = 17 et r r = 289 = 15° + 8°, vn-

19 nn + 152 n + 20, nmeros impares capi conuenit.

<u>،</u>

Euleri Opusı, Anel. Tom. I. Tt + 1,	: 5:59:0	quens Euli	THEO-
, numerus cum fit $n - 1$, in his refiduis omnes occurrent numeri 1, 2, 3, 4, \dots $n - 1$, quibus exhauftis fe- quens poteflas a^{n-1} iterum per <i>n</i> divifa relinquet refiduum	THEO	per » numeri	
dua. Sit igitur <i>a</i> huinsmodi numerus, cuins fingulae potestates a^{o} , a^{i} , a^{s} , a^{s} , a^{s} , \cdots , a^{n-s} per <i>n</i> diuisae totidem dinersa refidua producant, quorum	Jiani aluoquin	quam dua, S	Ex his igitur abunde perípicitur, quemadmodum, ope horum fubfidiorum cafus problematis Pelliani aluquin difficillimi fatis expedite refolui queant.
quidem quilibet facile largietur, (emper dari huiusmodi nu- neros, quorum fingulae poteftates, exponentem minorem ouam $n - r$ habentes, per n dinifae, diuerfa pracheaut refi-	••	tem q quiden meros,	citt $a - f f = 2$ of $g = 2$, hinc $a = 8$ or a where $a = 1$ for $a = 1$ of $g = 2$, hinc $a = 8$ of $f = 1$ of $a = 1$ fatuatur or $g = 3 + 1$ for $a = 1$ for $a = 1$ of
Academiae regiae icicntiarum borulticae dedit : Geometris haud ingratum fore arbitror, fi etiam meam demonstratio- nem more mihi familiari communicauero. Proposito au-		Acade: haud i	5. 35. Sit $r = 29$ et $r r = 841 = 21^3 + 20^3$, ideoque $b = 21$ et $c = 20$, fierique debet $20f - 21g = \pm 2$, hinc-
Suanquam illustris Geometra de la Grange iam geminam huius theorematis demonstrationem in nouis Actis			y == 68123 (*******) == 158070671986249.
Demonstratio.		ł	numeri maximi deducuntur, x = 6525 (*******) == 15140424455100
tinna numerum preman n.	ibus defiderati	illum	rice cafim $a = 109$, qui methodo vulgari moleftifimos calculos requirit; cum ergo fit $s = 261$, ob $r = 25$ erit $b = 6525$ et $a = 261^2 + 2 = 68123$, ex quibus defiderati
Si n fuerit numerus primus, boc productum continuum: x. 2. 3. \cdots ($n - 1$), vnitate auctum, femper dividi potest per	etur generatim autem nume-	3	fimus dat f == 10 et g == 3, hinque a == 109 et s == 261; ynde fi flatuatur s == 625 n ± 261, reperietur generatim a == 625 n n ± 522 n ± 100. Eucluamus autem nume-
Theorema a Cl. <i>Waring</i> fine demonstratione propositum.	g = \pm 2, hinc- dus fimplicis-	1]	5. 34 Sit $r = 25$ et $r = 625 = 24$ +-7, ideo- que $b = 24$ et $c = 7$. Iam effe debet $7f - 24g = \pm 2$, hinc- que erit $a = ff + gg$ et $s = 24f + 7g$. Cafus fimplicis-
nđ	+ + 7, ideo-	1.1	enomme. Exemplum 4.
MISCELLANEA ANALYTICA.	eri pretium fit		1. Si n = 1 fiet a = 309 ± 152 et s = 289 ± 76, qui Valores iam nimis funt magni quam quos operi precium iit
⇔દુવંડે) ઉઢઉ (ટ્રેલ્ડ્રેલ્ન	10 1 76 . ani		migis) 8 i E (Sigger
. . .		1.986 M	
		にいた。	

1

.